共查询到20条相似文献,搜索用时 9 毫秒
1.
Sirtuin:依赖NAD+的去乙酰化酶 总被引:3,自引:0,他引:3
组蛋白的乙酰化一去乙酰化修饰在基因表达调控中起重要作用。参与去乙酰化的酶除了经典的Ⅰ类和Ⅱ类组蛋白去乙酰化酶(histone deacetylase,HDAC),还有比较特殊的Ⅲ类HDAC——Sirnlin,其活性依赖于NAD^ 。酵母的Sirtuin——Sir2在交配型基因沉默、端粒区基因沉默、rDNA沉默中起重要作用.还可能参与长寿与衰老的调节。在人类,Sirtuin的底物是组蛋白、各种转录因子如p53、FOXO、NF—KB、乙酰化酶如D300和其他的各种功能蛋白质。根据底物特点推测,人类Sirtuin蛋白的生理功能可能一方面是参与调节细胞在应激条件下的存活与死亡的平衡,另一方面是参与代谢的调节。 相似文献
2.
3.
4.
NAD+-dependent retinol dehydrogenase in liver microsomes 总被引:1,自引:0,他引:1
A microsomal NAD+-dependent retinol dehydrogenase is being described with optimal activity at physiological pH. The enzyme was present in liver microsomes of rats and also in a strain of deermice which lacks the cytosolic retinol dehydrogenase. Unlike the latter enzyme, the microsomal retinol dehydrogenase was not inhibited by either ethanol or 4-methylpyrazole; its activity was insensitive to CO and not oxygen dependent, in contradistinction with that of the microsomal cytochrome P-450 and NADPH-dependent retinol oxidase. Chronic ethanol consumption resulted in an increased activity of the microsomal retinol dehydrogenase which may contribute to hepatic retinol depletion, especially in view of the insensitivity of the enzyme to ethanol inhibition. 相似文献
5.
6.
NAD+-dependent 15-hydroxyprostaglandin dehydrogenase (15-PGDH) is the key enzyme in the inactivation pathway of prostaglandins. It is a member of the short-chain dehydrogenase family of enzymes. A relatively conserved threonine residue corresponding to threonine 188 of 15-PGDH is proposed to be involved in the interaction with the carboxamide group of NAD+. Site-directed mutagenesis was used to examine the important role of this residue. Threonine 188 was changed to alanine (T188A), serine (T188S) or tyrosine (T188Y) and the mutant proteins were expressed in E. coli. Western blot analysis showed that the expression levels of mutant proteins were similar to that of the wild type protein. Mutants T188A and T188Y were found to be inactive. Mutant T188S still retained substantial activity and the Km value for PGE2 was similar to the wild enzyme; however, the Km value for NAD+ was increased over 100 fold. These results suggest that threonine 188 is critical for interaction with NAD+ and contributes to the full catalytic activity of 15-PGDH. 相似文献
7.
A simple, rapid, and sensitive spectrofluorometric assay for 15-hydroxyprostaglandin dehydrogenase activity was developed in which the rate of production of NADH was monitored. The cytosolic fraction prepared from human placental tissue was employed as the enzyme source. The assay was conducted at pH 9.5 since 15-ketoprostaglandin Δ13-reductase and NADH oxidase activities were inhibited at this pH, thereby minimizing the interference of the reactions catalyzed by these enzymes in the assay of prostaglandin dehydrogenase activity. 相似文献
8.
Sirtuins are NAD (+)-dependent enzymes that deacetylate a variety of cellular proteins and in some cases catalyze protein ADP-ribosyl transfer. The catalytic mechanism of deacetylation is proposed to involve an ADPR-peptidylimidate, whereas the mechanism of ADP-ribosyl transfer to proteins is undetermined. Herein we characterize a Plasmodium falciparum sirtuin that catalyzes deacetylation of histone peptide sequences. Interestingly, the enzyme can also hydrolyze NAD (+). Two mechanisms of hydrolysis were identified and characterized. One is independent of acetyllysine substrate and produces alpha-stereochemistry as established by reaction of methanol which forms alpha-1- O-methyl-ADPR. This reaction is insensitive to nicotinamide inhibition. The second solvolytic mechanism is dependent on acetylated peptide and is proposed to involve the imidate to generate beta-stereochemistry. Stereochemistry was established by isolation of beta-1- O-methyl-ADPR when methanol was added as a cosolvent. This solvolytic reaction was inhibited by nicotinamide, suggesting that nicotinamide and solvent compete for the imidate. These findings establish new reactions of wildtype sirtuins and suggest possible mechanisms for ADP-ribosylation to proteins. These findings also illustrate the potential utility of nicotinamide as a probe for mechanisms of sirtuin-catalyzed ADP-ribosyl transfer. 相似文献
9.
Tanno M Sakamoto J Miura T Shimamoto K Horio Y 《The Journal of biological chemistry》2007,282(9):6823-6832
10.
11.
Sequencing of the genomes of Mycobacterium tuberculosis H37Rv and Streptomyces coelicolor A3(2) identified putative genes for an NAD(+)-dependent DNA ligase. We have cloned both open reading frames and overexpressed the protein products in Escherichia coli. In vitro biochemical assays confirm that each of these proteins encodes a functional DNA ligase that uses NAD(+) as its cofactor. Expression of either protein is able to complement E. coli GR501, which carries a temperature-sensitive mutation in ligA. Thus, in vitro and in vivo analyses confirm predictions that ligA genes from M. tuberculosis and S. coelicolor are NAD(+)-dependent DNA ligases. 相似文献
12.
Crystallization of an NAD+-dependent glutamate dehydrogenase from Clostridium symbiosum 总被引:2,自引:0,他引:2
Crystals of a bacterial NAD+-dependent glutamate dehydrogenase (GDHase) have been grown over a wide range of pH values by using the hanging drop method of vapour diffusion with ammonium sulphate as the precipitant. Sodium dodecyl sulphate/polyacrylamide gel electrophoresis of this enzyme together with high pressure liquid chromatography/gel filtration, shows that this GDHase is hexameric like the GDHases of vertebrates. X-ray photographs of the crystals show that they diffract to at least 2.0 A, and an analysis of the diffraction pattern demonstrates that the hexamer is arranged in at least pseudo 32 symmetry. 相似文献
13.
We report the production, purification, and characterization of an NAD(+)-dependent DNA ligase encoded by the Amsacta moorei entomopoxvirus (AmEPV), the first example of an NAD(+) ligase from a source other than eubacteria. AmEPV ligase lacks the zinc-binding tetracysteine domain and the BRCT domain that are present in all eubacterial NAD(+) ligases. Nonetheless, the monomeric 532-amino acid AmEPV ligase catalyzed strand joining on a singly nicked DNA in the presence of a divalent cation and NAD(+). Neither ATP, dATP, nor any other nucleoside triphosphate could substitute for NAD(+). Structure probing by limited proteolysis showed that AmEPV ligase is punctuated by a surface-accessible loop between the nucleotidyltransferase domain, which is common to all ligases, and the N-terminal domain Ia, which is unique to the NAD(+) ligases. Deletion of domain Ia of AmEPV ligase abolished the sealing of 3'-OH/5'-PO(4) nicks and the reaction with NAD(+) to form ligase-adenylate, but had no effect on phosphodiester formation at a pre-adenylated nick. Alanine substitutions at residues within domain Ia either reduced (Tyr(39), Tyr(40), Asp(48), and Asp(52)) or abolished (Tyr(51)) sealing of a 5'-PO(4) nick and adenylyl transfer from NAD(+) without affecting ligation of DNA-adenylate. We conclude that: (i) NAD(+)-dependent ligases exist in the eukaryotic domain of the phylogenetic tree; and (ii) ligase structural domain Ia is a determinant of cofactor specificity and is likely to interact directly with the nicotinamide mononucleotide moiety of NAD(+). 相似文献
14.
A study was made of the NAD+-dependent alanine dehydrogenase (EC 1.4.1.1) elaborated by the methylotrophic bacterium Pseudomonas sp. strain MA when growing on succinate and NH4Cl. This enzyme was purified 400-fold and was found to be highly specific for NH3 and NAD+; however, hydroxypyruvate and bromopyruvate, but not alpha-oxoglutarate or glyoxylate, could replace pyruvate to a limited extent. The Mr of the native enzyme was shown to be 217,000, and electrophoresis in SDS/polyacrylamide gels revealed a minimum Mr of 53,000, suggesting a four-subunit structure. The enzyme, which has a pH optimum of 9.0, operated almost exclusively in the aminating direction in vitro. It was induced by NH3 or by alanine, and was repressed by growth on methylamine or glutamate. It is suggested that this enzyme has two roles in this organism, namely in NH3 assimilation and in alanine catabolism. 相似文献
15.
The Candida methylica (cm) recombinant wild type formate dehydrogenase (FDH) gene has been cloned into the pQE-2 TAGZyme expression vector and the 6xHis-tagged FDH gene has been overexpressed in JM105 cells to purify the FDH protein more efficiently, by the use of exopeptidases, TAGZyme Purification System, which has allowed the complete removal of the small N-terminal His-tag. After the purification procedure, 1.2 mg/mL cmFDH protein of >95% purity was obtained. The kinetic parameters of cmFDH have been determined by observing the oxidation of the nicotinamide coenzyme at 340 nm. The results have also been compared to the yield of standard vs. affinity purification of FDH. 相似文献
16.
An NAD+-dependent xylitol dehydrogenase (XDH) from Fusarium oxysporum, a key enzyme in the conversion of xylose to ethanol, was purified to homogeneity and characterised. It was homodimeric with a subunit of M
r 48 000, and pI 3.6. It was optimally active at 45 °C and pH 9–10. It was fully stable at pH 6–7 for 24 h and 30 °C. K
m values for d-xylitol and NAD+ were 94 mM and 0.14 mM, respectively. Mn2+ at 10 mM increased XDH activity 2-fold and Cu2+ at 10 mM inhibited activity completely. 相似文献
17.
Brötz-Oesterhelt H Knezevic I Bartel S Lampe T Warnecke-Eberz U Ziegelbauer K Häbich D Labischinski H 《The Journal of biological chemistry》2003,278(41):39435-39442
Pyridochromanones were identified by high throughput screening as potent inhibitors of NAD+-dependent DNA ligase from Escherichia coli. Further characterization revealed that eubacterial DNA ligases from Gram-negative and Gram-positive sources were inhibited at nanomolar concentrations. In contrast, purified human DNA ligase I was not affected (IC50 > 75 microm), demonstrating remarkable specificity for the prokaryotic target. The binding mode is competitive with the eubacteria-specific cofactor NAD+, and no intercalation into DNA was detected. Accordingly, the compounds were bactericidal for the prominent human pathogen Staphylococcus aureus in the low microg/ml range, whereas eukaryotic cells were not affected up to 60 microg/ml. The hypothesis that inhibition of DNA ligase is the antibacterial principle was proven in studies with a temperature-sensitive ligase-deficient E. coli strain. This mutant was highly susceptible for pyridochromanones at elevated temperatures but was rescued by heterologous expression of human DNA ligase I. A physiological consequence of ligase inhibition in bacteria was massive DNA degradation, as visualized by fluorescence microscopy of labeled DNA. In summary, the pyridochromanones demonstrate that diverse eubacterial DNA ligases can be addressed by a single inhibitor without affecting eukaryotic ligases or other DNA-binding enzymes, which proves the value of DNA ligase as a novel target in antibacterial therapy. 相似文献
18.
R Koberstein 《European journal of biochemistry》1976,67(1):223-229
The synthesis and purification of the 8-azidoadenine analogs of NAD+ (azido-NAD+) and FAD (AZIDO-FAD) from 8-azidoadenosine 5'-phosphate and NMN+ or FMN, respectively, is described. The coenzyme analogs are characterized by absorption, nuclear magnetic resonance and circular dichroism spectra. The two latter methods indicate a folded structure of azido-NAD+ and azido-FAD. Upon irradiation at 300 mn in aqueous solution, a change of the ultraviolet absorption spectra of the coenzyme analogs indicates photolysis of the azido group. The coenzyme properties of azido-NAD+ are demonstrated with lactate, glutamate and alcohol dehydrogenase yielding 14, 154 and 60%, respectively, of the V observed with NAD+. Concomitantly, the Km values of the coenzyme analogs are 1.7, 3.5 and 3-fold higher than those of NAD+. Azido-FAD is shown to be coenzyme of apo-glucose oxidase. The recovery of activity, however, is much slower in the presence of azido-FAD than with FAD. A final value of 66% of the activity with FAD is obtained. With apo-D-amino acid oxidase, azido-FAD is completely inactive, although it is specifically bound to the enzyme. 相似文献
19.
20.
BACKGROUND: DNA ligases catalyse phosphodiester bond formation between adjacent bases in nicked DNA, thereby sealing the nick. A key step in the catalytic mechanism is the formation of an adenylated DNA intermediate. The adenyl group is derived from either ATP (in eucaryotes and archaea) or NAD+4 (in bacteria). This difference in cofactor specificity suggests that DNA ligase may be a useful antibiotic target. RESULTS: The crystal structure of the adenylation domain of the NAD+-dependent DNA ligase from Bacillus stearothermophilus has been determined at 2.8 A resolution. Despite a complete lack of detectable sequence similarity, the fold of the central core of this domain shares homology with the equivalent region of ATP-dependent DNA ligases, providing strong evidence for the location of the NAD+-binding site. CONCLUSIONS: Comparison of the structure of the NAD+4-dependent DNA ligase with that of ATP-dependent ligases and mRNA-capping enzymes demonstrates the manifold utilisation of a conserved nucleotidyltransferase domain within this family of enzymes. Whilst this conserved core domain retains a common mode of nucleotide binding and activation, it is the additional domains at the N terminus and/or the C terminus that provide the alternative specificities and functionalities in the different members of this enzyme superfamily. 相似文献