首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Platelets play an important role in the pathogenesis of vascular remodelling after injury. Junctional adhesion molecule A (JAM‐A) was recently described to regulate platelet activation. Specific deletion of JAM‐A from platelets resulted in increased reactivity and in accelerated progression of atherosclerosis. The aim of this study was to investigate the specific contribution of platelet‐derived JAM‐A to neointima formation after vascular injury. Mice with or without platelet‐specific (tr)JAM‐A‐deficiency in an apolipoprotein e (apoe?/?) background underwent wire‐induced injury of the common carotid artery. Ex vivo imaging by two‐photon microscopy revealed increased platelet coverage at the site of injury in trJAM‐A‐deficient mice. Cell recruitment assays showed increased adhesion of monocytic cells to activated JAM‐A‐deficient platelets than to control platelets. Inhibition of αMβ2 or GPIbα, but not of CD62P, suppressed those differences. Up to 4 weeks after wire injury, intimal neoplasia and neointimal cellular content were analysed. Neointimal lesion area was increased in trJAM‐A?/? apoe?/? mice and the lesions showed an increased macrophage accumulation and proliferating smooth muscle cells compared with trJAM‐A+/+ apoe?/? littermates 2 weeks, but not 4 weeks after injury. Re‐endothelialization was decreased in trJAM‐A?/? apoe?/? mice compared with controls 2 weeks after injury, yet it was complete in both groups after 4 weeks. A platelet gain of function by deletion of JAM‐A accelerates neointima formation only during earlier phases after vascular injury, through an increased recruitment of mononuclear cells. Thus, the contribution of platelets might become less important when neointima formation progresses to later stages.  相似文献   

2.
Corneal abrasion not only damages the epithelium but also induces stromal keratocyte death at the site of injury. While a coordinated cascade of inflammatory cell recruitment facilitates epithelial restoration, it is unclear if this cascade is necessary for keratocyte recovery. Since platelet and neutrophil (PMN) recruitment after corneal abrasion is beneficial to epithelial wound healing, we wanted to determine if these cells play a role in regulating keratocyte repopulation after epithelial abrasion. A 2 mm diameter central epithelial region was removed from the corneas of C57BL/6 wildtype (WT), P-selectin deficient (P-sel-/-), and CD18 hypomorphic (CD18hypo) mice using the Algerbrush II. Corneas were studied at 6h intervals out to 48h post-injury to evaluate platelet and PMN cell numbers; additional corneas were studied at 1, 4, 14, and 28 days post injury to evaluate keratocyte numbers. In WT mice, epithelial abrasion induced a loss of anterior central keratocytes and keratocyte recovery was rapid and incomplete, reaching ~70% of uninjured baseline values by 4 days post-injury but no further improvement at 28 days post-injury. Consistent with a beneficial role for platelets and PMNs in wound healing, keratocyte recovery was significantly depressed at 4 days post-injury (~30% of uninjured baseline) in P-sel-/- mice, which are known to have impaired platelet and PMN recruitment after corneal abrasion. Passive transfer of platelets from WT, but not P-sel-/-, into P-sel-/- mice prior to injury restored anterior central keratocyte numbers at 4 days post-injury to P-sel-/- uninjured baseline levels. While PMN infiltration in injured CD18hypo mice was similar to injured WT mice, platelet recruitment was markedly decreased and anterior central keratocyte recovery was significantly reduced (~50% of baseline) at 4–28 days post-injury. Collectively, the data suggest platelets and platelet P-selectin are critical for efficient keratocyte recovery after corneal epithelial abrasion.  相似文献   

3.
Leukotriene-C4 synthase (LTC4S) generates LTC4 from arachidonic acid metabolism. LTC4 is a proinflammatory factor that acts on plasma membrane cysteinyl leukotriene receptors. Recently, however, we showed that LTC4 was also a cytosolic second messenger that activated store-independent LTC4-regulated Ca2+ (LRC) channels encoded by Orai1/Orai3 heteromultimers in vascular smooth muscle cells (VSMCs). We showed that Orai3 and LRC currents were up-regulated in medial and neointimal VSMCs after vascular injury and that Orai3 knockdown inhibited LRC currents and neointimal hyperplasia. However, the role of LTC4S in neointima formation remains unknown. Here we show that LTC4S knockdown inhibited LRC currents in VSMCs. We performed in vivo experiments where rat left carotid arteries were injured using balloon angioplasty to cause neointimal hyperplasia. Neointima formation was associated with up-regulation of LTC4S protein expression in VSMCs. Inhibition of LTC4S expression in injured carotids by lentiviral particles encoding shRNA inhibited neointima formation and inward and outward vessel remodeling. LRC current activation did not cause nuclear factor for activated T cells (NFAT) nuclear translocation in VSMCs. Surprisingly, knockdown of either LTC4S or Orai3 yielded more robust and sustained Akt1 and Akt2 phosphorylation on Ser-473/Ser-474 upon serum stimulation. LTC4S and Orai3 knockdown inhibited VSMC migration in vitro with no effect on proliferation. Akt activity was suppressed in neointimal and medial VSMCs from injured vessels at 2 weeks postinjury but was restored when the up-regulation of either LTC4S or Orai3 was prevented by shRNA. We conclude that LTC4S and Orai3 altered Akt signaling to promote VSMC migration and neointima formation.  相似文献   

4.
Periadventitial application of the urokinase-plasminogen activator (uPA) in pluronic gel to an injured artery stimulated the neointima and neoadventitia formation as well as cell migration and proliferation in vivo. In contrast, the tissue-type plasminogen activator (tPA) reduced the number of neointimal smooth muscle cells and neointimal area and attenuated the lumen stenosis after a balloon catheter injury of the rat carotid artery. This ability to stimulate the neointima and neoadbentitia formation was found to be quite specific for the uPA. The findings suggest that this uPA property provides a specific functional target for attenuating growth of the damage.  相似文献   

5.
At present the issue of a possible role of circulating stem cells and precursors in pathological vascular wall remodeling after angioplasty remains unsolved. Therefore the origin of neointimal cells was examined in the rat carotid artery after balloon angioplasty using morphological and immunocytochemical approaches. It is shown that at the early stages (1-7 days) after vessel injury acute inflammatory response arises in the arterial wall recruiting neutrophils, monocytes, macrophages as well as large amounts of low-differentiated blood-derived cells. At the late stages (10-28 days), at the area of injured intima, a new hyperplastic intima (neointima) is formed, which consists of cells carrying specific smooth muscle markers--alpha-actin and smoothelin. The study on cell proliferative behaviour in the injured vessel wall by bromodeoxyuridine showed that in the process of neointima formation blood-born rather than resident cells are involved. Probably, early smooth muscle and endothelial precursor cells penetrate into injured area with blood stream, where they proliferative and differentiate into mature cells.  相似文献   

6.
Objectives: To investigate the effects of multiple cryotherapy applications after muscle injury on markers of oxidative stress.

Methods: Following cryolesion-induced skeletal muscle injury in rats, ice was applied at the injured site for 30?minutes, three times per day, on the day of injury, and for 2 days after injury. To determine the effect of the cryotherapy treatment on markers of oxidative stress, biochemical analyses were performed 3, 7, and 14 days after injury.

Results: Compared with non-treated animals, cryotherapy reduced dichlorofluorescein at 7 and 14 days post-injury and thiobarbituric acid reactive substances levels at 3 and 7 days post-injury (P?P?>?0.05), whereas non-treated groups demonstrated lower levels than the control group (P?P?P?=?0.92).

Discussion: Cryotherapy reduced the production of reactive oxygen species after muscle injury, resulting in an attenuated response of the antioxidant system. These findings suggest that using multiple cryotherapy applications is efficient to reduce oxidative stress.  相似文献   

7.
Atherosclerosis, which is characterized by neointima formation, is an inflammatory disease. However, there is no inflammatory product-elicited neointimal model to support the causal role of inflammation in atherogenesis. We reported previously that leukocyte-derived MPO induces vascular injury responses such as endothelial dysfunction. We now test the role of MPO in inflammatory neointima formation. We infused temporarily isolated rat common carotid arteries with MPO (200 nM) and incubated for 1 h. We found that although MPO itself did not induce any neointima formation 2 wk after treatment, in the presence of its substrate, hydrogen peroxide, MPO was able to elicit neointimal hyperplasia. We further confirmed that MPO-induced neointimal hyperplasia is mediated by its product, hypochlorous acid (HOCl). HOCl elicited apoptosis both in intima and media followed by vascular proliferative response and resulted in neointima formation with a heterogeneous cell population. Both histological and functional features of HOCl-treated vessels are similar to those in atherosclerotic lesions. To our knowledge, this is the first direct in vivo demonstration of neointimal formation induced by a product of the inflammatory cascade. The results suggest that MPO may be a mediator for pathological neointima growth. This novel neointimal model could be useful for studying inflammation and atherosclerosis.  相似文献   

8.
LDL receptor-deficient (LDLR(-/-)) mice exhibit mild hyperlipidemia on a chow diet but develop severe hyperlipidemia on a high fat diet. In this study, we investigated neointimal formation after removal of the endothelium when LDLR(-/-) mice were fed chow or a Western diet containing 42% fat, 0.15% cholesterol, and 19.5% casein. At 10 weeks of age, female mice underwent endothelial denudation of the left common carotid artery. Two weeks after injury, neointimal formation was barely detectable in the injured vessel when mice developed mild hyperlipidemia on the chow diet. In contrast, neointimal lesions were obvious when mice developed severe hyperlipidemia on the Western diet. Immunohistochemical and histological analyses demonstrated the presence of macrophage foam cells and smooth muscle cells in neointimal lesions. The injured artery also exhibited a significant increase in medial area on the Western diet. Plasma levels of MCP-1 and soluble VCAM-1 were significantly elevated by feeding of the Western diet. These data indicate that hyperlipidemia aggravates neointimal growth in LDLR(-/-) mice by promoting foam cell formation and inflammation.  相似文献   

9.
Vascular endothelial growth factor (VEGF) is a promising molecule for cardiovascular diseases therapy. But lack of a targeted delivery system limits its translation into clinical application. This study aimed to develop stably overexpressing VEGF macrophages for targeted VEGF delivery to injured arteries and determine their potential for repairing of the damaged endothelium. Wire-induced carotid artery injury model was established in atherosclerosis-prone mice. It was observed that the VEGF-modified macrophages were recruited to the site of vascular injury and incorporated into new endothelium formation. VEGF-modified macrophages therapy accelerated reendothelialization and attenuated neointima formation. The VEGF protein level in tissues of injured arteries treated with VEGF-modified macrophages was increased. The upregulated C-C chemokine receptor type 5 (CCR5) and unaltered CCR2 protein levels were verified in VEGF-modified macrophages in vitro. Moreover, enhanced nitric oxide (NO) production in the culture medium of VEGF-modified macrophages was demonstrated. Our results indicated that VEGF-modified macrophages acted as vectors of VEGF targeting injured arteries, promoting the repairing directly by incorporating into new endothelium formation and indirectly by secreting sustainable VEGF and producing NO locally. This study represents a novel therapeutic application of targeted cell therapy with VEGF-modified macrophages for cardiovascular diseases.  相似文献   

10.
PurposeLong-term failure of vein grafts due to neointimal hyperplasia remains an important problem in coronary artery bypass graft surgery. Endothelial to mesenchymal transition (EndMT) contributes to vein graft vascular remodeling. However, there is little study on microRNA-mediated EndMT contributions to neointimal formation in vein graft. We hypothesized that microRNA-92a (miR-92a) might play an important role in determining EndMT contributions to neointimal formation.MethodsmiR-92a and EndMT-related proteins detected by qRT-PCR and Western blot in vitro and in vivo. Adeno-associated virus 6 (AAV6) delivery gene therapy was used to inhibit neointimal formation in vivo. The intimal hyperplasia of vein grafts was measured by HE staining, the expression of EndMT-related protein in vein grafts was measured by immunofluorescence. Immunohistochemistry and luciferase assay were used to detect potential targets of miR-92a.ResultsThe expression of miR-92a was found to be upregulated in neointimal hyperplasic lesions after vein grafting. Using cultured human umbilical vein endothelial cells (HUVECs), we show that TGF-β1 treatment of HUVECs significantly increased miR-92a expression and induced EndMT, characterized by suppression of endothelial-specific markers (CD31 and VE-cadherin) and an increase in mesenchymal-specific markers (a-SMA and vimentin), while inhibition of miR-92a expression blunted EndMT in cultured HUVECs. Furthermore, AAV6 mediated miR-92a suppression gene therapy effectively resulted in decreased EndMT and less neointimal formation in vein grafts in vivo. We further identified that integrin alpha 5 (ITGA5) is a potential target gene involved in the development of neointima formation in these vein grafts.ConclusionThis data suggests that neointimal formation does not solely rely on vascular smooth muscle cell phenotypic switching but is also related to EndMT, and miR-92a-mediated EndMT is an important mechanism underlying neointimal formation in vein grafts.  相似文献   

11.
An acute brain injury is commonly characterized by an extended cellular damage. The post-injury process of scar formation is largely determined by responses of various local glial cells and blood-derived immune cells. The role of astrocytes and microglia have been frequently reviewed in the traumatic sequelae. Here, we summarize the diverse contributions of oligodendrocytes (OLs) and their precursor cells (OPCs) in acute injuries. OLs at the lesion site are highly sensitive to a damaging insult, provoked by Ca2+ overload after hyperexcitation originating from increased levels of transmitters. At the lesion site, differentiating OPCs can replace injured oligodendrocytes to guarantee proper myelination that is instrumental for healthy brain function. In contrast to finally differentiated and non-dividing OLs, OPCs are the most proliferative cells of the brain and their proliferation rate even increases after injury. There exist even evidence that OPCs might also generate some type of astrocyte beside OLs. Thereby, OPCs can contribute to the generation and maintenance of the glial scar. In the future, detailed knowledge of the molecular cues that help to prevent injury-evoked glial cell death and that control differentiation and myelination of the oligodendroglial lineage will be pivotal in developing novel therapeutic approaches.  相似文献   

12.
The formation of neointimal thickenings in the rat carotid artery after balloon injury was studied by a combination of electron-microscopic and stereological methods. All smooth muscle cells in the normal media had a contractile phenotype, the cytoplasm being dominated by myofilaments. Seven days after endothelial denudation, the smooth muscle cells in the innermost part of the media had assumed a synthetic phenotype by loss of myofilaments and formation of a large endoplasmic reticulum and Golgi complex. These cells moved through fine openings in the internal elastic lamina and gave rise to a growing neointima by proliferation and secretion of extracellular matrix components. Fourteen days after the operation, the neointima had almost reached its final size, and mitoses were no longer noted. Nevertheless, the cells maintained a synthetic phenotype with prominent secretory organelles, although myofilaments had started to become more abundant again. They were surrounded by an extracellular matrix made up of collagen fibrils and coalescing patches of elastin. Thirty-five days after the operation, an endothelial cell layer had reformed and covered most of the luminal vessel surface. In parallel, the smooth muscle cells in the neointima had returned to a contractile phenotype with a cytoplasm dominated by myofilaments. These findings provide a morphological basis for further analysis of the cellular and molecular interactions involved in the formation of neointimal thickenings after endothelial injury, and for the search for agents interfering with this process.  相似文献   

13.
Phospholipase D (PLD) generates the signaling lipid phosphatidic acid (PA) and has been known to mediate proliferation signal in vascular smooth muscle cells (VSMCs). However, it remains unclear how PLD contributes to vascular diseases. VSMC proliferation directly contributes to the development and progression of cardiovascular disease, such as atherosclerosis and restenosis after angioplasty. Using the mouse carotid artery ligation model, we find that deletion of Pld1 gene inhibits neointima formation of the injuried blood vessels. PLD1 deficiency reduces the proliferation of VSMCs in both injured artery and primary cultures through the inhibition of ERK1/2 and AKT signals. Immunohistochemical staining of injured artery and flow cytometry analysis of VSMCs shows a reduction of the levels of reactive oxygen species (ROS) in Pld1?/? VSMCs. An increase of intracellular ROS by hydrogen peroxide stimulation restored the reduced activities of ERK and AKT in Pld1?/? VSMCs, whereas a reduction of ROS by N-acetyl-l-cysteine (NAC) scavenger lowered their activity in wild-type VSMCs. These results indicate that PLD1 plays a critical role in neointima, and that PLD1 mediates VSMC proliferation signal through promoting the production of ROS. Therefore, inhibition of PLD1 may be used as a therapeutic approach to suppress neointimal formation in atherosclerosis and restenosis after angioplasty.  相似文献   

14.
Neointimal formation and atherogenesis are major vascular complications following percutaneous coronary intervention, and there is lack of pharmacological therapy. This study was aimed to examine the effect of forskolin (FSK), a cyclic adenosine monophosphate (cAMP)‐elevating agent, on vascular response to angioplasty wire injury and on atherogenesis in mice. Forskolin treatment reduced neointima formation at 7 and 28 days after wire injury. Early morphometrics of the injured vessels revealed that FSK treatment enhanced endothelial repair and reduced inflammatory cell infiltration. In vitro treatment of primary aortic cells with FSK, at 3‐100 μmol/L, increased endothelial cell proliferation, whereas FSK, at 30‐100 μmol/L, inhibited smooth muscle cell proliferation. FSK inhibited lipopolysaccharide‐induced leucocyte‐endothelial interaction in vitro and in vivo. In a mouse model of atherosclerosis driven by dyslipidaemia and hypertension, FSK administration increased endothelial repair and reduced atherosclerotic plaque formation, without affecting blood pressure, plasma lipids or aortic aneurysms formation. In summary, FSK, at doses relevant to human therapeutic use, protects against neointimal hyperplasia and atherogenesis, and this is attributable to its activities on pro‐endothelial repair and anti‐inflammation. This study raises a potential of clinical use of FSK as an adjunct therapy to prevent restenosis and atherosclerosis after percutaneous coronary intervention.  相似文献   

15.
Thrombin is a multifunctional serine protease with central functions in hemostasis, but demonstration of its role in the initiation and maintenance of cell proliferation which occurs following vascular injury is still lacking. To determine the role played by thrombin and its receptor in neointimal accumulation of smooth muscle cells in a rabbit carotid artery model, we have used an 18 mer antisense phosphorothioate oligonucleotide (ODN) directed against the translation initiation region of the human thrombin receptor gene. The antisense ODN inhibited in a dose-dependent manner thrombin- or thrombin receptor activating peptide-induced human aortic smooth muscle cell proliferation. The growth-inhibitory effect of thrombin receptor antisense ODN was preventable by an excess of sense oligomer and specific for thrombin. The suppression of growth was accompanied by a marked decrease of the level of thrombin receptor expression as evidenced by [125l]-thrombin binding to smooth muscle cells. Under the same experimental conditions, the corresponding sense ODN was inactive. The effect of the antisense ODN on intimal smooth muscle hyperplasia in rabbit carotid arteries subjected to endothelial injury was then investigated. The topical application of the antisense (500 μg/artery) but not the sense ODN dissolved in F127 pluronic gel around the injured artery resulted, 2 weeks after the application, in a dramatic reduction of the expression of the thrombin receptor mRNA and protein levels as determined by in situ hybridization and immunohistochemistry. However, intimal smooth muscle cell accumulation as estimated by an intimal to medial cross-sectional area ratio was reduced only by 2.7% (vs. 10.3% for the sense ODN), whereas r-hirudin (200 μg/kg/day, sc), a potent direct thrombin inhibitor significantly reduced the formation of neointima in denuded carotid arteries (35.4% inhibition, P = 0.03). J. Cell. Physiol. 170:106–114, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

16.
Pulvirenti  T. J.  Yin  J. L.  Chaufour  X.  McLachlan  C.  Hambly  B. D.  Bennett  M. R.  Barden  J. A. 《Brain Cell Biology》2000,29(9):623-631
The redistribution of purinergic P2X receptor subunits (P2X1 to P2X7) within the rabbit aorta wall three weeks after endothelial balloon injury/cholesterol feeding was examined. P2X1 receptor cluster density was elevated in the media following balloon injury/cholesterol feeding by about 30% and these clusters appeared on smooth muscle cells throughout the greatly expanded neointima but they did not change significantly on the endothelial cells following balloon injury. P2X4 clusters were found in high density throughout the media and in very high density in the enlarged neointima following balloon injury, particularly on the endothelial cells where the density increased about 10-fold after balloon injury. P2X5 clusters were found in high density in the media of normal aorta but with little change following balloon injury. P2X3, P2X6 and P2X7 cluster density was low in normal aorta and remained unchanged following balloon injury. All receptor subunits were found on endothelial cells. It is suggested that the release of ATP from damaged endothelial cells and from smooth muscle cells sufficient to activate P2X4 receptors may contribute to neointimal proliferation.  相似文献   

17.
Lysophosphatidic acid (LPA) and its ether analog alkyl-glycerophosphate (AGP) elicit arterial wall remodeling when applied intralumenally into the uninjured carotid artery. LPA is the ligand of eight GPCRs and the peroxisome proliferator-activated receptor γ (PPARγ). We pursued a gene knockout strategy to identify the LPA receptor subtypes necessary for the neointimal response in a non-injury model of carotid remodeling and also compared the effects of AGP and the PPARγ agonist rosiglitazone (ROSI) on balloon injury-elicited neointima development. In the balloon injury model AGP significantly increased neointima; however, rosiglitazone application attenuated it. AGP and ROSI were also applied intralumenally for 1 h without injury into the carotid arteries of LPA1, LPA2, LPA1&2 double knockout, and Mx1Cre-inducible conditional PPARγ knockout mice targeted to vascular smooth muscle cells, macrophages, and endothelial cells. The neointima was quantified and also stained for CD31, CD68, CD11b, and α-smooth muscle actin markers. In LPA1, LPA2, LPA1&2 GPCR knockout, Mx1Cre transgenic, PPARγfl/−, and uninduced Mx1Cre × PPARγfl/− mice AGP- and ROSI-elicited neointima was indistinguishable in its progression and cytological features from that of WT C57BL/6 mice. In PPARγ−/− knockout mice, generated by activation of Mx1Cre-mediated recombination, AGP and ROSI failed to elicit neointima and vascular wall remodeling. Our findings point to a difference in the effects of AGP and ROSI between the balloon injury- and the non-injury chemically-induced neointima. The present data provide genetic evidence for the requirement of PPARγ in AGP- and ROSI-elicited neointimal thickening in the non-injury model and reveal that the overwhelming majority of the cells in the neointimal layer express α-smooth muscle actin.  相似文献   

18.
19.
Chen J  Jia ZY  Ma ZL  Wang YY  Teng GJ 《PloS one》2011,6(6):e20790

Background

Emerging evidence of histopathological analyses suggests that endothelial progenitor cells (EPCs) play an important role in vascular diseases. Neointimal hyperplasia can be reduced by intravenous transfusion of EPCs after vascular injury in mice. Therefore, it would be advantageous to develop an in vivo technique that can explore the temporal and spatial migration of EPCs homing to the damaged endothelium noninvasively.

Methodology/Principal Findings

The left carotid common artery (LCCA) was injured by removal of endothelium with a flexible wire in Kunming mice. EPCs were collected by in vitro culture of spleen-derived mouse mononuclear cells (MNCs). EPCs labeling was carried out in vitro using Fe2O3-poly-L-lysine (Fe2O3-PLL). In vivo serial MR imaging was performed to follow-up the injured artery at different time points after intravenous transfusion of EPCs. Vessel wall areas of injured artery were computed on T2WI. Larger MR signal voids of vessel wall on T2WI was revealed in all 6 mice of the labeled EPC transfusion group 15 days after LCCA injury, and it was found only in 1 mouse in the unlabeled EPC transfusion group (p = 0.015). Quantitative analyses of vessel wall areas on T2WI showed that the vessel wall areas of labeled EPC transfusion group were less than those of unlabeled EPC transfusion group and control group fifteen days after artery injury (p<0.05). Histopathological analyses confirmed accumulation and distribution of transfused EPCs at the injury site of LCCA.

Conclusions/Significance

These data indicate that MR imaging might be used as an in vivo method for the tracking of EPCs homing to the endothelium injured artery.  相似文献   

20.
OBJECTIVE AND BACKGROUND: Inflammation plays a critical role in all stages of atherogenesis. Proliferating vascular smooth muscle cells (SMC) and endothelial cells (EC) enhancing the inflammatory response, both contribute to the progression of atherosclerosis. Anti-proliferative, anti-inflammatory and anti-oxidative therapy seems to be a promising therapeutic strategy. The aim of this study was to assess the anti-proliferative and anti-inflammatory effect of the beta-blocker nebivolol in comparison to metoprolol in vitro and to find out whether nebivolol inhibits neointima formation in vivo. METHODS AND RESULTS: Real-time-RT-PCR revealed a decrease in VCAM-1, ICAM-1, PDGF-B, E-selectin and P-selectin mRNA expression in human coronary artery EC and SMC incubated with nebivolol for 72 hours while metoprolol did not have this effect. Nebivolol reduced MCP-1 and PDGF-BB protein in the culture supernatant of SMC and EC, respectively. Sprague-Dawley rats were treated with nebivolol for 0 or 35 days before and 28 days after carotid balloon injury. Immunohistological analyses showed that pre-treatment with nebivolol was associated with a decreased number of SMC layers and macrophages and an increased lumen area at the site of the arterial injury. The intima area was reduced by 43% after pre-treatment. CONCLUSION: We found that nebivolol reduced the expression of proinflammatory genes in endothelial cells and vascular smooth muscle cells in vitro whereas metoprolol did not. In vivo, nebivolol inhibited neointima formation by reducing SMC proliferation and macrophage accumulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号