首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intestinal epithelial cells interact with immune cells located in the intestinal epithelium via soluble factors. An in vitro model system using coculture was constructed to analyze the effect of macrophages on intestinal epithelial cells, and human intestinal epithelial-like Caco-2 monolayers and activated macrophage-like THP-1 cells were used in this study. Coculturing with THP-1 cells resulted in an increase of lactate dehydrogenase release from Caco-2 and a decrease in the transepithelial electrical resistance of the monolayers, showing that coculturing with THP-1 induced cell damage to Caco-2 cells. This disruption was significantly suppressed by adding anti-TNF-alpha antibody and etanercept, strongly suggesting that TNF-alpha secreted from THP-1 had caused cell damage to Caco-2 monolayers. The disrupted Caco-2 monolayers showed both apoptotic and necrotic characteristics by morphological and biochemical analyses. TNFRI and NF-kappaB seem to have been involved in this regulation. It is suggested that this phenomenon is similar in some respects to that observed with IBD and that this in vitro coculture system could be a good model for searching for the drugs or food substances that can be used to treat or prevent IBD.  相似文献   

2.
3.
To improve the thermal stability and cellulose-binding capacity of Cryptococcus sp. S-2 lipase (CSLP), the cellulose-binding domain originates from Trichoderma reesei cellobiohydrolase I was engineered into C-terminal region of the CSLP (CSLP-CBD). The CSLP and CSLP-CBD were successfully expressed in the Pichia pastoris using the strong methanol inducible alcohol oxidase 1 (AOX1) promoter and the secretion signal sequence from Saccharomyces cerevisiae (α factor). The recombinant CSLP and CSLP-CBD were secreted into culture medium and estimated by SDS-PAGE to be 22 and 27 kDa, respectively. The fusion enzyme was stable at 80 °C and retained more than 80% of its activity after 120-min incubation at this temperature. Our results also found that the fusion of fungal exoglucanase cellulose-binding domain to CSLP is responsible for cellulose-binding capacity. This attribute should make it an attractive applicant for enzyme immobilization.  相似文献   

4.
Different cell types have been reported to internalize lactoferrin (Lf) by specific or nonspecific receptors. Our studies focused on the endocytic pathway of human Lf in macrophage-like THP-1 cells. Lactoferrin was found to be internalized by THP-1 cells differentiated with phorbol myristate acetate. Incubation of cells with chlorpromazine and dansylcadaverine, inhibitors of clathrin-dependent endocytosis, led to a 50% inhibition of Lf internalization compared with untreated cells. Bafilomycin A1 and NH(4)Cl treatment also resulted in 40%-60% inhibition, respectively, suggesting that the internalization of Lf may partly be mediated by acidic endosome-like organelles. Endocytic uptake of Lf was also cholesterol-dependent, as shown by methyl-β-cyclodextrin or nystatin treatment of the cells prior to internalization. Partial colocalization of Lf and EEA-1, a marker specific for early endosomes, could be observed. Colocalization of Lf with a specific endoplasmic reticulum marker was also detected. Our results suggest that Lf is internalized mainly by the clathrin-dependent pathway in THP-1 cells and targets the ER. The physiological consequences of this intracellular trafficking will be the subject of future investigations.  相似文献   

5.
We recently found that peridinin, which is uniquely present in dinoflagellates, reduced cell viability by inducing apoptosis in human colon cancer cells. Peridinin is also found in edible clams and oysters because the major food sources of those shellfish are phytoplanktons such as dinoflagellates. Little is known, however, about the fate of dietary peridinin and its biological activities in mammals. The aim of the present study was to investigate the enzymatic esterification of xanthophylls, especially peridinin which is uniquely present in dinoflagellates, using differentiated cultures of Caco-2 human intestinal cells. We found that peridinin is converted to peridininol and its fatty acid esters in differentiated Caco-2 cells treated with 5 μmol/L peridinin solubilized with mixed micelles. The cell homogenate was also able to deacetylate peridinin and to esterify peridininol. Other xanthophylls, such as fucoxanthin, astaxanthin and zeaxanthin, were also esterified, but at relatively lower rates than peridinin. In this study, we found the enzymatic esterification of xanthophylls in mammalian intestinal cells for the first time. Our results suggest that the esterification of xanthophylls in intestinal cells is dependent on their polarity.  相似文献   

6.
The activation of a self-amplifying cascade of caspases, of which caspase-8 is the apical protease, mediates Fas-, tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL)-, and TNF-alpha-induced apoptosis in colon cell lines. Nitric oxide (NO) protects from apoptosis induced by Fas and TNF-alpha. We examined whether NCX-456, an NO-releasing derivative of mesalamine, protects colon epithelial cells from cytokine-induced apoptosis. Caco-2 and HT-29 cell lines express death factor receptors and are driven to apoptosis in response to incubation with Fas-agonistic antibody, TNF-alpha/interferon-gamma, and TRAIL. The two novel observations reported here are that 1) cotreatment of cells with NCX-456, but not mesalamine, resulted in concentration-dependent protection against death factor-induced apoptosis and inhibition of caspase activity, and 2) exposure to dithiothreitol, an agent that effectively removes NO from thiol groups, resulted in a 70% recovery of caspase activity, which is consistent with S-nitrosation as a major mechanism for caspase inactivation. These data suggest that caspase S-nitrosation represents a mechanism for protection of colonic mucosal epithelial cells from death factor-induced death.  相似文献   

7.
The absorption, remodeling, and delivery of dietary lipids by intestinal cells are part of a complex multi-step process, the dynamics of which is influenced by the lipid composition of the diet and the physiological state of enterocytes. Emerging data indicate that, among the parameters known to modulate the cell functionality, the internal oxidative balance plays a pivotal role. In this study, we analyzed the effects of varying redox equilibria on the way in which the intestinal Caco-2 cell line utilize an exogenous lipid source such as oleic acid. Firstly, we manipulated the intracellular levels of soluble thiols (glutathione), and the amount of cell-associated products of lipid peroxidation, commonly regarded as two critical parameters characterizing the redox profile of the cells. Two different perturbants having opposite effects on the cell's redox profile were used: the pro-oxidizing agent CuSO4 (2.5 and 10 microM) and the antioxidant and thiol supplier N-acetylcysteine (NAC, 2.5 and 5 mM). The influence of these mild but critical manipulations on the incorporation of oleate (50 and 500 microM) into cholesterol, triacylglycerol, and phospholipid was then evaluated. We found that the emerging pro-oxidant condition induced by CuSO4 pre-exposure was associated with a significant up-regulation of phospholipid synthesis, while minor modifications were detected in that of triacylglycerols. Conversely, when a more reducing state was induced by NAC pre-treatment, there was a significant down-regulation of triacylglycerol synthesis, with minor modifications in that of phospholipids. In addition, the incorporation of oleic acid in the cholesteryl ester fraction appeared to be unmodified under all the redox conditions reported. On the whole, these results indicate that the pre-existing internal redox potential of the enterocytes is a critical factor that is able to differentially modulate lipid synthesis at the intestinal level. Thus, the adoption of a strategy designed to control/buffer the antioxidant capacity of the gastrointestinal tract could have important consequences for the modulation of lipid balance in the body.  相似文献   

8.
Many of the flavonoids found in grapes and grape products such as juice or wine have been known to exert antioxidant, anti-inflammatory, platelet inhibitory and arterial relaxing effects either in vitro, in animal studies and in human trials. This study was designed to test the effect of Concord grape juice consumption on altering blood pressure in hypertensive patients. Forty subjects were given 5.5 ml/kg body weight/day of either Concord grape juice (CGJ) or a calorie-matched placebo drink every day for 8 weeks. Blood pressure (BP) was measured on weeks 0, 4 and 8. Compared to baseline, in the CGJ group systolic BP was reduced on average by 7.2 mm Hg (p = 0.005) and diastolic BP was reduced on average by 6.2 mm Hg (p = 0.001) at the end of 8 weeks. Comparable changes in the group getting the placebo product were -3.5 mm Hg (NS) and -3.2 mm Hg (p = 0.05) Consuming Concord grape juice, which is high in polyphenolic compounds, may favorably affect BP in hypertensive individuals.  相似文献   

9.
Repetitive deformation due to villous motility or peristalsis may support the intestinal mucosa, stimulating intestinal epithelial proliferation under normal circumstances and restitution in injured and inflamed mucosa rich in tissue fibronectin. Cyclic strain enhances Caco-2 and IEC-6 intestinal epithelial cell migration across fibronectin via ERK. However, the upstream mediators of ERK activation are unknown. We investigated whether Src and FAK mediate strain-induced ERK phosphorylation and migration in human Caco-2 intestinal epithelial cells on fibronectin. Monolayers on tissue fibronectin-precoated membranes were subjected to an average 10% repetitive deformation at 10 cycles/min. Phosphorylation of Src-Tyr 418, FAK-Tyr 397-Tyr 576-Tyr 925, and ERK were significantly increased by deformation. The stimulation of wound closure by strain was prevented by Src blockade with PP2 (10 micromol/l) or specific short interfering (si)RNA. Src inhibition also prevented strain-induced FAK phosphorylation at Tyr 397 and Tyr 576 but not FAK-Tyr 925 or ERK phosphorylation. Reducing FAK by siRNA inhibited strain-induced ERK phosphorylation. Transfection of NH2-terminal tyrosine phosphorylation-deficient FAK mutants Y397F, Y576F-Y577F, and Y397F-Y576F-Y577F did not prevent the activation of ERK2 by cyclic strain, but a FAK mutant at the COOH terminal (Y925F) prevented the strain-induced activation of ERK2. Although the Y397F-Y576F-Y577F FAK construct exhibited less basal FAK-Tyr 925 phosphorylation under static conditions, it nevertheless exhibited increased FAK-Tyr 925 phosphorylation in response to strain. These results suggest that repetitive deformation stimulates intestinal epithelial motility across fibronectin in a manner that requires both Src activation and a novel Src-independent FAK-Tyr 925-dependent pathway that activates ERK. This pathway may be an important target for interventions to promote mucosal healing in settings of intestinal ileus or fasting.  相似文献   

10.
Carnosine (beta-Ala-L-His) is known to have the physiological functions of an antioxidant. Although dietary carnosine is thought to be absorbed across intestinal epithelial cells, the mechanism for this absorption is not yet well understood and its function in the intestinal tract is also obscure. The intestinal transport of carnosine was characterized in the present study by using human intestinal Caco-2 cells, and its physiological function in these cells was further examined. The carnosine uptake was proton-dependent, being activated by lowering the apical pH value. Its uptake was significantly inhibited by other dipeptides, whereas it was not inhibited by other amino acids. These characteristics of the carnosine uptake strongly suggest its transport into the cells via peptide transporter 1 (PepT1). Since carnosine has antioxidative activity, we studied its effect on the H2O2-induced secretion of inflammatory cytokines in Caco-2 cells. The H2O2 induced increase in IL-8 secretion was inhibited by a pretreatment with carnosine for 3 h, this inhibition being presented in a dose-dependent manner. These results suggest that carnosine had a protective effect against oxidative stress in intestinal epithelial cells.  相似文献   

11.
Integrin-initiated extracellular signal-regulated kinase (ERK) activation by matrix adhesion may require focal adhesion kinase (FAK) or be FAK-independent via caveolin and Shc. This remains controversial for fibroblast and endothelial cell adhesion to fibronectin and is less understood for other matrix proteins and cells. We investigated Caco-2 intestinal epithelial cell ERK activation by collagen I and IV, laminin, and fibronectin. Collagens or laminin, but not fibronectin, stimulated tyrosine phosphorylation of FAK, paxillin, and p130(cas) and activated ERK1/2. Shc, tyrosine-phosphorylated by matrix adhesion in many cells, was not phosphorylated in Caco-2 cells in response to any matrix. Caveolin expression did not affect Caco-2 Shc phosphorylation in response to fibronectin. FAK, ERK, and p130(cas) tyrosine phosphorylation were activated after 10-min adhesion to collagen IV. FAK activity increased for 45 min after collagen IV adhesion and persisted for 2 h, while p130(cas) phosphorylation increased only slightly after 10 min. ERK activity peaked at 10 min, declined after 30 min, and returned to base line after 1 h. Transfection with FAK-related nonkinase, but not substrate domain deleted p130(cas), strongly inhibited ERK2 activation in response to collagen IV, indicating Caco-2 ERK activation is at least partly regulated by FAK.  相似文献   

12.
Ferritin (Ft) is a large iron (Fe)-binding protein ( approximately 450 kDa) that is found in plant and animal cells and can sequester up to 4500 Fe atoms per Ft molecule. Our previous studies on intestinal Caco-2 cells have shown that dietary factors affect the uptake of Fe from Ft in a manner different from that of Fe from FeSO4, suggesting a different mechanism for cellular uptake. The objective of this study was to determine the mechanism for Ft-Fe uptake using Caco-2 cells. Binding of (59)Fe-labeled Ft at 4 degrees C showed saturable kinetics, and Scatchard analysis resulted in a K(d) of 1.6 muM, strongly indicating a receptor-mediated process. Competitive binding studies with excess unlabelled Ft significantly reduced binding, and uptake studies at 37 degrees C showed saturation after 4 h. Enhancing and blocking endocytosis using Mas-7 (a G-protein activator) and hypertonic medium (0.5 M sucrose), respectively, demonstrated that Ft-Fe uptake by Mas-7-treated cells was 140% of control cells, whereas sucrose treatment resulted in a statistically significant reduction in Ft-Fe uptake by 70% as compared to controls. Inhibition of macropinocytosis with 5-(N,N-dimethyl)-amiloride (Na+/H+ antiport blocker) resulted in a decrease (by approximately 20%) in Ft-Fe uptake at high concentrations of Ft, suggesting that enterocytes can use more than one Ft uptake mechanism in a concentration-dependent manner. These results suggest that Ft uptake by enterocytes is carried out via endocytosis when Ft levels are within a physiological range, whereas Ft at higher concentrations may be absorbed using the additional mechanism of macropinocytosis.  相似文献   

13.
Johnston K  Sharp P  Clifford M  Morgan L 《FEBS letters》2005,579(7):1653-1657
The effect of different classes of dietary polyphenols on intestinal glucose uptake was investigated using polarised Caco-2 intestinal cells. Glucose uptake into cells under sodium-dependent conditions was inhibited by flavonoid glycosides and non-glycosylated polyphenols whereas aglycones and phenolic acids were without effect. Under sodium-free conditions, aglycones and non-glycosylated polyphenols inhibited glucose uptake whereas glycosides and phenolic acids were ineffective. These data suggest that aglycones inhibit facilitated glucose uptake whereas glycosides inhibit the active transport of glucose. The non-glycosylated dietary polyphenols appear to exert their effects via steric hindrance, and (-)-epigallochatechingallate, (-)-epichatechingallate and (-)-epigallochatechin are effective against both transporters.  相似文献   

14.
The aim of this study was to determine whether sphingoid bases that originated from various dietary sources, such as mammals, plants, and fungi, are substrates for P-glycoprotein in differentiated Caco-2 cells, which are used as a model of intestinal epithelial cells. In Caco-2 cells, the uptake of sphingosine, the most common sphingoid base found in mammals, was significantly higher at physiological temperatures than those of cis/trans-8-sphingenine, trans-4, cis/trans-8-sphingadienine, 9-methyl-trans-4, trans-8-sphingadienine, or sphinganine. Verapamil, a potent P-glycoprotein inhibitor, increased the cellular accumulation of sphingoid bases, except for sphingosine, in a dose-dependent manner. Incubation with 1 microM digoxin for 48 h caused up-regulation of multidrug-resistance (MDR)1 mRNA and decreased the accumulation of sphingoid bases in Caco-2 cells, except for sphingosine. Thus P-glycoprotein probably contributes to the selective absorption of sphingosine from dietary sphingolipids in the digestive tract.  相似文献   

15.
Yamaguchi N  Suruga K 《Life sciences》2008,82(13-14):789-796
Vitamin A is derived from provitamin A carotenoids, mainly beta-carotene, by beta-carotene 15,15'-monooxygenase (CMO1; EC 1.13.11.21). We previously found that enhancement of CMO1 mRNA expression was related to the levels of hormones, such as thyroid hormones, in chick duodenum. We investigated whether CMO1 expression was increased by triiodothyronine (T3), a thyroid hormone, using human intestinal Caco-2 BBe cells. Treatment of 7 days post-confluent Caco-2 BBe cells with T3 significantly enhanced CMO1 mRNA levels in both dose- and time-dependent manners. This T3-inducing effect on CMO1 mRNA level was blocked by actinomycin D. The levels of mRNAs for the thyroid hormone receptors TRalpha1 and TRbeta1 were significantly increased in 7 days post-confluent Caco-2 BBe cells. CMO1 enzyme activity was also significantly increased by T3 treatment in medium supplemented with fetal bovine serum. Furthermore, T3 treatment also increased the level of mRNA for lecithin:retinol acyltransferase (LRAT), but not those for cellular retinol-binding protein, type II (CRBPII) and retinal dehydrogenase 1 (RALDH1), in Caco-2 BBe cells. These results indicate that T3 is an important hormone for the regulation of vitamin A and beta-carotene metabolism-related gene expression in human small intestinal cells.  相似文献   

16.
When rotavirus infects the mature villus tip cells of the small intestine, it encounters a highly polarized epithelium. In order to understand this virus-cell interaction more completely, we utilized a cell culture-adapted rhesus rotavirus (RRV) to infect human intestinal (Caco-2) and Madin-Darby canine kidney (MDCK-1) polarized epithelial cells grown on a permeable support. Filter-grown Caco-2 cells and MDCK-1 cells, producing a transepithelial resistance of 300 to 500 and greater than 1,000 omega . cm2, respectively, were infected from either the apical or basolateral domain with RRV or Semliki Forest virus. Whereas Semliki Forest virus infection only occurred when input virions had access to the basolateral domain of MDCK-1 or Caco-2 cells, RRV infected MDCK-1 and Caco-2 monolayers in a symmetric manner. The effect of rotavirus infection on monolayer permeability was analyzed by measuring the transepithelial electrical resistance. Rotavirus infection on filter-grown Caco-2 cells caused a transmembrane leak at 18 h postinfection, before the development of the cytopathic effect (CPE) and extensive virus release. Electrical resistance was completely abolished between 24 and 36 h postinfection. Although no CPE could be detected on RRV-infected MDCK cells, the infection caused a transmembrane leak that totally abolished the electrical resistance at 18 to 24 h postinfection. Cell viability and the CPE analysis together with immunohistochemistry and immunofluorescence data indicated that the abolishment of resistance across the monolayer was due not to an effect on the plasma membrane of the cells but to an effect on the paracellular pathway limited by tight junctions. Attachment and penetration of rotavirus onto Caco-2 cells caused no measurable transmembrane leak during the first hour of infection.  相似文献   

17.
The effects of dietary taurine on the experimental colitis induced by dextran sulfate sodium (DSS) in mice were evaluated. C57BL/6 female mice were given 3% DSS in drinking water for 5 d to induce acute colitis. Taurine at 2% was added to the drinking water 5 d before and during the DSS-treatment to investigate its preventive effect. Taurine supplementation significantly attenuated the weight decrease, diarrhea severity, colon shortening, and the increase in the colonic tissue myeloperoxidase activity induced by DSS. Taurine also significantly inhibited the increase in the expression of a pro-inflammatory chemokine, macrophage inflammatory protein 2 (MIP-2), but not of interleukin (IL)-1beta or tumor necrosis factor (TNF)-alpha mRNA. Furthermore, taurine significantly protected the intestinal Caco-2 cell monolayers from the damage by macrophage-like THP-1 cells in an in vitro coculture system. These results suggest that taurine prevented DSS-induced colitis partly in association with (1) its inhibitory effects on the secretion of MIP-2 from the intestinal epithelial cells and on the infiltration of such inflammatory cells as neutrophils and (2) its cytoprotective functions on the epithelial barrier from the direct toxicity of DSS and from the inflammatory cell-induced injury.  相似文献   

18.
Vitamin B6 is essential for cellular functions and growth due to its involvement in important metabolic reactions. Humans and other mammals cannot synthesize vitamin B6 and thus must obtain this micronutrient from exogenous sources via intestinal absorption. The intestine, therefore, plays a central role in maintaining and regulating normal vitamin B6 homeostasis. Due to the water-soluble nature of vitamin B6 and the demonstration that transport of other water-soluble vitamins in intestinal epithelial cells involves specialized carrier-mediated mechanisms, we hypothesized that transport of vitamin B6 in these cells is also carrier mediated in nature. To test this hypothesis, we examined pyridoxine transport in a model system for human enterocytes, the human-derived intestinal epithelial Caco-2 cells. The results showed pyridoxine uptake to be 1) linear with time for up to 10 min of incubation and to occur with minimal metabolic alteration in the transported substrate, 2) temperature and energy dependent but Na+ independent, 3) pH dependent with higher uptake at acidic compared with alkaline pHs, 4) saturable as a function of concentration (at buffer pH 5.5 but not 7.4) with an apparent Michaelis-Menten constant (Km) of 11.99 ± 1.41 µM and a maximal velocity (Vmax) of 67.63 ± 3.87 pmol · mg protein-1 · 3 min-1, 5) inhibited by pyridoxine structural analogs (at buffer pH 5.5 but not 7.4) but not by unrelated compounds, and 6) inhibited in a competitive manner by amiloride with an apparent inhibitor constant (Ki) of 0.39 mM. We also examined the possible regulation of pyridoxine uptake by specific intracellular regulatory pathways. The results showed that whereas modulators of PKC, Ca+2/calmodulin (CaM), and nitric oxide (NO)-mediated pathways had no effect on pyridoxine uptake, modulators of PKA-mediated pathway were found to cause significant reduction in pyridoxine uptake. This reduction was mediated via a significant inhibition in the Vmax, but not the apparent Km, of the pyridoxine uptake process. These results demonstrate, for the first time, the involvement of a specialized carrier-mediated mechanism for pyridoxine uptake by intestinal epithelial cells. This system is pH dependent and amiloride sensitive and appears to be under the regulation of an intracellular PKA-mediated pathway. vitamin B6; intestinal transport; transport regulation; Caco-2 cell  相似文献   

19.
Although the colonic cell line Caco-2 is widely used as a model of the small intestinal barrier function, it has limitations such as overestimated transepithelial electrical resistance (TEER) compared to in vivo conditions. Therefore, we investigated Human Intestinal Epithelial Cells (HIECs) as an alternative in vitro model.We explored whether cell seeding number of HIEC-6, and the number of incubation days for HIEC and Caco-2 cells had an impact on TEER, and tight junction expression was examined for both cell lines via immunofluorescence in the presence and absence of probiotic bacteria.We observed no significant difference in TEER readings for either cell lines when cultured for different days. Further, the HIEC TEER readings did not change with increased seeding number and were not significantly different from a control with no cells. HIECs expressed Claudin-1 and Zonula Occludens-1 but not Occludin. Caco-2 co-culture with probiotic bacteria demonstrated a significant increase in TEER, particularly for the lactobacillus strains, whereas HIEC TEER did not respond to bacterial co-incubation.Our study shows that although HIECs express certain TJ proteins, a significant TEER was not observed, likely due to the embryonic origin of the cells, which limits the application of this cell line as a suitable model for small intestinal barrier function.  相似文献   

20.
Protein kinase C (PKC) isoforms are altered in colon tumors and upon exposure of intestinal mucosa to nutrients. We evaluated the effects of the PKC inhibitors staurosporine and calphostin C on human Caco-2 intestinal epithelial proliferation, motility, and differentiation. Motility was quantitated by monolayer expansion and the brush border enzymes dipeptidyl dipeptidase (DPDD) and alkaline phosphatase (AP) by synthetic substrate digestion. Staurosporine (0.03-1.0 ng/ml) and calphostin C (10-12M-10-4 M) dose-dependently inhibited monolayer expansion and AP but stimulated DPDD. Proliferation was also inhibited but the effects of each inhibitor on motility, AP, and DPDD were preserved after mitomycin C proliferative blockade, suggesting that these effects were proliferation-independent. PKC inhibitors independently inhibit motility, AP and proliferation in human intestinal Caco-2 epithelial cells, but selectively stimulate the small intestinal differentiation marker DPDD. PKC may regulate small intestinal epithelial differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号