首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Proteasomal dysfunction may underlie certain neuro-degenerative conditions such as Parkinson disease. We have shown that pharmacological inhibition of the proteasome in cultured neuronal cells leads to apoptotic death and formation of cytoplasmic ubiquitinated inclusions. These inclusions stain for alpha-synuclein and assume a fibrillar structure, as assessed by thioflavine S staining, and therefore resemble Lewy bodies. alpha-Synuclein is thought to be a central component of Lewy bodies. Whether alpha-synuclein is required for inclusion formation or apoptotic death has not been formally assessed. The present study examines whether alpha-synuclein deficiency in neurons alters their sensitivity to proteasomal inhibition-induced apoptosis or inclusion formation. Cortical neurons derived from alpha-synuclein-null mice showed a similar sensitivity to death induced by the proteasomal inhibitor lactacystin compared with neurons derived from wild-type mice. Furthermore, the absence of alpha-synuclein did not influence the percentage of lactacystin-treated neurons harboring cytoplasmic ubiquitinated inclusions or alter the solubility of such inclusions. In contrast, however, ubiquitinated inclusions in alpha-synuclein-deficient neurons lacked amyloid-like fibrillization, as determined by thioflavine S staining. This indicates that although alpha-synuclein deficiency does not affect the formation of ubiquitinated inclusions, it does significantly alter their structure. The lack of effect on survival in alpha-synuclein knock-out cultures further suggests that the fibrillar nature of the inclusions does not contribute to neuronal degeneration in this model.  相似文献   

2.
Proteasome-mediated proteolysis is a major protein degradation mechanism in cells and its dysfunction has been implicated in the pathogenesis of several neurodegenerative diseases, each with the common features of neuronal death and formation of ubiquitinated inclusions found within neurites, the cell body, or nucleus. Previous models of proteasome dysfunction have employed pharmacological inhibition of the catalytic subunits of the 20S proteasome core, or the genetic manipulation of specific subunits resulting in altered proteasome assembly. In this study, we report the use of dominant negative subunits of the 19S regulatory proteasome complex that mediate the recognition of ubiquitinated substrates as well as the removal of the poly-ubiquitin chain. Interestingly, while each mutant subunit-induced inclusion formation, like that seen with pharmacological inhibition of the 20S proteasome, none was able to induce apoptotic death, or trigger activation of macroautophagy, in either dopaminergic cell lines or primary cortical neurons. This finding highlights the dissociation between the mechanisms of neuronal inclusion formation and the induction of cell death, and represents a novel cellular model for Lewy body-like inclusion formation in neurons.  相似文献   

3.
In many neurodegenerative disorders, such as Alzheimer's disease, inclusions containing ubiquitinated proteins have been found in the brain, suggesting a pathophysiological role for ubiquitin-mediated proteasomal degradation of neuronal proteins. Here we show for the first time that the beta-amyloid fragment 1-40, which in micromolar levels causes the death of cortical neurons, also induces the ubiquitination of several neuronal proteins. Prevention of ubiquitination and inhibition of proteasome activity block the neurotoxic effect of beta-amyloid. These data suggest that beta-amyloid neurotoxicity may cause toxicity through the activation of protein degradation via the ubiquitin-proteasome pathway. These findings suggest possible new pharmacological targets for the prophylaxis and/or treatment of Alzheimer's disease and possibly for other related neurodegenerative disorders.  相似文献   

4.
Proteasomal dysfunction has been linked to neurodegeneration. Pharmacological proteasomal inhibitors may have pro-survival or pro-death effects in neuronal cells. We have previously found that application of such agents to mouse sympathetic neurons leads to activation of the intrinsic apoptotic pathway. We show here that in rat sympathetic neurons proteasomal inhibition leads to a form of death that is morphologically non-apoptotic, with features of autophagy. The intrinsic apoptotic pathway is activated in a delayed fashion compared with mouse neurons, and is in part responsible for death, as evidenced by the partial protective effects of bcl-xL and the general caspase inhibitor Boc-aspartyl-fluoromethylketone. Death is accompanied by induction of Bim and caspase activation, but caspase 3 activation is lacking; 3-methyl-adenine inhibits macroautophagy, but has a relatively small pro-survival effect. We conclude that a complex array of pro- and anti-apoptotic effects elicited by proteasomal inhibition in rat sympathetic neurons leads to partial engagement of the intrinsic apoptotic pathway and a morphologically non-apoptotic, autophagic form of death. The species difference with mouse neurons is underscored by the fact that proteasomal inhibitors are protective against apoptosis elicited by nerve growth factor deprivation in rat, but not mouse, sympathetic neurons. The type of death described herein may be relevant to neurodegenerative diseases, where morphological evidence for apoptosis has been scant.  相似文献   

5.
Proteasomal dysfunction has been recently implicated in the pathogenesis of several neurodegenerative diseases, including Parkinson's disease and diffuse Lewy body disease. We have developed an in vitro model of proteasomal dysfunction by applying pharmacological inhibitors of the proteasome, lactacystin or ZIE[O-tBu]-A-leucinal (PSI), to dopaminergic PC12 cells. Proteasomal inhibition caused a dose-dependent increase in death of both naive and neuronally differentiated PC12 cells, which could be prevented by caspase inhibition or CPT-cAMP. A percentage of the surviving cells contained discrete cytoplasmic ubiquitinated inclusions, some of which also contained synuclein-1, the rat homologue of human alpha-synuclein. However the total level of synuclein-1 was not altered by proteasomal inhibition. The ubiquitinated inclusions were present only within surviving cells, and their number was increased if cell death was prevented. We have thus replicated, in this model system, the two cardinal pathological features of Lewy body diseases, neuronal death and the formation of cytoplasmic ubiquitinated inclusions. Our findings suggest that inclusion body formation and cell death may be dissociated from one another.  相似文献   

6.
Proteasomal dysfunction may play a role in a number of neurodegenerative conditions, and in particular Parkinson's disease (PD) and related Lewy body (LB) diseases. Application of proteasomal inhibitors to neuronal cell culture systems is associated with survival-promoting effects or with cell death depending on the model system. We have applied pharmacological proteasomal inhibitors to cultured neonatal mouse sympathetic neurons in order to investigate whether these catecholaminergic neurons, which are affected in PD, are sensitive to proteasomal inhibition and, if so, which cell death pathway is activated. We report here that proteasomal inhibition leads to apoptotic death of mouse sympathetic neurons. This death is accompanied by caspase 3 activation and cytochrome c release from the mitochondria and is abrogated by caspase inhibition. Bax deletion prevented both cytochrome c release and caspase 3 activation, and also provided complete protection against proteasomal inhibition-induced death. Bcl-2 overexpression achieved a similar survival-promoting effect. There was no change in Bax levels following proteasomal inhibition, suggesting that Bax itself is not regulated by the proteasome in this cell culture system, and that a primary increase in Bax is unlikely to account for death. In contrast, levels of the BH3-only protein, Bim, increased with proteasomal inhibition. We conclude that proteasomal inhibition of mouse sympathetic neurons activates the intrinsic apoptotic pathway involving bcl-2 family members and the mitochondria.  相似文献   

7.
Abnormal aggregates of transactive response DNA-binding protein-43 (TDP-43) and its hyperphosphorylated and N-terminal truncated C-terminal fragments (CTFs) are deposited as major components of ubiquitinated inclusions in most cases of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with ubiquitinated inclusions (FTLD-U). The mechanism underlying the contribution of TDP-43 to the pathogenesis of these neurodegenerative diseases remains unknown. In this study, we found that a 2-5-fold increase in TDP-43 expression over the endogenous level induced death of NSC34 motor neuronal cells and primary cortical neurons. TDP-43-induced death is associated with up-regulation of Bim expression and down-regulation of Bcl-xL expression. siRNA-mediated reduction of Bim expression attenuates TDP-43-induced death. Accumulated evidence indicates that caspases are activated in neurons of ALS and FTLD-U patients, and activated caspase-mediated cleavage of TDP-43 generates CTFs of TDP-43. Here, we further found that the ER (endoplasmic reticulum) stress- or staurosporine-mediated activation of caspases leads to cleavage of TDP-43 at Asp(89) and Asp(169), generating CTF35 (TDP-43-(90-414)) and CTF27 (TDP-43-(170-414)) in cultured neuronal cells. In contrast to TDP-43, CTF27 is unable to induce death while it forms aggregates. CTF35 was weaker than full-length TDP-43 in inducing death. A cleavage-resistant mutant of TDP-43 (TDP-43-D89E/D169E) showed stronger death-inducing activity than wild-type TDP-43. These results suggest that disease-related activation of caspases may attenuate TDP-43-induced toxicity by promoting TDP-43 cleavage.  相似文献   

8.
《Autophagy》2013,9(2):224-227
In the past twenty years, evidence has accumulated to show that ubiquitinated proteins are a consistent feature of the intraneuronal protein aggregates (inclusions) that characterize chronic neurodegenerative disease. These findings may indicate that age-related dysfunction of the 26S proteasome may be central to disease pathogenesis. The aggregate-prone proteins can also be eliminated by autophagy. We have used the Cre-recombinase/loxP genetic approach to ablate the proteasomal psmc1 ATPase gene and deplete 26S proteasomes in neurons in different regions of the brain to mimic neurodegeneration. Deletion of the gene in dopaminergic neurons in the substantia nigra generates a new model of Parkinson’s disease. Ablation of the gene in the forebrain creates the first model of dementia with Lewy bodies. In both neuroanatomical regions, gene ablation causes the formation of Lewy-like inclusions together with extensive neurodegeneration. There is some evidence for neuronal autophagy in areas adjacent to inclusions. The models indicate that neuronal loss in neurodegenerative diseases can be attributed to proteasomal malfunction accompanied by Lewy-like inclusions as seen in dementia with Lewy bodies and Parkinson’s disease.  相似文献   

9.
10.

Background

The mechanisms through which aberrant α-synuclein (ASYN) leads to neuronal death in Parkinson''s disease (PD) are uncertain. In isolated liver lysosomes, mutant ASYNs impair Chaperone Mediated Autophagy (CMA), a targeted lysosomal degradation pathway; however, whether this occurs in a cellular context, and whether it mediates ASYN toxicity, is unknown. We have investigated presently the effects of WT or mutant ASYN on the lysosomal pathways of CMA and macroautophagy in neuronal cells and assessed their impact on ASYN-mediated toxicity.

Methods and Findings

Novel inducible SH-SY5Y and PC12 cell lines expressing human WT and A53T ASYN, as well as two mutant forms that lack the CMA-targeting motif were generated. Such forms were also expressed in primary cortical neurons, using adenoviral transduction. In each case, effects on long-lived protein degradation, LC3 II levels (as a macroautophagy index), and cell death and survival were assessed. In both PC12 and SH-SY5Y cycling cells, induction of A53T ASYN evoked a significant decrease in lysosomal degradation, largely due to CMA impairment. In neuronally differentiated SH-SH5Y cells, both WT and A53T ASYN induction resulted in gradual toxicity, which was partly dependent on CMA impairment and compensatory macroautophagy induction. In primary neurons both WT and A53T ASYN were toxic, but only in the case of A53T ASYN did CMA dysfunction and compensatory macroautophagy induction occur and participate in death.

Conclusions

Expression of mutant A53T, and, in some cases, WT ASYN in neuronal cells leads to CMA dysfunction, and this in turn leads to compensatory induction of macroautophagy. Inhibition of these lysosomal effects mitigates ASYN toxicity. Therefore, CMA dysfunction mediates aberrant ASYN toxicity, and may be a target for therapeutic intervention in PD and related disorders. Furthermore, macroautophagy induction in the context of ASYN over-expression, in contrast to other settings, appears to be a detrimental response, leading to neuronal death.  相似文献   

11.
12.
Dysfunction of the ubiquitin-proteasome system has recently been implicated in the pathogenesis of some untreatable myodegenerative diseases characterized by the formation of ubiquitinated inclusions in skeletal muscles. We have developed an in vitro model of proteasomal dysfunction by applying inhibitors of the proteasome to primary adult human skeletal muscle cultures. Our data show that proteasome inhibition causes both cytoplasmic accumulation of ubiquitinated inclusions and apoptotic death, the latter through accumulation of active caspase-3.  相似文献   

13.
Cytoplasmic α-synuclein (α-syn) aggregates, referred to as Lewy bodies, are pathological hallmarks of a number of neurodegenerative diseases, most notably Parkinson disease. Activation of macroautophagy is suggested to facilitate degradation of certain proteinaceous inclusions, but it is unclear if this pathway is capable of degrading α-syn aggregates. Here, we examined this issue by utilizing cellular models in which intracellular Lewy body-like α-syn inclusions accumulate after internalization of pre-formed α-syn fibrils into α-syn-expressing HEK293 cells or cultured primary neurons. We demonstrate that α-syn inclusions cannot be effectively degraded, even though they co-localize with essential components of both the autophagic and proteasomal protein degradation pathways. The α-syn aggregates persist even after soluble α-syn levels have been substantially reduced, suggesting that once formed, the α-syn inclusions are refractory to clearance. Importantly, we also find that α-syn aggregates impair overall macroautophagy by reducing autophagosome clearance, which may contribute to the increased cell death that is observed in aggregate-bearing cells.  相似文献   

14.
Variant late-infantile neuronal ceroid lipofuscinosis, a fatal lysosomal storage disorder accompanied by regional atrophy and pronounced neuron loss in the brain, is caused by mutations in the CLN6 gene. CLN6 is a non-glycosylated endoplasmic reticulum (ER)-resident membrane protein of unknown function. To investigate mechanisms contributing to neurodegeneration in CLN6 disease we examined the nclf mouse, a naturally occurring model of the human CLN6 disease. Prominent autofluorescent and electron-dense lysosomal storage material was found in cerebellar Purkinje cells, thalamus, hippocampus, olfactory bulb and in cortical layer II to V. Another prominent early feature of nclf pathogenesis was the localized astrocytosis that was evident in many brain regions and the more widespread microgliosis. Expression analysis of mutant Cln6 found in nclf mice demonstrated synthesis of a truncated protein with a reduced half-life. Whereas the rapid degradation of the mutant Cln6 protein can be inhibited by proteasomal inhibitors, there was no evidence for ER stress or activation of the unfolded protein response in various brain areas during postnatal development. Age-dependent increases in LC3-II, ubiquitinated proteins, and neuronal p62-positive aggregates were observed, indicating a disruption of the autophagy-lysosome degradation pathway of proteins in brains of nclf mice, most likely due to defective fusion between autophagosomes and lysosomes. These data suggest that proteasomal degradation of mutant Cln6 is sufficient to prevent the accumulation of misfolded Cln6 protein, whereas lysosomal dysfunction impairs constitutive autophagy promoting neurodegeneration.  相似文献   

15.
Many neurodegenerative disorders are characterized by two pathological hallmarks: progressive loss of neurons and occurrence of inclusion bodies containing ubiquitinated proteins. Inflammation may be critical to neurodegeneration associated with ubiquitin-protein aggregates. We previously showed that prostaglandin J2 (PGJ2), one of the endogenous products of inflammation, induces neuronal death and the accumulation of ubiquitinated proteins into distinct aggregates. We now report that temporal microarray analysis of human neuroblastoma SK-N-SH revealed that PGJ2 triggered a "repair" response including increased expression of heat shock, protein folding, stress response, detoxification and cysteine metabolism genes. PGJ2 also decreased expression of cell growth/maintenance genes and increased expression of apoptotic genes. Over time pro-death responses prevailed over pro-survival responses, leading to cellular demise. Furthermore, PGJ2 increased the expression of proteasome and other ubiquitin-proteasome pathway genes. This increase failed to overcome PGJ2 inhibition of 26 S proteasome activity. Ubiquitinated proteins are degraded by the 26 S proteasome, shown here to be the most active proteasomal form in SK-N-SH cells. We demonstrate that PGJ2 impairs 26 S proteasome assembly, which is an ATP-dependent process. PGJ2 perturbs mitochondrial function, which could be critical to the observed 26 S proteasome disassembly, suggesting a cross-talk between mitochondrial and proteasomal impairment. In conclusion neurotoxic products of inflammation, such as PGJ2, may play a role in neurodegenerative disorders associated with the aggregation of ubiquitinated proteins by impairing 26 S proteasome activity and inducing a chain of events that culminates in neuronal cell death. Temporal characterization of these events is relevant to understanding the underlying mechanisms and to identifying potential early biomarkers.  相似文献   

16.
Mitochondrial dysfunction, ubiquitin-proteasomal system impairment and excitotoxicity occur during the injury and death of neurons in neurodegenerative conditions. The aim of this work was to elucidate the cellular mechanisms that are universally altered by these conditions. Through overlapping expression profiles of rotenone-, lactacystin- and N-methyl-d-aspartate-treated cortical neurons, we have identified three affected biological processes that are commonly affected; oxidative stress, dysfunction of calcium signalling and inhibition of the autophagic–lysosomal pathway. These data provides many opportunities for therapeutic intervention in neurodegenerative conditions, where mitochondrial dysfunction, proteasomal inhibition and excitotoxicity are evident.  相似文献   

17.
There is increasing evidence for the toxicity of intracellular amyloid β-protein (Aβ) to neurons and the involvement of lysosomes in this process in Alzheimer disease (AD). We have recently shown that oxidative stress, a recognized determinant of AD, enhances macroautophagy and leads to intralysosomal accumulation of Aβ in cultured neuroblastoma cells. We hypothesized that oxidative stress promotes AD by stimulating macroautophagy of Aβ that further may induce cell death by destabilizing lysosomal membranes. To investigate such possibility, we compared the effects of hyperoxia (40% ambient oxygen) in cultured HEK293 cells that were transfected with an empty vector (Vector), wild-type APP (APPwt), or Swedish mutant APP (APPswe). Exposure to hyperoxia for 5 days increased the number of cells with Aβ-containing lysosomes, as well as the number of apoptotic cells, compared to normoxic conditions. The rate of apoptosis in all three cell lines demonstrated dependence on intralysosomal Aβ content (Vector < APPwt < APPswe). Furthermore, the degree of apoptosis was positively correlated with lysosomal membrane permeabilization, whereas inhibitors of macroautophagy and lysosomal function decreased oxidant-induced apoptosis and diminished the differences in apoptotic response between different cell lines. These results suggest that oxidative stress can induce neuronal death through macroautophagy of Aβ and consequent lysosomal membrane permeabilization, which may help explain the mechanisms behind neuronal loss in AD.  相似文献   

18.
Clusterin, also known as apolipoprotein J, is a ubiquitously expressed molecule thought to influence a variety of processes including cell death. In the brain, it accumulates in dying neurons following seizures and hypoxic-ischemic (H-I) injury. Despite this, in vivo evidence that clusterin directly influences cell death is lacking. Following neonatal H-I brain injury in mice (a model of cerebral palsy), there was evidence of apoptotic changes (neuronal caspase-3 activation), as well as accumulation of clusterin in dying neurons. Clusterin-deficient mice had 50% less brain injury following neonatal H-I. Surprisingly, the absence of clusterin had no effect on caspase-3 activation, and clusterin accumulation and caspase-3 activation did not colocalize to the same cells. Studies with cultured cortical neurons demonstrated that exogenous purified astrocyte-secreted clusterin exacerbated oxygen/glucose-deprivation-induced necrotic death. These results indicate that clusterin may be a new therapeutic target to modulate non-caspase-dependent neuronal death following acute brain injury.  相似文献   

19.
Parkinson's disease is characterized by loss of nigral dopaminergic neurons and the presence of cytoplasmic inclusions known as Lewy bodies. alpha-Synuclein and its interacting partner synphilin-1 are among constituent proteins in these aggregates. The presence of ubiquitin and proteasome subunits in these inclusions supports a role for this protein degradation pathway in the processing of proteins involved in this disease. To begin elucidating the kinetics of synphilin-1 in cells, we studied its degradation pathway in HEK293 cells that had been engineered to stably express FLAG-tagged synphilin-1. Pulse-chase experiments revealed that this protein is relatively stable with a half-life of about 16 h. Treatment with proteasome inhibitors resulted in attenuation of degradation and the accumulation of high molecular weight ubiquitinated synphilin-1 in immunoprecipitation/immunoblot experiments. Additionally, proteasome inhibitors stimulated the formation of peri-nuclear inclusions which were immunoreactive for synphilin-1, ubiquitin and alpha-synuclein. Cell viability studies revealed increased susceptibility of synphilin-1 over-expressing cells to proteasomal dysfunction. These observations indicate that synphilin-1 is ubiquitinated and degraded by the proteasome. Accumulation of ubiquitinated synphilin-1 due to impaired clearance results in its aggregation as peri-nuclear inclusions and in poor cell survival.  相似文献   

20.
Ubiquitin is one of the major components of Lewy bodies (LB), the pathological hallmark of Parkinson's disease (PD). Here, we identified that a phosphorylated form of IkappaBalpha (pIkappaBalpha), an inhibitor of NF-kappaB, and SCF(beta-TrCP), the ubiquitin ligase of pIkappaBalpha, are components of LB in brains of PD patients. In vitro studies identified those proteins in the ubiquitin- and alpha-synuclein (known as the major component of LB)-positive LB-like inclusions generated in dopaminergic SH-SY5Y cells treated with MG132, a proteasome inhibitor. Intriguingly, IkappaBalpha migration into such ubiquitinated inclusions in cells treated with MG132 was inhibited by a cell-permeable peptide known to block phosphorylation of IkappaBalpha, although this peptide did not influence cell viability under proteasomal inhibition. Our results indicate that phosphorylation of IkappaBalpha plays a role in the formation of IkappaBalpha-containing inclusions caused by proteasomal dysfunction, and that the generation of such inclusion is independent of cell death caused by impairment of proteasome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号