首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We sequenced the genomes of 19 methylotrophic isolates from Lake Washington, which belong to nine genera within eight families of the Alphaproteobacteria, two of the families being the newly proposed families. Comparative genomic analysis with a focus on methylotrophy metabolism classifies these strains into heterotrophic and obligately or facultatively autotrophic methylotrophs. The most persistent metabolic modules enabling methylotrophy within this group are the N‐methylglutamate pathway, the two types of methanol dehydrogenase (MxaFI and XoxF), the tetrahydromethanopterin pathway for formaldehyde oxidation, the serine cycle and the ethylmalonyl‐CoA pathway. At the same time, a great potential for metabolic flexibility within this group is uncovered, with different combinations of these modules present. Phylogenetic analysis of key methylotrophy functions reveals that the serine cycle must have evolved independently in at least four lineages of Alphaproteobacteria and that all methylotrophy modules seem to be prone to lateral transfers as well as deletions.  相似文献   

2.
The focus of this review is on the recent data from the omics approaches, measuring the presence of methylotrophs in natural environments. Both Bacteria and Archaea are considered. The data are discussed in the context of the current knowledge on the biochemistry of methylotrophy and the physiology of cultivated methylotrophs. One major issue discussed is the recent metagenomic data pointing toward the activity of “aerobic” methanotrophs, such as Methylobacter, in microoxic or hypoxic conditions. A related issue of the metabolic distinction between aerobic and “anaerobic” methylotrophy is addressed in the light of the genomic and metagenomic data for respective organisms. The role of communities, as opposed to single-organism activities in environmental cycling of single-carbon compounds, such as methane, is also discussed. In addition, the emerging issue of the role of non-traditional methylotrophs in global metabolism of single-carbon compounds and the role of methylotrophy pathways in non-methylotrophs is briefly mentioned.  相似文献   

3.
We describe five novel Methylophilaceae ecotypes from a single ecological niche in Lake Washington, USA, and compare them to three previously described ecotypes, in terms of their phenotype and genome sequence divergence. Two of the ecotypes appear to represent novel genera within the Methylophilaceae. Genome-based metabolic reconstruction highlights metabolic versatility of Methylophilaceae with respect to methylotrophy and nitrogen metabolism, different ecotypes possessing different combinations of primary substrate oxidation systems (MxaFI-type methanol dehydrogenase versus XoxF-type methanol dehydrogenase; methylamine dehydrogenase versus N-methylglutamate pathway) and different potentials for denitrification (assimilatory versus respiratory nitrate reduction). By comparing pairs of closely related genomes, we uncover that site-specific recombination is the main means of genomic evolution and strain divergence, including lateral transfers of genes from both closely- and distantly related taxa. The new ecotypes and the new genomes contribute significantly to our understanding of the extent of genomic and metabolic diversity among organisms of the same family inhabiting the same ecological niche. These organisms also provide novel experimental models for studying the complexity and the function of the microbial communities active in methylotrophy.  相似文献   

4.
甲醇作为一种来源广泛、价格低廉、还原度高的非粮原料有望成为下一代生物制造的关键原料。利用合成生物学技术构建能够高效利用甲醇的重组微生物以实现从甲醇到高值化学品的生物转化已成国内外研究热点,但由于甲醇代谢过程的特殊性及复杂性,目前人工设计的甲基营养菌还难以实现以甲醇为唯一碳源进行生长及产物合成。基于对天然甲基营养菌甲醇代谢过程的分析,从甲醇脱氢酶的筛选与改造、甲醛同化途径的重构与优化、甲醇到化学品的生物转化几个方面对合成型甲基营养菌的构建策略及面临的挑战进行总结与分析,以期为今后合成型甲基营养菌的人工设计和利用提供一定的借鉴。  相似文献   

5.
This review provides a brief summary of ongoing studies in Lake Washington (Seattle, WA) directed at an understanding of the content and activities of microbial communities involved in methylotrophy. One of the findings from culture-independent approaches, including functional metagenomics, is the prominent presence of Methylotenera species in the site and their inferred activity in C(1) metabolism, highlighting the local environmental importance of this group. Comparative analyses of individual genomes of Methylophilaceae from Lake Washington provide insights into their genomic divergence and suggest significant metabolic flexibility.  相似文献   

6.
Implementation of microarrays for Methylobacterium extorquens AM1   总被引:1,自引:0,他引:1  
Microarrays are an important tool for understanding global gene expression changes, and the resulting data sets can be used to direct physiologic and metabolic studies. To take advantage of this technology, 60-mer oligonucleotide microarrays were designed for Methylobacterium extorquens AM1 to study gene expression changes that occur under differing physiological conditions. The carbon utilization pathways for methanol and succinate have been well characterized, and growth with these substrates was chosen as the condition used to validate the microarray data. The data were analyzed using two different methods and compared to previously obtained experimental data. The array data processed using the Significance Analysis of Microarrays followed by p-value assessment, correlated best to the experimental data. In addition to validating the microarrays, these studies uncovered possible connections between methylotrophy, iron, and sulfur homeostasis, bacteriochlorophyll production and polyketide synthesis, and will likely aid in uncovering further metabolic networks and genes required for methylotrophy.  相似文献   

7.
甲基营养菌的研究进展   总被引:2,自引:0,他引:2  
甲基营养菌是一类能够利用一碳化合物作为唯一碳源和能源的微生物,它们在自然界分布广泛.研究表明,甲基营养菌能够直接利用一碳化合物,将其转化成自身代谢的一碳单位,并为生物体提供能源和碳骨架,这组成了一碳代谢的主要部分,它是一种新的代谢体系,可以作为一种新的代谢模式来研究生物代谢和生物进化.本文结合本实验室Methylobacterium sp.MB200的研究情况,主要从分类学、代谢途径、基因组学和应用等方面,论述了甲基营养菌的研究进展.  相似文献   

8.
Genome-scale analysis of predicted metabolic pathways has revealed the common occurrence of apparent redundancy for specific functional units, or metabolic modules. In many cases, mutation analysis does not resolve function, and instead, direct experimental analysis of metabolic flux under changing conditions is necessary. In order to use genome sequences to build models of cellular function, it is important to define function for such apparently redundant systems. Here we describe direct flux measurements to determine the role of redundancy in three modules involved in formaldehyde assimilation and dissimilation in a bacterium growing on methanol. A combination of deuterium and 14C labeling was used to measure the flux through each of the branches of metabolism for growth on methanol during transitions into and out of methylotrophy. The cells were found to differentially partition formaldehyde among the three modules depending on the flux of methanol into the cell. A dynamic mathematical model demonstrated that the kinetic constants of the enzymes involved are sufficient to account for this phenomenon. We demonstrate the role of redundancy in formaldehyde metabolism and have uncovered a new paradigm for coping with toxic, high-flux metabolic intermediates: a dynamic, interconnected metabolic loop.  相似文献   

9.
Synthetic methylotrophy aims to engineer methane and methanol utilization pathways in platform hosts like Escherichia coli for industrial bioprocessing of natural gas and biogas. While recent attempts to engineer synthetic methylotrophs have proved successful, autonomous methylotrophy, i.e. the ability to utilize methane or methanol as sole carbon and energy substrates, has not yet been realized. Here, we address an important limitation of autonomous methylotrophy in E. coli: the inability of the organism to synthesize several amino acids when grown on methanol. By activating the stringent/stress response via ppGpp overproduction, or DksA and RpoS overexpression, we demonstrate improved biosynthesis of proteinogenic amino acids via endogenous upregulation of amino acid synthesis pathway genes. Thus, we were able to achieve biosynthesis of several limiting amino acids from methanol-derived carbon, in contrast to the control methylotrophic E. coli strain. This study addresses a key limitation currently preventing autonomous methylotrophy in E. coli and possibly other synthetic methylotrophs and provides insight as to how this limitation can be alleviated via stringent/stress response activation.  相似文献   

10.
11.
MOTIVATION: A number of metabolic databases are available electronically, some with features for querying and visualizing metabolic pathways and regulatory networks. We present a unifying, systematic approach based on PETRI nets for storing, displaying, comparing, searching and simulating such nets from a number of different sources. RESULTS: Information from each data source is extracted and compiled into a PETRI net. Such PETRI nets then allow to investigate the (differential) content in metabolic databases, to map and integrate genomic information and functional annotations, to compare sequence and metabolic databases with respect to their functional annotations, and to define, generate and search paths and pathways in nets. We present an algorithm to systematically generate all pathways satisfying additional constraints in such PETRI nets. Finally, based on the set of valid pathways, so-called differential metabolic displays (DMDs) are introduced to exhibit specific differences between biological systems, i.e. different developmental states, disease states, or different organisms, on the level of paths and pathways. DMDs will be useful for target finding and function prediction, especially in the context of the interpretation of expression data.  相似文献   

12.
Along with methane, methanol and methylated amines represent important biogenic atmospheric constituents; thus, not only methanotrophs but also nonmethanotrophic methylotrophs play a significant role in global carbon cycling. The complete genome of a model obligate methanol and methylamine utilizer, Methylobacillus flagellatus (strain KT) was sequenced. The genome is represented by a single circular chromosome of approximately 3 Mbp, potentially encoding a total of 2,766 proteins. Based on genome analysis as well as the results from previous genetic and mutational analyses, methylotrophy is enabled by methanol and methylamine dehydrogenases and their specific electron transport chain components, the tetrahydromethanopterin-linked formaldehyde oxidation pathway and the assimilatory and dissimilatory ribulose monophosphate cycles, and by a formate dehydrogenase. Some of the methylotrophy genes are present in more than one (identical or nonidentical) copy. The obligate dependence on single-carbon compounds appears to be due to the incomplete tricarboxylic acid cycle, as no genes potentially encoding alpha-ketoglutarate, malate, or succinate dehydrogenases are identifiable. The genome of M. flagellatus was compared in terms of methylotrophy functions to the previously sequenced genomes of three methylotrophs, Methylobacterium extorquens (an alphaproteobacterium, 7 Mbp), Methylibium petroleiphilum (a betaproteobacterium, 4 Mbp), and Methylococcus capsulatus (a gammaproteobacterium, 3.3 Mbp). Strikingly, metabolically and/or phylogenetically, the methylotrophy functions in M. flagellatus were more similar to those in M. capsulatus and M. extorquens than to the ones in the more closely related M. petroleiphilum species, providing the first genomic evidence for the polyphyletic origin of methylotrophy in Betaproteobacteria.  相似文献   

13.
With the emergence of multifaceted bioinformatics-derived data, it is becoming possible to merge biochemical and physiological information to develop a new level of understanding of the metabolic complexity of the cell. The biosynthetic pathway of de novo pyrimidine nucleotide metabolism is an essential capability of all free-living cells, and it occupies a pivotal position relative to metabolic processes that are involved in the macromolecular synthesis of DNA, RNA and proteins, as well as energy production and cell division. This regulatory network in all enteric bacteria involves genetic, allosteric, and physiological control systems that need to be integrated into a coordinated set of metabolic checks and balances. Allosterically regulated pathways constitute an exciting and challenging biosynthetic system to be approached from a mathematical perspective. However, to date, a mathematical model quantifying the contribution of allostery in controlling the dynamics of metabolic pathways has not been proposed. In this study, a direct, rigorous mathematical model of the de novo biosynthesis of pyrimidine nucleotides is presented. We corroborate the simulations with experimental data available in the literature and validate it with derepression experiments done in our laboratory. The model is able to faithfully represent the dynamic changes in the intracellular nucleotide pools that occur during metabolic transitions of the de novo pyrimidine biosynthetic pathway and represents a step forward in understanding the role of allosteric regulation in metabolic control.  相似文献   

14.
Exo1 was first isolated as a 5' --> 3' exonuclease activity induced during meiosis in fission yeast and since that time has been implicated in a multitude of eukaryotic DNA metabolic pathways that include DNA repair, recombination, replication, and telomere integrity. Involvement in multiple pathways affecting genomic stability makes EXO1 a logical target for mutation during oncogenesis. Here, we review studies in several experimental systems that shed light on the role of Exo1 in these DNA transaction pathways, particularly those that may relate to oncogenesis.  相似文献   

15.
The functional reconstruction of metabolic pathways from an annotated genome is a tedious and demanding enterprise. Automation of this endeavor using bioinformatics algorithms could cope with the ever-increasing number of sequenced genomes and accelerate the process. Here, the manual reconstruction of metabolic pathways in the functional genomic database of Plasmodium falciparum--Malaria Parasite Metabolic Pathways--is described and compared with pathways generated automatically as they appear in PlasmoCyc, metaSHARK and the Kyoto Encyclopedia for Genes and Genomes. A critical evaluation of this comparison discloses that the automatic reconstruction of pathways generates manifold paths that need an expert manual verification to accept some and reject most others based on manually curated gene annotation.  相似文献   

16.
Microorganisms exist in nature as members of complex, mixed communities. The microbial communities in industrial wastewater bioreactors can be used as model systems to study the evolution of new metabolic pathways in natural ecosystems. The evolution of microbial metabolic capability in these bioreactors is presumably analogous to phenomena that occur in natural ecosystems. The microorganisms in these bioreactors compete for different carbon sources and constantly have to evolve new metabolic capabilities for survival. Thus, industrial bioreactors should be a rich source of novel biocatalysts.  相似文献   

17.
Methylobacterium extorquens AM1, a strain serendipitously isolated half a century ago, has become the best-characterized model system for the study of aerobic methylotrophy (the ability to grow on reduced single-carbon compounds). However, with 5 replicons and 174 insertion sequence (IS) elements in the genome as well as a long history of domestication in the laboratory, genetic and genomic analysis of M. extorquens AM1 face several challenges. On the contrary, a recently isolated strain - M. extorquens PA1- is closely related to M. extorquens AM1 (100% 16S rRNA identity) and contains a streamlined genome with a single replicon and only 20 IS elements. With the exception of the methylamine dehydrogenase encoding gene cluster (mau), genes known to be involved in methylotrophy are well conserved between M. extorquens AM1 and M. extorquens PA1. In this paper we report four primary findings regarding methylotrophy in PA1. First, with a few notable exceptions, the repertoire of methylotrophy genes between PA1 and AM1 is extremely similar. Second, PA1 grows faster with higher yields compared to AM1 on C1 and multi-C substrates in minimal media, but AM1 grows faster in rich medium. Third, deletion mutants in PA1 throughout methylotrophy modules have the same C1 growth phenotypes observed in AM1. Finally, the precision of our growth assays revealed several unexpected growth phenotypes for various knockout mutants that serve as leads for future work in understanding their basis and generality across Methylobacterium strains.  相似文献   

18.
PathAligner     
MOTIVATION: Analysis of metabolic pathways is a central topic in understanding the relationship between genotype and phenotype. The rapid accumulation of biological data provides the possibility of studying metabolic pathways at both the genomic and the metabolic levels. Retrieving metabolic pathways from current biological data sources, reconstructing metabolic pathways from rudimentary pathway components, and aligning metabolic pathways with each other are major tasks. Our motivation was to develop a conceptual framework and computational system that allows the retrieval of metabolic pathway information and the processing of alignments to reveal the similarities between metabolic pathways. RESULTS: PathAligner extracts metabolic information from biological databases via the Internet and builds metabolic pathways with data sources of genes, sequences, enzymes, metabolites etc. It provides an easy-to-use interface to retrieve, display and manipulate metabolic information. PathAligner also provides an alignment method to compare the similarity between metabolic pathways. AVAILABILITY: PathAligner is available at http://bibiserv.techfak.uni-bielefeld.de/pathaligner.  相似文献   

19.
20.
Brown algae (stramenopiles) are key players in intertidal ecosystems, and represent a source of biomass with several industrial applications. Ectocarpus siliculosus is a model to study the biology of these organisms. Its genome has been sequenced and a number of post‐genomic tools have been implemented. Based on this knowledge, we report the reconstruction and analysis of a genome‐scale metabolic network for E. siliculosus, EctoGEM ( http://ectogem.irisa.fr ). This atlas of metabolic pathways consists of 1866 reactions and 2020 metabolites, and its construction was performed by means of an integrative computational approach for identifying metabolic pathways, gap filling and manual refinement. The capability of the network to produce biomass was validated by flux balance analysis. EctoGEM enabled the reannotation of 56 genes within the E. siliculosus genome, and shed light on the evolution of metabolic processes. For example, E. siliculosus has the potential to produce phenylalanine and tyrosine from prephenate and arogenate, but does not possess a phenylalanine hydroxylase, as is found in other stramenopiles. It also possesses the complete eukaryote molybdenum co‐factor biosynthesis pathway, as well as a second molybdopterin synthase that was most likely acquired via horizontal gene transfer from cyanobacteria by a common ancestor of stramenopiles. EctoGEM represents an evolving community resource to gain deeper understanding of the biology of brown algae and the diversification of physiological processes. The integrative computational method applied for its reconstruction will be valuable to set up similar approaches for other organisms distant from biological benchmark models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号