首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The theoretical relationships between the fluorescence and photochemical yields of PS II and the fraction of open reaction centers are examined in a general model endowed with the following features: i) a homogeneous, infinite PS II domain; ii) exciton-radical-pair equilibrium; and iii) different rates of exciton transfer between core and peripheral antenna beds. Simple analytical relations are derived for the yields and their time courses in induction experiments. The introduction of the exciton-radical-pair equilibrium, for both the open and closed states of the trap, is shown to be equivalent to an irreversible trapping scheme with modified parameters. Variation of the interunit transfer rate allows continuous modulation from the case of separated units to the pure lake model. Broadly used relations for estimating the relative amount of reaction centers from the complementary area of the fluorescence kinetics or the photochemical yield from fluorescence levels are examined in this framework. Their dependence on parameters controlling exciton decay is discussed, allowing assessment of their range of applicability. An experimental induction curve is analyzed, with a discussion of its decomposition into alpha and beta contributions. The sigmoidicity of the induction kinetics is characterized by a single parameter J related to Joliot's p, which is shown to depend on both the connectivity of the photosynthetic units and reaction center parameters. On the other hand, the relation between J and the extreme fluorescence levels (or the deviation from the linear Stern-Volmer dependence of 1/phi f on the fraction of open traps) is controlled only by antenna connectivity. Experimental data are consistent with a model of connected units for PS II alpha, intermediate between the pure lake model of unrestricted exciton transfer and the isolated units model.  相似文献   

2.
Zhang XC  Yu XF  Ma YF 《应用生态学报》2011,22(3):673-680
采用开顶式气室盆栽培养小麦,设计2个大气CO2浓度(正常:400 μmol.mol-1;高:760 μmol·mol-1)、2个氮素水平(0和200 mg·kg-1土)的组合处理,通过测定小麦抽穗期旗叶氮素和叶绿素浓度、光合速率(Pn)-胞间CO2浓度(C1)响应曲线及荧光动力学参数,来测算小麦叶片光合电子传递速率等,研究了高大气CO2浓度下施氮对小麦旗叶光合能量分配的影响.结果表明:与正常大气CO2浓度相比,高大气CO2浓度下小麦叶片氮浓度和叶绿素浓度降低,高氮处理的小麦叶片叶绿素a/b升高.施氮后小麦叶片PSⅡ最大光化学效率(Fv/Fm)、PSⅡ反应中心最大量子产额(Fv'/Fm')、PSⅡ反应中心的开放比例(qr)和PSⅡ反应中心实际光化学效率(φPSⅡ)在大气CO2浓度升高后无明显变化,虽然叶片非光化学猝灭系数(NPQ)显著降低,但PSⅡ总电子传递速率(JF)无明显增加;不施氮处理的Fv'/Fm'、φPSⅡ和NPQ在高大气CO2浓度下显著降低,尽管Fv/Fm和qp无明显变化,JF仍显著下降.施氮后小麦叶片JF增加,参与光化学反应的非环式电子流传递速率(Jc)明显升高.大气CO2浓度升高使参与光呼吸的非环式电子流传递速率(J0)、Rubisco氧化速率(V0)、光合电子的光呼吸/光化学传递速率比(J0/Jc)和Rubisco氧化/羧化比(V0/Vc)降低,但使Jc和Rubisco羧化速率(Vc)增加.因此,高大气CO2浓度下小麦叶片氮浓度和叶绿素浓度降低,而增施氮素使通过PSⅡ反应中心的电子流速率显著增加,促进了光合电子流向光化学方向的传递,使更多的电子进入Rubisco羧化过程,Pn显著升高.  相似文献   

3.
Photosystem II, which has a primary photochemical charge separation time of about 300 ps, is the slowest trapping of all photosystems. On the basis of an analysis of data from the literature this is shown to be due to a number of partly independent factors: a shallow energy funnel in the antenna, an energetically shallow trap, exciton dynamics which are partly trap limited and a large antenna. It is argued that the first three of these properties of Photosystem II can be understood in terms of protective mechanisms against photoinhibition. These protective mechanisms, based on the generation of non photochemical quenching states mostly in the peripheral antenna, are able to decrease pheophytin reduction under conditions in which the primary quinone, QA, is already reduced, due to the slow trapping properties. The shallow antenna funnel is important in allowing quenching state-protective mechanisms in the peripheral antenna.Abbreviations chl chlorophyll - PS I Photosystem I - PS II Photosystem II - QA the primary quinone acceptor - RC reaction centre - RT room temperature  相似文献   

4.
Papaya mosaic virus (PMV) causes severe mosaic symptoms in the papaya (Carica papaya L.) leaves. The PMV-induced alterations in photosystem II (PS II) structure and photochemical functions were probed. An increase in chlorophyll a (Chl a) fluorescence polarization suggests pathogen-induced transformation of thylakoid membrane to a gel phase. This transformation in physical state of thylakoid membrane may result in alteration in topology of pigments on pigment-binding proteins as reflected in pathogen-induced loss in the efficiency of energy transfer from carotenoids to chlorophylls. The fast Chl a fluorescence induction kinetics of healthy and PMV-infected plants by F(O)-F(J)-F(I)-F(P) transients revealed pathogen-induced perturbation on PS II acceptor side electron transfer equilibrium between Q(A) and Q(B) and in the pool size of electron transport acceptors. Pathogen-induced loss in photosynthetic pigments, changes in thylakoid structure and decrease in the ratio of F(V)/F(M) (photochemical potential of PS II) further correlate with the loss in photoelectron transport of PS II as probed by 2,6-dichlorophenol indophenol (DCPIP)-Hill reaction. Restoration of the loss by 1,5-diphenyl carbazide (DPC), an exogenous electron donor, that donates electron directly to reaction centre II bypassing the oxygen evolving system (OES), leads towards the conclusion that OES is one of the major targets of biotic stress. Further, the data suggest that chlorophyll fluorescence could be used as a non-invasive handy tool to assess the loss in photosynthetic efficiency and symptom severity in infected green tissues vis-a-vis the healthy ones.  相似文献   

5.
低温弱光胁迫对日光温室栽培杏树光系统功能的影响   总被引:4,自引:0,他引:4  
以温室栽培的金太阳杏为材料,测定了金太阳杏叶片光合速率(Pn)、光系统Ⅱ(PSⅡ)光下实际光化学效率(ΦPSⅡ)、光化学猝灭系数(qP)和开放的PSⅡ反应中心的激发能捕获效率(Fv/Fm), 探讨了低温弱光(7 ℃、200 μmol·m-2·s-1 PFD)对叶片光系统Ⅰ(PSⅠ)和PSⅡ的抑制作用.结果表明:温室栽培的金太阳杏叶光合作用的最适温度在25 ℃左右.光下7 ℃的低温可使叶片净光合速率(Pn)大幅下降,造成激发压(1-qP)增大,进而引起光抑制.低温弱光条件使PSⅠ和PSⅡ功能受到破坏,与单纯低温胁迫(7 ℃,黑暗)处理相比,经低温、弱光(7 ℃, 200 μmol·m-2·s-1PFD)胁迫2 h后,PSⅠ活性下降了28.26%,而PSⅡ最大光化学效率(Fv/Fm)没有发生显著变化,表明低温弱光条件下PSⅠ比PSⅡ 更易发生光抑制.  相似文献   

6.
7.
研究了不同浓度NO3-胁迫对黄瓜幼苗叶片光合速率、PSⅡ光化学效率及光能分配的影响.结果表明,当NO3-浓度较低时(14~98 mmol·L-1),适当增加NO3-浓度,可增强黄瓜幼苗叶片对光的捕获能力,促进光合作用.随着NO3-浓度的进一步增加(140~182 mmol·L-1),PSⅡ光化学效率降低,电子传递受到抑制,净光合速率降低;吸收的光能中,通过天线色素的热耗散增加,用于光化学反应的能量降低,光化学效率下降.140和182 mmol·L-1 NO3-处理黄瓜幼苗叶片6 d后净光合速率(Pn)极显著下降,分别比对照降低了35%和78%;PSⅡ最大光化学效率(Fv/Fm)、天线转化效率(Fv’/Fm’)、实际光化学效率(ΦPSⅡ)、光化学猝灭系数(qP)均低于对照,非光化学猝灭(NPQ)高于对照,激发能在两个光系统间的分配不平衡性(β/α-1)增大.高浓度NO3-处理的黄瓜幼苗叶片各荧光参数变化幅度比低浓度大.当光照增强时,高浓度NO3-胁迫下黄瓜幼苗叶片吸收的光能中应用于光化学反应的份额(P) 显著降低,天线热耗散的份额(D)显著增加. 天线热耗散是耗散过剩能量的主要途径.  相似文献   

8.
Shi SB  Shang YX  Zhu PJ  Yang L 《应用生态学报》2011,22(5):1147-1154
通过短期增补UV-B辐射模拟试验,研究了青藏高原典型天气(晴天、多云、阴天)下高山植物美丽风毛菊叶片的叶绿素荧光参数变化.结果表明:随天气由晴变阴,美丽风毛菊叶片暗适应3 min的PSⅡ最大光化学量子效率(Fv/Fm)显著升高,实际PSⅡ光化学效率(ФPSⅡ)和光化学猝灭系数(qp)也升高,而非光化学猝灭系数(NPQ)则降低,可见光辐射(PAR)是影响PSⅡ光能转化效率的主要因素.增补UV-B辐射后,3种典型天气下,美丽风毛菊叶片的Fv/Fm和NPQ略有降低,ФPSⅡ和qp略微增加,但对光合气体交换过程没有产生负影响.叶片净光合速率Pn和ФPSⅡ的增高趋势与增补UV-B辐射下相对较多的UV-A成分有关,同时也得益于叶片厚度的增加.UV-B辐射对叶片光合机构具有潜在负影响.  相似文献   

9.
为了探讨外源水杨酸(SA)提高植物抗旱性的相关机制,研究了干旱胁迫下(基质含水量为饱和持水量的60%和50%),根际施用外源SA对黄瓜幼苗生长、膜脂过氧化、脯氨酸积累、水分利用效率、净光合速率(Pn)和叶绿素荧光参数的影响.结果表明:SA处理能够缓解干旱胁迫对黄瓜幼苗生长、Pn和水分利用效率的抑制,减小膜脂过氧化程度,促进脯氨酸的积累;添加外源SA显著减小了干旱胁迫下黄瓜幼苗的PSⅡ最大光化学效率、PSⅡ实际光化学效率、PSⅡ潜在活性、PSⅡ有效光化学效率和光化学猝灭系数的下降幅度,抑制了非光化学猝灭系数的升高.添加外源SA可以缓解干旱胁迫造成的膜脂过氧化对膜系统的氧化损伤,并通过增强PSⅡ反应中心活性提高了Pn,有助于水分的利用,同时增大渗透调节能力,减少水分的散失,提高水分利用效率,从而增强植株对干旱的适应能力.  相似文献   

10.
Recently, it has been suggested (Horton et al. 1992) that aggregation of the light-harvesting a-b complex (LHC II) in vitro reflects the processes which occur in vivo during fluorescence induction and related to the major non-photochemical quenching (qE). Therefore the requirement of this chlorophyll a-b containing protein complex to produce qN was investigated by comparison of two barley mutants either lacking (chlorina f2) or depressed (chlorina104) in LHC II to the wild-type and pea leaves submitted to intermittent light (IL) and during their greening in continuous light. It was observed that qN was photoinduced in the absence of LHC II, i.e. in IL grown pea leaves and the barley mutants. Nevertheless, in these leaves qN had no (IL, peas) or little (barley mutants) inhibitory effect on the photochemical efficiency of QA reduction measured by flash dosage response curves of the chlorophyll fluorescence yield increase induced by a single turn-over flash During greening in continuous light of IL pea leaves, an inhibitory effect on QA photoreduction associated to qN developed as Photosystem II antenna size increased with LHC II synthesis. Utilizing data from the literature on connectivity between PS II units versus antenna size, the following hypothesis is put forward to explain the results summarized above. qN can occur in the core antenna or Reaction Center of a fraction of PS II units and these units will not exhibit variable fluorescence. Other PS II units are quenched indirectly through PS II-PS II exciton transfer which develops as the proportion of connected PS II units increases through LHC II synthesis.  相似文献   

11.
In this study the effect of increasing temperature on photochemical efficiency of PS II in wheat plants has been studied on a hot summer day (9:00 AM (Control)–7:00 PM) by measuring Chl a fluorescence. Increasing temperature for a short period of time (2–4 h), in nature affects the efficiency of PS II complex reversibly and does not cause permanent damage to any of the components of photosystem II. A scheme has been provided to demonstrate the sequence and severity of events which get affected maximum by temperature stress.  相似文献   

12.
Loss by recombination of the charge separated state P(680+)Q(A-) limits the performance of Photosystem II (PS II) as a photochemical energy converter. Time constants reported in literature for this process are mostly either near 0.17 ms or near 1.4 ms. The shorter time is found in plant PS II when reduction of P(680+) by the secondary electron donor Tyrosine Z cannot occur because Y(Z) is already oxidized. The 1.4 ms recombination is seen in Y(Z)-less mutants of the cyanobacterium Synechocystis. However, the rate of P(680+)Q(A-) recombination that actually competes with the stabilization of the charge separation has not been previously reported. We have measured the kinetics of the flash-induced fluorescence yield changes in the microsecond time domain in Tris-washed spinach chloroplasts. In this way the kinetics and yield of P(680+) reduction by Y(Z) were obtained, and the rate of the competing P(680+)Q(A-) recombination could be evaluated. The recombination time was less than 0.5 ms; the best-fitting time constant was 0.1 ms. The presence of Y(Z)(ox) slightly decreased the efficiency of excitation trapping but did not seem to accelerate P(680+)Q(A-) recombination. The two P(680+)Q(A-) lifetimes in the literature probably reflect a significant difference between plant and cyanobacterial PS II.  相似文献   

13.
Methyl viologen (MV) is a well-known electron mediator that works on the acceptor side of photosystem I. We investigated the little-known, MV-induced inhibition of linear electron flow through photosystem II (PS II) in spinach-leaf discs. Even a low [MV] decreased the (1) average, light-adapted photochemical efficiency of PS II traps, (2) oxidation state of the primary quinone acceptor QA in PS II during illumination, (3) photochemical efficiency of light-adapted open PS II traps, (4) fraction of absorbed light energy dissipated constitutively in a light-independent manner or as chlorophyll (Chl) a fluorescence emission, (5) Chl a fluorescence yield corresponding to dark-adapted open reaction-center traps (F o) and closed reaction-center traps (F m), and (6) half-time for re-oxidation of QA in PS II after a single-turnover flash. These effects suggest that the presence of MV accelerates various “downhill” electron-transfer steps in PS II. Therefore, when using the MV to quantify cyclic electron flow, the inhibitory effect of MV on PS II should be taken into account.  相似文献   

14.
Plants respond to excess light by a photoprotective reduction of the light harvesting efficiency. The notion that the non-photochemical quenching of chlorophyll fluorescence can be reliably used as an indicator of the photoprotection is put to a test here. The technique of the repetitive flash fluorescence induction is employed to measure in parallel the non-photochemical quenching of the maximum fluorescence and the functional cross-section (sigma(PS II)) which is a product of the photosystem II optical cross-section a(PS II) and of its photochemical yield Phi(PS II) (sigma (PS II) = a(PS II) Phi(PS II)). The quenching is measured for both, the maximum fluorescence found in a single-turnover flash (F(M) (ST)) and in a multiple turnover light pulse (F(M) (MT)). The experiment with the diatom Phaeodactylum tricornutum confirmed that, in line with the prevalent model, the PS II functional cross-section sigma (PS II) is reduced in high light and restored in the dark with kinetics and amplitude that are closely matching the changes of the F(M) (ST) and F(M) (MT) quenching. In contrast, a poor correlation between the light-induced changes in the PS II functional cross-section sigma (PS II) and the quenching of the multiple-turnover F(M) (MT) fluorescence was found in the green alga Scenedesmus quadricauda. The non-photochemical quenching in Scenedesmus quadricauda was further investigated using series of single-turnover flashes given with different frequencies. Several mechanisms that modulate the fluorescence emission in parallel to the Q(A) redox state and to the membrane energization were resolved and classified in relation to the light harvesting capacity of Photosystem II.  相似文献   

15.
遮光对不同基因型玉米光合特性的影响   总被引:16,自引:3,他引:16  
采用盆栽试验,研究了遮光对4个基因型玉米光合特性的影响.结果表明:4个基因型玉米叶片的光饱和点、净光合速率(Pn)、电子传递速率(ETR)、光系统Ⅱ最大光化学效率(Fv/Fm)和实际光化学效率(ΦPSⅡ)均受光强的影响.遮光降低了玉米的光饱和点,苗期遮光处理豫玉2号和丹玉13分别在光量子通量密度(PFD)为1400μmol·m-2·s-1和1100μmol·m-2·s-1时达到饱和.遮光还降低了玉米的Pn、ETR、Fv/Fm和ΦPSⅡ,但不同基因型玉米表现不同,豫玉2号和掖单22的下降幅度较小,而丹玉13和掖单6号的下降幅度较大.  相似文献   

16.
A detailed model for the kinetics and energetics of the exciton trapping, charge separation, charge recombination, and charge stabilization processes in photosystem (PS) II is presented. The rate constants describing these processes in open and closed reaction centers (RC) are calculated on the basis of picosecond data (Schatz, G. H., H. Brock, and A. R. Holzwarth. 1987. Proc. Natl. Acad. Sci. USA. 84:8414-8418) obtained for oxygen-evolving PS II particles from Synechococcus sp. with ~80 chlorophylls/P680. The analysis gives the following results. (a) The PS II reaction center donor chlorophyll P680 constitutes a shallow trap, and charge separation is overall trap limited. (b) The rate constant of charge separation drops by a factor of ~6 when going from open (Q-oxidized) to closed (Q-reduced) reaction centers. Thus the redox state of Q controls the yield of radical pair formation and the exciton lifetime in the Chl antenna. (c) The intrinsic rate constant of charge separation in open PS II reaction centers is calculated to be ~2.7 ps-1. (d) In particles with open RC the charge separation step is exergonic with a decrease in standard free energy of ~38 meV. (e) In particles with closed RC the radical pair formation is endergonic by ~12 meV. We conclude on the basis of these results that the long-lived (nanoseconds) fluorescence generally observed with closed PS II reaction centers is prompt fluorescence and that the amount of primary radical pair formation is decreased significantly upon closing of the RC.  相似文献   

17.
The development of a technique for laser measurement of fPhotosystem II (PS II) photochemical characteristics of phytoplankton and terrestrial vegetation from an airborne platform is described. Results of theoretical analysis and experimental study of pump-and-probe measurement of the PS II functional absorption cross-section and photochemical quantum yield are presented. The use of 10 ns probe pulses of PS II sub-saturating intensity provides a significant, up to 150-fold, increase in the fluorescence signal compared to conventional `weak-probe' protocol. Little effect on the fluorescence yield from the probe-induced closure of PS II reaction centers is expected over the short pulse duration, and thus a relatively intense probe pulse can be used. On the other hand, a correction must be made for the probe-induced carotenoid triplet quenching and singlet-singlet annihilation. A Stern-Volmer model developed for this correction assumes a linear dependence of the quenching rate on the laser pulse fluence, which was experimentally validated. The PS II saturating pump pulse fluence (532 nm excitation) was found to be 10 and 40 μmol quanta m−2 for phytoplankton samples and leaves of higher plants, respectively. Thirty μs was determined as the optimal delay in the pump-probe pair. Our results indicate that the short-pulse pump-and-probe measurement of PS II photochemical characteristics can be implemented from an airborne platform using existing laser and LIDAR technologies. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
高温对仁用杏光合特性及PSⅡ光化学活性的影响   总被引:1,自引:0,他引:1  
Du GD  Lü DG  Zhao L  Wang SS  Cai Q 《应用生态学报》2011,22(3):701-706
为探讨高温胁迫下仁用杏叶片的光合适应机制,以科尔沁沙地生长的4年生'超仁'仁用杏为试材,设置环境温度为25℃、30℃、40℃和50℃处理,利用气体交换技术和快速叶绿素荧光诱导动力学曲线分析技术(JIP-test),研究了仁用杏叶片光合特性和PSⅡ光化学活性.结果表明:在一定温度范围内,随着温度升高,仁用杏通过提高光合色素含量和比例来维持光能的吸收、传递和转换能力,从而保证光合机构正常运转;当高温超过叶片自身生理调节限度后,叶绿素发生分解、净光合速率(Pn)明显下降、胞间CO2浓度(Ci)上升,说明光合作用的下降是由叶肉因素造成的.温度40℃导致单位面积有活性反应中心数量(RC/CSo)显著下降;而50℃高温下荧光诱导曲线中K点(Wk)和J点(Vj)明显增加,高温对仁用杏叶片放氧复合体(OEC)、受体侧和PsⅡ反应中心造成了伤害.此外,50℃高温还导致初始荧光(Fo)显著升高,为对照的2.26倍,PSⅡ最大光化学效率(Fv/Fm)和光化学性能指数(PI/ABS)分别下降为对照的37.9%和10.3%.高温损害了PSⅡ供体侧和受体侧的功能,造成光合效率下降,这是高温胁迫对仁用杏叶片光合机构伤害的主要机制之一.  相似文献   

19.
依据所建立的色素分子排列和取向的新型结构模型,利用激发能传递的广义主方程理论,提出了高等植物体内激子相干迁移与俘获的点阵理论,研究了静态荧光量子产额、定态能量传递速率和荧光强度的变化规律。指出激子相干迁移有助于活体的激发能转移与俘获,并且它有可能是活体内激子寿命的限制因素之一。  相似文献   

20.
Song XX  Zheng CS  Sun X  Ma HY 《应用生态学报》2011,22(7):1737-1742
以切花菊品种‘白马’为材料,采用盆栽试验研究了控释肥对菊花叶片叶绿素荧光参数、叶绿素和养分含量及观赏品质的影响.结果表明:未施肥处理(对照)的菊花叶片PSⅡ原初光化学效率(Fv/Fm)、PSⅡ潜在光化学活性(Fv/Fo)和PSⅡ量子效率(ΦPSⅡ)与施肥处理相比显著下降;两种普通复合肥CCFA(N∶P∶K=20∶8∶10)和CCFB(N∶P∶K=14∶14∶14)处理的Fv/Fm、Fv/Fo和ΦPSⅡ在前期(30~60 d)比两个控释肥CRFA(N∶P∶K=20∶8∶10)和CRFB(N∶P∶K=14∶14∶14)处理有所增高,但在中后期(75~120 d)比两个控释肥处理显著下降.CRFA处理的Fv/Fm、ΦPSⅡ和光化学猝灭系数(qP)比CRFB处理有所增高.两种控释肥处理的非化学猝灭系数(NPQ)与对照和两种普通复合肥处理相比显著下降.各处理叶绿素含量变化规律与Fv/Fm、Fv/Fo和ΦPSⅡ基本一致.切花采收期CRFA和CRFB处理的叶片N、P、K含量以及花梗长、花梗粗、花径、花鲜质量和干质量均高于CCFA、CCFB和对照,而且CRFA处理的花鲜质量和干质量比CRFB处理显著增高.表明控释肥可以通过提...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号