首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lee JE  Luong W  Huang DJ  Cornell KA  Riscoe MK  Howell PL 《Biochemistry》2005,44(33):11049-11057
5'-Methylthioadenosine/S-adenosylhomocysteine nucleosidase (MTAN) is important in a number of cellular functions such as polyamine biosynthesis, methionine salvaging, biological methylation, and quorum sensing. The nucleosidase is found in many microbes but not in mammalian systems, thus making MTAN a broad-spectrum antimicrobial drug target. Substrate binding and catalytic residues were identified from the crystal structure of MTAN complexed with 5'-methylthiotubercidin [Lee, J. E., Cornell, K. A., Riscoe, M. K. and Howell, P. L. (2003) J. Biol. Chem. 278 (10) 8761-8770]. The roles of active site residues Met9, Glu12, Ile50, Ser76, Val102, Phe105, Tyr107, Phe151, Met173, Glu174, Arg193, Ser196, Asp197, and Phe207 have been investigated by site-directed mutagenesis and steady-state kinetics. Mutagenesis of residues Glu12, Glu174, and Asp197 completely abolished activity. The location of Asp197 and Glu12 in the active site is consistent with their having a direct role in enzyme catalysis. Glu174 is suggested to be involved in catalysis by stabilizing the transition state positive charge at the O3', C2', and C3' atoms and by polarizing the 3'-hydroxyl to aid in the flow of electrons to the electron withdrawing purine base. This represents the first indication of the importance of the 3'-hydroxyl in the stabilization of the transition state. Furthermore, mutation of Arg193 to alanine shows that the nucleophilic water is able to direct its attack without assistance from the enzyme. This mutagenesis study has allowed a reevaluation of the catalytic mechanism.  相似文献   

2.
The prokaryotic 5′-methylthioadenosine/S-adenosylhomocysteine nucleosidase (MTAN) catalyzes the irreversible cleavage of the glycosidic bond in 5′-methylthioadenosine (MTA) and S-adenosylhomocysteine (SAH), a process that plays a key role in several metabolic pathways. Its absence in all mammalian species has implicated this enzyme as a promising target for antimicrobial drug design. Here, we report the crystal structure of BmMTAN in complex with its product adenine at a resolution of 2.6 Å determined by single-wavelength anomalous dispersion method. 11 key residues were mutated for kinetic characterization. Mutations of Tyr134 and Met144 resulted in the largest overall increase in Km, whereas mutagenesis of residues Glu18, Glu145 and Asp168 completely abolished activity. Glu145 and Asp168 were identified as active site residues essential for catalysis. The catalytic mechanism and implications of this structure for broad-based antibiotic design are discussed.  相似文献   

3.
Saporin, a type I ribosome-inactivating protein produced by the soapwort plant Saponaria officinalis belongs to a multigene family that encodes its several isoforms. The saporin seed isoform 6 has significantly higher N-glycosidase and cytotoxic activities compared with the seed isoform 5, although the two have identical active sites. In the present study, we have investigated the contribution of non-conservative amino acid changes outside the active sites of these isoforms towards their differential catalytic activity. The saporin 6 residues Lys134, Leu147, Phe149, Asn162, Thr188 and Asp196 were replaced by the corresponding saporin 5 residues, Gln134, Ser147, Ser149, Asp162, Ile188 and Asn196, to generate six variants of saporin 6, K134Q, L147S, F149S, N162D, T188I and D196N. By functional characterization, we show that the change in amino acid Asn162 in saporin 6 to aspartic acid residue of saporin 5 contributes mainly to the lower catalytic activity of saporin 5 compared with saporin 6. The non-involvement of other non-conservative amino acids in the differential catalytic activity of these isoforms was confirmed with the help of the double mutations N162D/K134Q, N162D/L147S, N162D/F149S, N162D/T188I and N162D/D196N.  相似文献   

4.
MTA/AdoHcy nucleosidase (MTAN) irreversibly hydrolyzes the N9-C1' bond in the nucleosides, 5'-methylthioadenosine (MTA) and S-adenosylhomocysteine (AdoHcy) to form adenine and the corresponding thioribose. MTAN plays a vital role in metabolic pathways involving methionine recycling, biological methylation, polyamine biosynthesis, and quorum sensing. Crystal structures of a wild-type (WT) MTAN complexed with glycerol, and mutant-enzyme and mutant-product complexes have been determined at 2.0A, 2.0A, and 2.1A resolution, respectively. The WT MTAN-glycerol structure provides a purine-free model and in combination with the previously solved thioribose-free MTAN-ADE structure, we now have separate apo structures for both MTAN binding subsites. The purine and thioribose-free states reveal an extensive enzyme-immobilized water network in their respective binding subsites. The Asp197Asn MTAN-MTA and Glu12Gln MTAN-MTR.ADE structures are the first enzyme-substrate and enzyme-product complexes reported for MTAN, respectively. These structures provide representative snapshots along the reaction coordinate and allow insight into the conformational changes of the enzyme and the nucleoside substrate. A "catalytic movie" detailing substrate binding, catalysis, and product release is presented.  相似文献   

5.
Human deoxyribonuclease I (DNase I), an enzyme used to treat cystic fibrosis patients, has been systematically analyzed by site-directed mutagenesis of residues at the DNA binding interface. Crystal structures of bovine DNase I complexed with two different oligonucleotides have implicated the participation of over 20 amino acids in catalysis or DNA recognition. These residues have been classified into four groups based on the characterization of over 80 human DNase I variants. Mutations at any of the four catalytic amino acids His 134, His 252, Glu 78, and Asp 212 drastically reduced the hydrolytic activity of DNase I. Replacing the three putative divalent metal ion-coordinating residues Glu 39, Asp 168, or Asp 251 led to inactive variants. Amino acids Gln 9, Arg 41, Tyr 76, Arg 111, Asn 170, Tyr 175, and Tyr 211 were also critical for activity, presumably because of their close proximity to the active site, while more peripheral DNA interactions stemming from 13 other positions were of minimal significance. The relative importance of these 27 positions is consistent with evolutionary relationships among DNase I across different species, DNase I-like proteins, and bacterial sphingomyelinases, suggesting a fingerprint for a family of DNase I-like proteins. Furthermore, we found no evidence for a second active site that had been previously implicated in Mn2+-dependent DNA degradation. Finally, we correlated our mutational analysis of human DNase I to that of bovine DNase I with respect to their specific activity and dependence on divalent metal ions.  相似文献   

6.
Deuterolysin (EC 3.4.24.39; formerly designated as neutral proteinase II) from Aspergillus oryzae, which contains 1 g atom of zinc/mol of enzyme, is a single chain of 177 amino acid residues, includes three disulfide bonds, and has a molecular mass of 19,018 Da. Active-site determination of the recombinant enzyme expressed in Escherichia coli was performed by site-directed mutagenesis. Substitutions of His(128) and His(132) with Arg, of Glu(129) with Gln or Asp, of Asp(143) with Asn or Glu, of Asp(164) with Asn, and of Tyr(106) with Phe resulted in almost complete loss of the activity of the mutant enzymes. It can be concluded that His(128), His(132), and Asp(164) provide the Zn(2+) ligands of the enzyme according to a (65)Zn binding assay. Based on site-directed mutagenesis experiments, it was demonstrated that the three essential amino acid residues Glu(129), Asp(143), and Tyr(106) are catalytically crucial residues in the enzyme. Glu(129) may be implicated in a central role in the catalytic function. We conclude that deuterolysin is a member of a family of Zn(2+) metalloendopeptidases with a new zinc-binding motif, aspzincin, defined by the "HEXXH + D" motif and an aspartic acid as the third zinc ligand.  相似文献   

7.
N-terminal His-tagged recombinant beta-1,4-galactosyltransferase from Neisseria meningitidis was expressed and purified to homogeneity by column chromatography using Ni-NTA resin. Mutations were introduced to investigate the roles of, Ser68, His69, Glu88, Asp90, and Tyr156, which are components of a highly conserved region in recombinant beta-1,4 galactosyltransferase. Also, the functions of three other cysteine residues, Cys65, Cys139, and Cys205, were investigated using site-directed mutagenesis to determine the location of the disulfide bond and the role of the sulfhydryl groups. Purified mutant galactosyltransferases, His69Phe, Glu88Gln and Asp90Asn completely shut down wild-type galactosyltransferase activity (1-3 %). Also, Ser68Ala showed much lower activity than wild-type galactosyltransferase (19 %). However, only the substitution of Tyr156Phe resulted in a slight reduction in galactosyltransferase activity (90 %). The enzyme was found to remain active when the cysteine residues at positions 139 and 205 were replaced separately with serine. However, enzyme reactivity was found to be markedly reduced when Cys65 was replaced with serine (27 %). These results indicate that conserved amino acids such as Cys65, Ser68, His69, Glu88, and Asp90 may be involved in the binding of substrates or in the catalysis of the galactosyltransferase reaction.  相似文献   

8.
Calmodulin-activated adenylate cyclase of Bordetella pertussis and Bacillus anthracis are two cognate bacterial toxins. Three short regions of 13-24 amino acid residues in these proteins exhibit between 66 and 80% identity. Site-directed mutagenesis of four residues in B. pertussis adenylate cyclase situated in the second (Asp188, Asp190) and third (His298, Glu301) segments of identity were accompanied by important decrease, or total loss, of enzyme activity. The calmodulin-binding properties of mutated proteins showed no important differences when compared to the wild-type enzyme. Apart from the loss of enzymatic activity, the most important change accompanying replacement of Asp188 by other amino acids was a dramatic decrease in binding of 3'-anthraniloyl-2'-deoxyadenosine 5'-triphosphate, a fluorescent analogue of ATP. From these results we concluded that the two neighbouring aspartic acid residues in B. pertussis adenylate cyclase, conserved in many other ATP-utilizing enzymes, are essential for binding the Mg(2+)-nucleotide complex, and for subsequent catalysis. Replacement of His298 and Glu301 by other amino acid residues affected the nucleotide-binding properties of adenylate cyclase to a lesser degree suggesting that they might be important in the mechanism of enzyme activation by calmodulin, rather than being involved directly in catalysis.  相似文献   

9.
The functional importance of a conserved region in a novel chitosanase from Bacillus sp. CK4 was investigated. Each of the three carboxylic amino acid residues (Glu-50, Glu-62, and Asp-66) was changed to Asp and Gln or Asn and Glu by site-directed mutagenesis, respectively. The Asp-66-->Asn and Asp-66-->Glu mutation remarkably decreased kinetic parameters such as Vmax and kcat to approximately 1/1,000 those of the wild-type enzyme, indicating that the Asp-66 residue was essential for catalysis. The thermostable chitosanase contains three Cys residues at positions 49, 72, and 211. The Cys-49-->Ser/Tyr and Cys-72-->Ser/Tyr mutant enzymes were as stable to thermal inactivation and denaturating agents as the wild-type enzyme. However, the half-life of the Cys-211-->Ser/Tyr mutant enzyme was less than 10 min at 80 degrees C, while that of the wild-type enzyme was about 90 min. Moreover, the residual activity of Cys-211-->Ser/Tyr enzyme was substantially decreased by 8 M urea; and it lost all catalytic activity in 40% ethanol. These results show that the substitution of Cys with any amino acid residues at position 211 seems to affect the conformational stability of the chitosanase.  相似文献   

10.
The amino acid sequence of a protease inhibitor isolated from the hemolymph of Sarcophaga bullata larvae was determined by tandem mass spectrometry. Homology considerations with respect to other protease inhibitors with known primary structures assisted in the choice of the procedure followed in the sequence determination and in the alignment of the various peptides obtained from specific chemical cleavage at cysteines and enzyme digests of the S. bullata protease inhibitor. The resulting sequence of 57 residues is as follows: Val Asp Lys Ser Ala Cys Leu Gln Pro Lys Glu Val Gly Pro Cys Arg Lys Ser Asp Phe Val Phe Phe Tyr Asn Ala Asp Thr Lys Ala Cys Glu Glu Phe Leu Tyr Gly Gly Cys Arg Gly Asn Asp Asn Arg Phe Asn Thr Lys Glu Glu Cys Glu Lys Leu Cys Leu.  相似文献   

11.
Nukacin ISK-1, a type-A(II) lantibiotic, comprises 27 amino acids with a distinct linear N-terminal and a globular C-terminal region. To identify the positional importance or redundancy of individual residues responsible for nukacin ISK-1 antimicrobial activity, we replaced the native codons of the parent peptide with NNK triplet oligonucleotides in order to generate a bank of nukacin ISK-1 variants. The bioactivity of each peptide variant was evaluated by colony overlay assay, and hence we identified three Lys residues (Lys1, Lys2 and Lys3) that provided electrostatic interactions with the target membrane and were significantly variable. The ring structure of nukacin ISK-1 was found to be crucially important as replacing the ring-forming residues caused a complete loss of bioactivity. In addition to the ring-forming residues, Gly5, His12, Asp13, Met16, Asn17 and Gln20 residues were found to be essential for antimicrobial activity; Val6, Ile7, Val10, Phe19, Phe21, Val22, Phe23 and Thr24 were relatively variable; and Ser4, Pro8, His15 and Ser27 were extensively variable relative to their positions. We obtained two variants, Asp13Glu and Val22Ile, which exhibited a twofold higher specific activity compared with the wild-type and are the first reported type-A(II) lantibiotic mutant peptides with increased potency.  相似文献   

12.
The amino acid sequences of both the alpha and beta subunits of human chorionic gonadotropin have been determined. The amino acid sequence of the alpha subunit is: Ala - Asp - Val - Gln - Asp - Cys - Pro - Glu - Cys-10 - Thr - Leu - Gln - Asp - Pro - Phe - Ser - Gln-20 - Pro - Gly - Ala - Pro - Ile - Leu - Gln - Cys - Met - Gly-30 - Cys - Cys - Phe - Ser - Arg - Ala - Tyr - Pro - Thr - Pro-40 - Leu - Arg - Ser - Lys - Lys - Thr - Met - Leu - Val - Gln-50 - Lys - Asn - Val - Thr - Ser - Glu - Ser - Thr - Cys - Cys-60 - Val - Ala - Lys - Ser - Thr - Asn - Arg - Val - Thr - Val-70 - Met - Gly - Gly - Phe - Lys - Val - Glu - Asn - His - Thr-80 - Ala - Cys - His - Cys - Ser - Thr - Cys - Tyr - Tyr - His-90 - Lys - Ser. Oligosaccharide side chains are attached at residues 52 and 78. In the preparations studied approximately 10 and 30% of the chains lack the initial 2 and 3 NH2-terminal residues, respectively. This sequence is almost identical with that of human luteinizing hormone (Sairam, M. R., Papkoff, H., and Li, C. H. (1972) Biochem. Biophys. Res. Commun. 48, 530-537). The amino acid sequence of the beta subunit is: Ser - Lys - Glu - Pro - Leu - Arg - Pro - Arg - Cys - Arg-10 - Pro - Ile - Asn - Ala - Thr - Leu - Ala - Val - Glu - Lys-20 - Glu - Gly - Cys - Pro - Val - Cys - Ile - Thr - Val - Asn-30 - Thr - Thr - Ile - Cys - Ala - Gly - Tyr - Cys - Pro - Thr-40 - Met - Thr - Arg - Val - Leu - Gln - Gly - Val - Leu - Pro-50 - Ala - Leu - Pro - Gin - Val - Val - Cys - Asn - Tyr - Arg-60 - Asp - Val - Arg - Phe - Glu - Ser - Ile - Arg - Leu - Pro-70 - Gly - Cys - Pro - Arg - Gly - Val - Asn - Pro - Val - Val-80 - Ser - Tyr - Ala - Val - Ala - Leu - Ser - Cys - Gln - Cys-90 - Ala - Leu - Cys - Arg - Arg - Ser - Thr - Thr - Asp - Cys-100 - Gly - Gly - Pro - Lys - Asp - His - Pro - Leu - Thr - Cys-110 - Asp - Asp - Pro - Arg - Phe - Gln - Asp - Ser - Ser - Ser - Ser - Lys - Ala - Pro - Pro - Pro - Ser - Leu - Pro - Ser-130 - Pro - Ser - Arg - Leu - Pro - Gly - Pro - Ser - Asp - Thr-140 - Pro - Ile - Leu - Pro - Gln. Oligosaccharide side chains are found at residues 13, 30, 121, 127, 132, and 138. The proteolytic enzyme, thrombin, which appears to cleave a limited number of arginyl bonds, proved helpful in the determination of the beta sequence.  相似文献   

13.
The complete amino acid sequence of the β-subunit of protocatechuate 3,4-dioxygenase was determined. The β-subunit contained four methionine residues. Thus, five peptides were obtained after cleavage of the carboxymethylated β-subunit with cyanogen bromide, and were isolated on Sephadex G-75 column chromatography. The amino acid sequences of the cyanogen bromide peptides were established by characterization of the peptides obtained after digestion with trypsin, chymotrypsin, thermolysin, or Staphylococcus aureus protease. The major sequencing techniques used were automated and manual Edman degradations. The five cyanogen bromide peptides were aligned by means of the amino acid sequences of the peptides containing methionine purified from the tryptic hydrolysate of the carboxymethylated β-subunit. The amino acid sequence of all the 238 residues was as follows: ProAlaGlnAspAsnSerArgPheValIleArgAsp ArgAsnTrpHis ProLysAlaLeuThrPro-Asp — TyrLysThrSerIleAlaArg SerProArgGlnAla LeuValSerIleProGlnSer — IleSerGluThrThrGly ProAsnPheSerHisLeu GlyPheGlyAlaHisAsp-His — AspLeuLeuLeuAsnPheAsn AsnGlyGlyLeu ProIleGlyGluArgIle-Ile — ValAlaGlyArgValValAsp GlnTyrGlyLysPro ValProAsnThrLeuValGluMet — TrpGlnAlaAsnAla GlyGlyArgTyrArg HisLysAsnAspArgTyrLeuAlaPro — LeuAspProAsn PheGlyGlyValGly ArgCysLeuThrAspSerAspGlyTyrTyr — SerPheArg ThrIleLysProGlyPro TyrProTrpArgAsnGlyProAsnAsp — TrpArgProAla HisIleHisPheGlyIle SerGlyProSerIleAlaThr-Lys — LeuIleThrGlnLeuTyr PheGluGlyAspPro LeuIleProMetCysProIleVal — LysSerIleAlaAsn ProGluAlaValGlnGln LeuIleAlaLysLeuAspMetAsnAsn — AlaAsnProMet AsnCysLeuAlaTyr ArgPheAspIleValLeuArgGlyGlnArgLysThrHis PheGluAsnCys. The sequence published earlier in summary form (Iwaki et al., 1979, J. Biochem.86, 1159–1162) contained a few errors which are pointed out in this paper.  相似文献   

14.
The complete amino acid sequence of Penicillium chrysogenum 152A guanyl-specific RNase has been established using automated Edman degradation of two non-fractionated peptide mixtures produced by tryptic and staphylococcal protease digests of the protein. The RNase contains 102 amino acid residues: His2, Arg3, Asp7, Asn8, Thr5, Ser11, Glu4, Gln2, Pro4, Gly11, Ala13, Cys4, Val8, Ile3, Leu3, Tyr9, Phe5 (Mr 10 747).  相似文献   

15.
The peptidoglycan glycosyltransferase (GT) module of class A penicillin-binding proteins (PBPs) and monofunctional GTs catalyze glycan chain elongation of the bacterial cell wall. These enzymes belong to the GT51 family, are characterized by five conserved motifs, and have some fold similarity with the phage lambda lysozyme. In this work, we have systematically modified all the conserved amino acid residues of the GT module of Escherichia coli class A PBP1b by site-directed mutagenesis and determined their importance for the in vivo and in vitro activity and the thermostability of the protein. To get an insight into the GT active site of this paradigm enzyme, a model of PBP1b GT domain was constructed based on the available crystal structures (PDB codes 2OLV and 2OLU). The data show that in addition to the essential glutamate residues Glu233 of motif 1 and Glu290 of motif 3, the residues Phe237 and His240 of motif 1 and Gly264, Thr267, Gln271, and Lys274 of motif 2, all located in the catalytic cavity of the GT domain, are essential for the in vitro enzymatic activity of the PBP1b and for its in vivo functioning. Thus, the first three conserved motifs contain most of the residues that are required for the GT activity of the PBP1b. The residues Asp234, Phe237, His240, Thr267, and Gln271 are proposed to maintain the structure of the active site and the positioning of the catalytic Glu233.  相似文献   

16.
Batkin M  Schvartz I  Shaltiel S 《Biochemistry》2000,39(18):5366-5373
A set of 45 mutants of the carboxyl terminal tail of the PKA catalytic subunit was prepared and used to assess the contribution of this tail to the structure and function of the kinase. Ala substitutions of Asp 323, Phe 327, Glu 333, and Phe 350 resulted in a complete loss of enzymatic activity. Other replacements by Ala (Phe 314, Tyr 330, Glu 332, and Phe 347) brought about either a drop in activity to less than 10% of the wild-type enzyme or a reduction of affinity toward ATP (Lys 317, Lys 319, Tyr 330, and Glu 332) or toward Kemptide (Ile 315, Tyr 330, Val 337, Ile 339, Lys 345, and Glu 346). Mutations of Ser 338, a major autophosphorylation site of PKA, by Ala, Glu, Asp, Gln, and Asn showed that the kinetic parameters of these mutants are similar to those of the wild-type. The contribution of each of these tail mutations to the structure and stability of the kinase was assessed by monitoring its effect on the heat stability (when measurable) or by determining the susceptibility of the mutant kinase to cleavage by the Kinase Splitting Membranal Proteinase/Meprin beta. Here we show that the tail of PKA has a key role in creating the active conformation of the kinase. It does so by means of specific amino acid residues, which act as "snapping points" to embrace the two lobes of the kinase and orient them in the correct juxtaposition for substrate docking, biorecognition, and catalysis.  相似文献   

17.
Maize polyamine oxidase (MPAO) is a flavin adenine dinucleotide (FAD)-dependent enzyme that catalyses the oxidation of spermine and spermidine at the secondary amino groups. The structure of MPAO indicates a 30-A long U-shaped tunnel that forms the catalytic site, with residues Glu62 and Glu170 located close to the enzyme-bound FAD and residue Tyr298 in close proximity to Lys300, which in turn is hydrogen-bonded to the flavin N(5) atom via a water molecule (HOH309). To provide insight into the role of these residues in the catalytic mechanism of FAD reduction, we have performed steady-state and stopped-flow studies with wild-type, Glu62Gln, Glu170Gln, Tyr298Phe, and Lys300Met MPAO enzymes. We show that the steady-state enzyme activity is governed by an ionisable group with a macroscopic pK(a) of approximately 5.8. Kinetic analysis of the Glu62Gln, Glu170Gln, and Tyr298Phe MPAO enzymes have indicated (i) only small perturbations in catalytic activity as a result of mutation and (ii) steady-state pH profiles essentially unaltered when compared to the wild-type enzyme, suggesting that these residues do not play a critical role in the reaction mechanism. These kinetic observations are consistent with computational calculations that suggest that Glu62 and Glu170 are protonated over the pH range accessible to kinetic studies. Substitution of Lys300 with Met in MPAO resulted in a 1400-fold decrease in the rate of flavin reduction and a 160-fold decrease in the equilibrium dissociation constant for the Lys300Met-spermidine complex, consistent with a major role for this residue in the mechanism of substrate oxidation. A sizable solvent isotope effect (SIE = 5) accompanies FAD reduction in the wild-type enzyme and steady-state turnover (SIE = 2.3) of MPAO, consistent with the reductive half-reaction of MPAO making a major contribution to rate limitation in steady-state turnover. Studies using the enzyme-monitored turnover method indicate that oxidized FAD is the prominent form during steady-state turnover, consistent with the reductive half-reaction being rate-limiting. Our studies indicate the importance of Lys300 and probable importance of HOH309 to the mechanism of flavin reduction in MPAO. Possible roles for Lys300 and water in the mechanism of flavin reduction are discussed.  相似文献   

18.
Site-specific mutagenesis was employed to investigate the proposed contribution of proton-donating residues (Glu, Asp) in the membrane domains of bovine rhodopsin to protonation of the Schiff base-linking protein and chromophore or to wavelength modulation of this visual pigment. Three point-mutations were introduced to replace the highly conserved residues Asp83 by Asn (D83N), Glu113 by Gln (E113 Q) or Glu134 by Asp (E134D), respectively. All 3 substitutions had only marginal effects on the spectral properties of the final pigment (less than or equal to 3 nm blue-shift relative to native rhodopsin). Hence, none of these residues by itself is specifically involved in Schiff base protonation or wavelength modulation of bovine rhodopsin.  相似文献   

19.
Although the branching enzyme (EC 2.4.1.18) is a member of the alpha-amylase family, the characteristics are not understood. The thermostable branching enzyme gene from Bacillus stearothermophilus TRBE14 was cloned and expressed in Escherichia coli. The branching enzyme was purified to homogeneity, and various enzymatic properties were analyzed by our improved assay method. About 80% of activity was retained when the enzyme was heated at 60 degrees C for 30 min, and the optimum temperature for activity was around 50 degrees C. The enzyme was stable in the range of pH 7.5 to 9.5, and the optimum pH was 7.5. The nucleotide sequence of the gene was determined, and the active center of the enzyme was analyzed by means of site-directed mutagenesis. The catalytic residues were tentatively identified as two Asp residues and a Glu residue by comparison of the amino acid sequences of various branching enzymes from different sources and enzymes of the alpha-amylase family. When the Asp residues and Glu were replaced by Asn and Gln, respectively, the branching enzyme activities disappeared. The results suggested that these three residues are the catalytic residues and that the catalytic mechanism of the branching enzyme is basically identical to that of alpha-amylase. On the basis of these results, four conserved regions including catalytic residues and most of the substrate-binding residues of various branching enzymes are proposed.  相似文献   

20.
The Na(+)/H(+) exchanger isoform 1 (NHE1) is an integral membrane protein that regulates intracellular pH by extruding an intracellular H(+) in exchange for one extracellular Na(+). In this study we examined the effect of site-specific mutagenesis on the pore-lining amino acid Phe161 and effects of mutagenesis on the charged amino acids Asp159 and Asp172. There was no absolute requirement for a carboxyl side chain at amino acid Asp159 or Asp172. Mutation of Asp159 to Asn or Gln maintained or increased the activity of the protein. Similarly, for Asp172, substitution with a Gln residue maintained activity of the protein, even though substitution with an Asn residue was inhibitory. The Asp172Glu mutant possessed normal activity after correction for its aberrant expression and surface targeting. Replacement of Phe161 with a Leu demonstrated that it was not irreplaceable in NHE1 function. However, the mutation Phe161lys inhibited NHE1 function, while the Phe161Ala mutation caused altered NHE1 targeting and expression levels. Our results show that these three amino acids, while being important in NHE1 function, are not irreplaceable. This study demonstrates that multiple substitutions at a single amino acid residue may be necessary to get a clearer picture membrane protein function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号