首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The rate of oxidation of Fe(II) by atmospheric oxygen at pH 7.0 is significantly enhanced by low molecular weight Fe(III)-complexing agents in the order EDTA ≈ nitrilotriacetate > citrate > phosphate > oxalate. This simple effect of Fe(III) binding probably accounts for the “ferroxidase” activity exhibited by transferrin and ferritin.  相似文献   

2.
The metabolism of dissimilatory iron-reducing bacteria (DIRB) may provide a means of remediating contaminated subsurface soils. The factors controlling the rate and extent of bacterial F(III) mineral reduction are poorly understood. Recent research suggests that molecular-scale interactions between DIRB cells and Fe(III) mineral particles play an important role in this process. One of these interactions, cell adhesion to Fe(III) mineral particles, appears to be a complex process that is, at least in part, mediated by a variety of surface proteins. This study examined the hypothesis that the flagellum serves as an adhesin to different Fe(III) minerals that range in their surface area and degree of crystallinity. Deflagellated cells of the DIRB Shewanella algae BrY showed a reduced ability to adhere to hydrous ferric oxide (HFO) relative to flagellated cells. Flagellated cells were also more hydrophobic than deflagellated cells. This was significant because hydrophobic interactions have been previously shown to dominate S. algae cell adhesion to Fe(III) minerals. Pre-incubating HFO, goethite, or hematite with purified flagella inhibited the adhesion of S. algae BrY cells to these minerals. Transposon mutagenesis was used to generate a flagellum-deficient mutant designated S. algae strain NF. There was a significant difference in the rate and extent of S. algae NF adhesion to HFO, goethite, and hematite relative to that of S. algae BrY. Amiloride, a specific inhibitor of Na + -driven flagellar motors, inhibited S. algae BrY motility but did not affect the adhesion of S. algae BrY to HFO. S.algae NF reduced HFO at the same rate as S. algae BrY. Collectively, the results of this study support the hypothesis that the flagellum of S. algae functions as a specific Fe(III) mineral adhesin. However, these results suggest that flagellum-mediated adhesion is not requisite for Fe(III) mineral reduction.  相似文献   

3.
Bacterial crystalline Fe(III) oxide reduction has the potential to significantly influence the biogeochemistry of anaerobic sedimentary environments where crystalline Fe(III) oxides are abundant relative to poorly crystalline (amorphous) phases. A review of published data on solid-phase Fe(III) abundance and speciation indicates that crystalline Fe(III) oxides are frequently 2- to S 10-fold more abundant than amorphous Fe(III) oxides in shallow subsurface sediments not yet subjected to microbial Fe(III) oxide reduction activity. Incubation experiments with coastal plain aquifer sediments demonstrated that crystalline Fe(III) oxide reduction can contribute substantially to Fe(II) production in the presence of added electron donors and nutrients. Controls on crystalline Fe(III) oxide reduction are therefore an important consideration in relation to the biogeochemical impacts of bacterial Fe(III) oxide reduction in subsurface environments. In this paper, the influence of biogenic Fe(II) on bacterial reduction of crystalline Fe(III) oxides is reviewed and analyzed in light of new experiments conducted with the acetate-oxidizing, Fe(III)-reducing bacterium (FeRB) Geobacter metallireducens . Previous experiments with Shewanella algae strain BrY indicated that adsorption and/or surface precipitation of Fe(II) on Fe(III) oxide and FeRB cell surfaces is primarily responsible for cessation of goethite ( f -FeOOH) reduction activity after only a relatively small fraction (generally < 10%) of the oxide is reduced. Similar conclusions are drawn from analogous studies with G. metallireducens . Although accumulation of aqueous Fe(II) has the potential to impose thermodynamic constraints on the extent of crystalline Fe(III) oxide reduction, our data on bacterial goethite reduction suggest that this phenomenon cannot universally explain the low microbial reducibility of this mineral. Experiments examining the influence of exogenous Fe(II) (20 mM FeCl 2 ) on soluble Fe(III)-citrate reduction by G. metallireducens and S. algae showed that high concentrations of Fe(II) did not inhibit Fe(III)-citrate reduction by freshly grown cells, which indicates that surface-bound Fe(II) does not inhibit Fe(III) reduction through a classical end-product enzyme inhibition mechanism. However, prolonged exposure of G. metallireducens and S. algae cells to high concentrations of soluble Fe(II) did cause inhibition of soluble Fe(III) reduction. These findings, together with recent documentation of the formation of Fe(II) surface precipitates on FeRB in Fe(III)-citrate medium, provide further evidence for the impact of Fe(II) sorption by FeRB on enzymatic Fe(III) reduction. Two different, but not mutually exclusive, mechanisms whereby accumulation of Fe(II) coatings on Fe(III) oxide and FeRB surfaces may lead to inhibition of enzymatic Fe(III) oxide reduction activity (in the absence of soluble electron shuttles and/or Fe(III) chelators) are identified and discussed in relation to recent experimental work and theoretical considerations.  相似文献   

4.
The dynamics of iron nuclei in the condensates obtained by interaction of Fe(III) with DNA, Fe(III)(DNA monomer)(2), have been investigated by variable temperature (57)Fe M?ssbauer spectroscopy. Studies were effected on gel and freeze-dried samples, obtaining nearly coincident values of the parameters isomer shift and nuclear quadrupole splitting in T ranges 20-260 K. Functions ln(A(T)/A(77.3)) vs. T, here employed to investigate the dynamics of Fe nuclei, showed linear trends in the T ranges 20-150 and 150-260 K, respectively, the latter with larger slopes. Data coincided for gelled and freeze-dried specimens. No variation of delta or Delta E parameters occurred at the two T intervals, which suggests constancy of structure and bonding with the temperature changes. Functions (T) showed trends analogous to the corresponding functions determined for iron proteins, which were attributed to the occurrence of 'conformational substates'.  相似文献   

5.
The dissimilatory Fe(III)-reducing bacterium Geobacter sulfurreducens reduced and precipitated Tc(VII) by two mechanisms. Washed cell suspensions coupled the oxidation of hydrogen to enzymatic reduction of Tc(VII) to Tc(IV), leading to the precipitation of TcO(2) at the periphery of the cell. An indirect, Fe(II)-mediated mechanism was also identified. Acetate, although not utilized efficiently as an electron donor for direct cell-mediated reduction of technetium, supported the reduction of Fe(III), and the Fe(II) formed was able to transfer electrons abiotically to Tc(VII). Tc(VII) reduction was comparatively inefficient via this indirect mechanism when soluble Fe(III) citrate was supplied to the cultures but was enhanced in the presence of solid Fe(III) oxide. The rate of Tc(VII) reduction was optimal, however, when Fe(III) oxide reduction was stimulated by the addition of the humic analog and electron shuttle anthaquinone-2,6-disulfonate, leading to the rapid formation of the Fe(II)-bearing mineral magnetite. Under these conditions, Tc(VII) was reduced and precipitated abiotically on the nanocrystals of biogenic magnetite as TcO(2) and was removed from solution to concentrations below the limit of detection by scintillation counting. Cultures of Fe(III)-reducing bacteria enriched from radionuclide-contaminated sediment using Fe(III) oxide as an electron acceptor in the presence of 25 microM Tc(VII) contained a single Geobacter sp. detected by 16S ribosomal DNA analysis and were also able to reduce and precipitate the radionuclide via biogenic magnetite. Fe(III) reduction was stimulated in aquifer material, resulting in the formation of Fe(II)-containing minerals that were able to reduce and precipitate Tc(VII). These results suggest that Fe(III)-reducing bacteria may play an important role in immobilizing technetium in sediments via direct and indirect mechanisms.  相似文献   

6.
The dissimilatory Fe(III)-reducing bacterium Geobacter sulfurreducens reduced and precipitated Tc(VII) by two mechanisms. Washed cell suspensions coupled the oxidation of hydrogen to enzymatic reduction of Tc(VII) to Tc(IV), leading to the precipitation of TcO2 at the periphery of the cell. An indirect, Fe(II)-mediated mechanism was also identified. Acetate, although not utilized efficiently as an electron donor for direct cell-mediated reduction of technetium, supported the reduction of Fe(III), and the Fe(II) formed was able to transfer electrons abiotically to Tc(VII). Tc(VII) reduction was comparatively inefficient via this indirect mechanism when soluble Fe(III) citrate was supplied to the cultures but was enhanced in the presence of solid Fe(III) oxide. The rate of Tc(VII) reduction was optimal, however, when Fe(III) oxide reduction was stimulated by the addition of the humic analog and electron shuttle anthaquinone-2,6-disulfonate, leading to the rapid formation of the Fe(II)-bearing mineral magnetite. Under these conditions, Tc(VII) was reduced and precipitated abiotically on the nanocrystals of biogenic magnetite as TcO2 and was removed from solution to concentrations below the limit of detection by scintillation counting. Cultures of Fe(III)-reducing bacteria enriched from radionuclide-contaminated sediment using Fe(III) oxide as an electron acceptor in the presence of 25 μM Tc(VII) contained a single Geobacter sp. detected by 16S ribosomal DNA analysis and were also able to reduce and precipitate the radionuclide via biogenic magnetite. Fe(III) reduction was stimulated in aquifer material, resulting in the formation of Fe(II)-containing minerals that were able to reduce and precipitate Tc(VII). These results suggest that Fe(III)-reducing bacteria may play an important role in immobilizing technetium in sediments via direct and indirect mechanisms.  相似文献   

7.
In this report we study the effect of Fe(III) on lipid peroxidation induced by Fe(II)citrate in mitochondrial membranes, as assessed by the production of thiobarbituric acid-reactive substances and antimycin A-insensitive oxygen uptake. The presence of Fe(III) stimulates initiation of lipid peroxidation when low citrate:Fe(II) ratios are used ( 4:1). For a citrate:total iron ratio of 1:1 the maximal stimulation of lipid peroxidation by Fe(III) was observed when the Fe(II):Fe(III) ratio was in the range of 1:1 to 1:2. The lag phase that accompanies oxygen uptake was greatly diminished by increasing concentrations of Fe(III) when the citrate:total iron ratio was 1:1, but not when this ratio was higher. It is concluded that the increase of lipid peroxidation by Fe(III) is observed only when low citrate:Fe(II) ratios were used. Similar results were obtained using ATP as a ligand of iron. Monitoring the rate of spontaneous Fe(II) oxidation by measuring oxygen uptake in buffered medium, in the absence of mitochondria, Fe(III)-stimulated oxygen consumption was observed only when a low citrate:Fe(II) ratio was used. This result suggests that Fe(III) may facilitate the initiation and/or propagation of lipid peroxidation by increasing the rate of Fe(II)citrate-generated reactive oxygen species.  相似文献   

8.
Maharaj DS  Limson JL  Daya S 《Life sciences》2003,72(12):1367-1375
Disorders of iron accumulation are known to produce hepatotoxicity. Agents, which can reduce Fe(3+) to a more usable form Fe(2+) could potentially limit such damage. Since it has been previously demonstrated that the pineal secretory product, melatonin, is able to bind iron, we decided to investigate the potential protective properties of the principal melatonin metabolite and degradant, 6-hydroxymelatonin (6-OHM). Using adsorptive cathode stripping voltammetry (AdCSV) we showed that Fe(3+) in the presence of 6-OHM is converted to Fe(2+). We further demonstrated that 6-OHM reduces the Fe(2+)-induced rise in lipid peroxidation in rat liver homogenates. The results imply that 6-OHM facilitates the conversion of Fe(3+) to Fe(2+) which is a more biologically usable form of iron. While such a conversion could also potentially make more Fe(2+) available for driving the Fenton reaction and the consequent generation of the dangerous hydroxyl radical, 6-OHM is able to quench these radicals, thereby providing tissue protection.  相似文献   

9.
A species of Dechlorospirillum was isolated from an Fe(II)-oxidizing, opposing-gradient-culture enrichment using an inoculum from a circumneutral, freshwater creek that showed copious amounts of Fe(III) (hydr)oxide precipitation. In gradient cultures amended with a redox indicator to visualize the depth of oxygen penetration, Dechlorospirillum sp. strain M1 showed Fe(II)-dependent growth at the oxic-anoxic interface and was unable to utilize sulfide as an alternate electron donor. The bacterium also grew with acetate as an electron donor under both microaerophilic and nitrate-reducing conditions, but was incapable of organotrophic Fe(III) reduction or nitrate-dependent Fe(II) oxidation. Although members of the genus Dechlorospirillum are primarily known as perchlorate and nitrate reducers, our results suggest that some species are members of the microbial communities involved in iron redox cycling at the oxic-anoxic transition zones in freshwater sediments.  相似文献   

10.
Because it can undergo reversible changes in oxidation state, iron is an excellent biocatalyst but also a potentially deleterious metal. Iron-mediated toxicity has been ascribed to Fe(II), which reacts with oxygen to generate free radicals that damage macromolecules and cause cell death. However, we now report that Fe(III) exhibits microbicidal activity towards strains of Salmonella enterica, Escherichia coli and Klebsiella pneumoniae defective in the Fe(III)-responding PmrA/PmrB signal transduction system. Fe(III) bound to a pmrA Salmonella mutant more effectively than to the isogenic wild-type strain and exerted its microbicidal activity even under anaerobic conditions. Moreover, Fe(III) permeabilized the outer membrane of the pmrA mutant, rendering it susceptible to vancomycin, which is normally non-toxic to Gram-negative species. On the other hand, Fe(III) did not affect the viability of a mutant defective in Fur, the major regulator of cytosolic iron homeostasis, which is hypersensitive to Fe(II)-mediated toxicity. A functional pmrA gene was necessary for bacterial survival in soil. Our results indicate that Fe(III) exerts its microbicidal activity by a mechanism that is oxygen independent and different from that mediated by Fe(II).  相似文献   

11.
15N T(1), T(2) and (1)H-(15)N NOE were measured for the thermophilic Fe(7)S(8) protein from Bacillus schlegelii and for the Fe(4)S(4) HiPIP protein from Chromatium vinosum, which is a mesophilic protein. The investigation was performed at 276, 300, and 330 K at 11.7 T for the former, whereas only the 298 K data at 14.1 T for the latter were acquired. The data were analyzed with the model-free protocol after correcting the measured parameters for the effect of paramagnetism, because both proteins are paramagnetic. Both thermophilic and mesophilic proteins are quite rigid, with an average value of the generalized order parameter S2at room temperature of 0.92 and 0.94 for Fe(7)S(8) and Fe(4)S(4) proteins, respectively. The analyzed nitrogens for the Fe(7)S(8) protein showed a significant decrease in S2with increasing temperature, and at the highest temperature >70% of the residues had an internal correlation time. This research shows that subnanosecond rigidity is not related to thermostability and provides an estimate of the effect of increasing temperature on this time scale.  相似文献   

12.
Mechanisms for Fe(III) oxide reduction were investigated in Geothrix fermentans, a dissimilatory Fe(III)-reducing microorganism found within the Fe(III) reduction zone of subsurface environments. Culture filtrates of G. fermentans stimulated the reduction of poorly crystalline Fe(III) oxide by washed cell suspensions, suggesting that G. fermentans released one or more extracellular compounds that promoted Fe(III) oxide reduction. In order to determine if G. fermentans released electron-shuttling compounds, poorly crystalline Fe(III) oxide was incorporated into microporous alginate beads, which prevented contact between G. fermentans and the Fe(III) oxide. G. fermentans reduced the Fe(III) within the beads, suggesting that one of the compounds that G. fermentans releases is an electron-shuttling compound that can transfer electrons from the cell to Fe(III) oxide that is not in contact with the organism. Analysis of culture filtrates by thin-layer chromatography suggested that the electron shuttle has characteristics similar to those of a water-soluble quinone. Analysis of filtrates by ion chromatography demonstrated that there was as much as 250 μM dissolved Fe(III) in cultures of G. fermentans growing with Fe(III) oxide as the electron acceptor, suggesting that G. fermentans released one or more compounds capable of chelating and solubilizing Fe(III). Solubilizing Fe(III) is another strategy for alleviating the need for contact between cells and Fe(III) oxide for Fe(III) reduction. This is the first demonstration of a microorganism that, in defined medium without added electron shuttles or chelators, can reduce Fe(III) derived from Fe(III) oxide without directly contacting the Fe(III) oxide. These results are in marked contrast to those with Geobacter metallireducens, which does not produce electron shuttles or Fe(III) chelators. These results demonstrate that phylogenetically distinct Fe(III)-reducing microorganisms may use significantly different strategies for Fe(III) reduction. Thus, it is important to know which Fe(III)-reducing microorganisms predominate in a given environment in order to understand the mechanisms for Fe(III) reduction in the environment of interest.  相似文献   

13.
A nitrate-dependent Fe(II)-oxidizing bacterium was isolated and used to evaluate whether Fe(II) chemical form or oxidation rate had an effect on the mineralogy of biogenic Fe(III) (hydr)oxides resulting from nitrate-dependent Fe(II) oxidation. The isolate (designated FW33AN) had 99% 16S rRNA sequence similarity to Klebsiella oxytoca. FW33AN produced Fe(III) (hydr)oxides by oxidation of soluble Fe(II) [Fe(II)sol] or FeS under nitrate-reducing conditions. Based on X-ray diffraction (XRD) analysis, Fe(III) (hydr)oxide produced by oxidation of FeS was shown to be amorphous, while oxidation of Fe(II)sol yielded goethite. The rate of Fe(II) oxidation was then manipulated by incubating various cell concentrations of FW33AN with Fe(II)sol and nitrate. Characterization of products revealed that as Fe(II) oxidation rates slowed, a stronger goethite signal was observed by XRD and a larger proportion of Fe(III) was in the crystalline fraction. Since the mineralogy of Fe(III) (hydr)oxides may control the extent of subsequent Fe(III) reduction, the variables we identify here may have an effect on the biogeochemical cycling of Fe in anoxic ecosystems.  相似文献   

14.
Mechanisms for Fe(III) oxide reduction were investigated in Geothrix fermentans, a dissimilatory Fe(III)-reducing microorganism found within the Fe(III) reduction zone of subsurface environments. Culture filtrates of G. fermentans stimulated the reduction of poorly crystalline Fe(III) oxide by washed cell suspensions, suggesting that G. fermentans released one or more extracellular compounds that promoted Fe(III) oxide reduction. In order to determine if G. fermentans released electron-shuttling compounds, poorly crystalline Fe(III) oxide was incorporated into microporous alginate beads, which prevented contact between G. fermentans and the Fe(III) oxide. G. fermentans reduced the Fe(III) within the beads, suggesting that one of the compounds that G. fermentans releases is an electron-shuttling compound that can transfer electrons from the cell to Fe(III) oxide that is not in contact with the organism. Analysis of culture filtrates by thin-layer chromatography suggested that the electron shuttle has characteristics similar to those of a water-soluble quinone. Analysis of filtrates by ion chromatography demonstrated that there was as much as 250 microM dissolved Fe(III) in cultures of G. fermentans growing with Fe(III) oxide as the electron acceptor, suggesting that G. fermentans released one or more compounds capable of chelating and solubilizing Fe(III). Solubilizing Fe(III) is another strategy for alleviating the need for contact between cells and Fe(III) oxide for Fe(III) reduction. This is the first demonstration of a microorganism that, in defined medium without added electron shuttles or chelators, can reduce Fe(III) derived from Fe(III) oxide without directly contacting the Fe(III) oxide. These results are in marked contrast to those with Geobacter metallireducens, which does not produce electron shuttles or Fe(III) chelators. These results demonstrate that phylogenetically distinct Fe(III)-reducing microorganisms may use significantly different strategies for Fe(III) reduction. Thus, it is important to know which Fe(III)-reducing microorganisms predominate in a given environment in order to understand the mechanisms for Fe(III) reduction in the environment of interest.  相似文献   

15.
Immobilized metal ion affinity chromatography has been used to demonstrate and partially characterize Fe(III) binding sites on apoferritin. Binding of Fe(III) to these sites is influenced by pH, but not affected by high ionic strength. These results suggest that both ionic and coordinate covalent interactions are important in the formation of the Fe(III): apoferritin complex. This is, to our knowledge, the first demonstration of direct Fe(III) binding to apoferritin. Other immobilized metal ions, including Zn(II), Ni(II), Cu(II), Cr(III), Co(II), and Tb(III), displayed little or no adsorption of apoferritin. The analytical technique of immobilized metal ion affinity chromatography also shows great promise in the purification of apoferritin, ferritin, and other iron-binding proteins.  相似文献   

16.
A nitrate-dependent Fe(II)-oxidizing bacterium was isolated and used to evaluate whether Fe(II) chemical form or oxidation rate had an effect on the mineralogy of biogenic Fe(III) (hydr)oxides resulting from nitrate-dependent Fe(II) oxidation. The isolate (designated FW33AN) had 99% 16S rRNA sequence similarity to Klebsiella oxytoca. FW33AN produced Fe(III) (hydr)oxides by oxidation of soluble Fe(II) [Fe(II)sol] or FeS under nitrate-reducing conditions. Based on X-ray diffraction (XRD) analysis, Fe(III) (hydr)oxide produced by oxidation of FeS was shown to be amorphous, while oxidation of Fe(II)sol yielded goethite. The rate of Fe(II) oxidation was then manipulated by incubating various cell concentrations of FW33AN with Fe(II)sol and nitrate. Characterization of products revealed that as Fe(II) oxidation rates slowed, a stronger goethite signal was observed by XRD and a larger proportion of Fe(III) was in the crystalline fraction. Since the mineralogy of Fe(III) (hydr)oxides may control the extent of subsequent Fe(III) reduction, the variables we identify here may have an effect on the biogeochemical cycling of Fe in anoxic ecosystems.  相似文献   

17.
In this article, anoxic and oxic hydrolyses of rocks containing Fe (II) Mg-silicates and Fe (II)-monosulfides are analyzed at 25 °C and 250–350 °C. A table of the products is drawn. It is shown that magnetite and hydrogen can be produced during low-temperature (25 °C) anoxic hydrolysis/oxidation of ferrous silicates and during high-temperature (250 °C) anoxic hydrolysis/oxidation of ferrous monosulfides. The high-T (350 °C) anoxic hydrolysis of ferrous silicates leads mainly to ferric oxides/hydroxides such as the hydroxide ferric trihydroxide, the oxide hydroxide goethite/lepidocrocite and the oxide hematite, and to Fe(III)-phyllosilicates. Magnetite is not a primary product. While the low-T (25 °C) anoxic hydrolysis of ferrous monosulfides leads to pyrite. Thermodynamic functions are calculated for elementary reactions of hydrolysis and carbonation of olivine and pyroxene and E-pH diagrams are analyzed. It is shown that the hydrolysis of the iron endmember is endothermic and can proceed within the exothermic hydrolysis of the magnesium endmember and also within the exothermic reactions of carbonations. The distinction between three products of the iron hydrolysis, magnetite, goethite and hematite is determined with E-pH diagrams. The hydrolysis/oxidation of the sulfides mackinawite/troilite/pyrrhotite is highly endothermic but can proceed within the heat produced by the exothermic hydrolyses and carbonations of ferromagnesian silicates and also by other sources such as magma, hydrothermal sources, impacts. These theoretical results are confirmed by the products observed in several related laboratory experiments. The case of radiolyzed water is studied. It is shown that magnetite and ferric oxides/hydroxides such as ferric trihydroxide, goethite/lepidocrocite and hematite are formed in oxic hydrolysis of ferromagnesian silicates at 25 °C and 350 °C. Oxic oxidation of ferrous monosulfides at 25 °C leads mainly to pyrite and ferric oxides/hydroxides such as ferric trihydroxide, goethite/lepidocrocite and hematite and also to sulfates, and at 250 °C mainly to magnetite instead of pyrite, associated to the same ferric oxides/hydroxides and sulfates. Some examples of geological terrains, such as Mawrth Vallis on Mars, the Tagish Lake meteorite and hydrothermal venting fields, where hydrolysis/oxidation of ferromagnesian silicates and iron(II)-monosulfides may occur, are discussed. Considering the evolution of rocks during their interaction with water, in the absence of oxygen and in radiolyzed water, with hydrothermal release of H2 and the plausible associated formation of components of life, geobiotropic signatures are proposed. They are mainly Fe(III)-phyllosilicates, magnetite, ferric trihydroxide, goethite/lepidocrocite, hematite, but not pyrite.  相似文献   

18.
Dissimilatory Fe(III) and Mn(IV) reduction.   总被引:57,自引:1,他引:56       下载免费PDF全文
The oxidation of organic matter coupled to the reduction of Fe(III) or Mn(IV) is one of the most important biogeochemical reactions in aquatic sediments, soils, and groundwater. This process, which may have been the first globally significant mechanism for the oxidation of organic matter to carbon dioxide, plays an important role in the oxidation of natural and contaminant organic compounds in a variety of environments and contributes to other phenomena of widespread significance such as the release of metals and nutrients into water supplies, the magnetization of sediments, and the corrosion of metal. Until recently, much of the Fe(III) and Mn(IV) reduction in sedimentary environments was considered to be the result of nonenzymatic processes. However, microorganisms which can effectively couple the oxidation of organic compounds to the reduction of Fe(III) or Mn(IV) have recently been discovered. With Fe(III) or Mn(IV) as the sole electron acceptor, these organisms can completely oxidize fatty acids, hydrogen, or a variety of monoaromatic compounds. This metabolism provides energy to support growth. Sugars and amino acids can be completely oxidized by the cooperative activity of fermentative microorganisms and hydrogen- and fatty-acid-oxidizing Fe(III) and Mn(IV) reducers. This provides a microbial mechanism for the oxidation of the complex assemblage of sedimentary organic matter in Fe(III)- or Mn(IV)-reducing environments. The available evidence indicates that this enzymatic reduction of Fe(III) or Mn(IV) accounts for most of the oxidation of organic matter coupled to reduction of Fe(III) and Mn(IV) in sedimentary environments. Little is known about the diversity and ecology of the microorganisms responsible for Fe(III) and Mn(IV) reduction, and only preliminary studies have been conducted on the physiology and biochemistry of this process.  相似文献   

19.
Understanding the mechanisms of anaerobic microbial iron cycling is necessary for a full appreciation of present‐day biogeochemical cycling of iron and carbon and for drawing conclusions about these cycles on the ancient Earth. Towards that end, we isolated and characterized an anaerobic nitrate‐dependent Fe(II)‐oxidizing bacterium from a freshwater sediment. The 16SrRNA gene sequence of the isolated bacterium (strain BoFeN1) places it within the β‐Proteobacteria, with Acidovorax sp. strain G8B1 as the closest known relative. During mixotrophic growth with acetate plus Fe(II) and nitrate as electron acceptor, strain BoFeN1 forms Fe(III) mineral crusts around the cells. The amount of the organic cosubstrate acetate present seems to control the rate and extent of Fe(II) oxidation and the viability of the cells. The crystallinity of the mineral products is influenced by nucleation by Fe minerals that are already present in the inoculum.  相似文献   

20.
Shewanella alga BrY adhesion to hydrous ferric oxide, goethite, and hematite was examined. Adhesion to each oxide followed the Langmuir adsorption model. No correlation between adhesion and Fe(III) oxide surface area or crystallinity was observed. Zeta potential measurements suggested that electrostatic interactions do not influence S. alga BrY adhesion to these minerals. Cell adhesion does not appear to explain the recalcitrance of crystalline Fe(III) oxides to bacterial reduction. Received: 12 May 2000 / Accepted: 19 June 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号