首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Erwinia herbicola is a nonphotosynthetic bacterium that is yellow pigmented due to the presence of carotenoids. When the Erwinia carotenoid biosynthetic genes are expressed in Escherichia coli, this bacterium also displays a yellow phenotype. The DNA sequence of the plasmid pPL376, carrying the entire Erwinia carotenoid gene cluster, has been found to contain 12 open reading frames (ORFs). Six of the ORFs have been identified as carotenoid biosynthesis genes that code for all the enzymes required for conversion of farnesyl pyrophosphate (FPP) to zeaxanthin diglucoside via geranylgeranyl pyrophosphate, phytoene, lycopene, β-carotene, and zeaxanthin. These enzymatic steps were assigned after disruption of each ORF by a specific mutation and analysis of the accumulated intermediates. Carotenoid intermediates were identified by the absorption spectra of the colored components and by high pressure liquid chromatographic analysis. The six carotenoid genes are arranged in at least two operons. The gene coding for β-carotene hydroxylase is transcribed in the opposite direction from that of the other carotenoid genes and overlaps with the gene for phytoene synthase.  相似文献   

2.
3.
4.
Carotenoids are isoprenoid pigments that function as photoprotectors, precursors of the hormone abscisic acid (ABA), colorants and nutraceuticals. A major problem for the metabolic engineering of high carotenoid levels in plants is the limited supply of their isoprenoid precursor geranylgeranyl diphosphate (GGPP), formed by condensation of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) units usually synthesized by the methylerythritol phosphate (MEP) pathway in plastids. Our earlier work with three of the seven MEP pathway enzymes suggested that the first reaction of the pathway catalyzed by deoxyxylulose 5-phosphate synthase (DXS) is limiting for carotenoid biosynthesis during tomato (Lycopersicon esculentum) fruit ripening. Here we investigate the contribution of the enzyme hydroxymethylbutenyl diphosphate reductase (HDR), which simultaneously synthesizes IPP and DMAPP in the last step of the pathway. A strong upregulation of HDR gene expression was observed in correlation with carotenoid production during both tomato fruit ripening and Arabidopsis thaliana seedling deetiolation. Constitutive overexpression of the tomato cDNA encoding HDR in Arabidopsis did not increase carotenoid levels in etioplasts. By contrast, light-grown transgenic plants showed higher carotenoid levels and an enhanced seed dormancy phenotype suggestive of increased ABA levels. The analysis of double transgenic Arabidopsis plants overproducing both the enzyme taxadiene synthase (which catalyzes the production of the non-native isoprenoid taxadiene from GGPP) and either HDR or DXS showed a twofold stronger effect of HDR in increasing taxadiene levels. Together, the data support a major role for HDR in controlling the production of MEP-derived precursors for plastid isoprenoid biosynthesis.  相似文献   

5.
Zhu L  Wu X  Li O  Qian C  Gao H 《PloS one》2012,7(4):e35099
Most Sphingomonas species synthesize the yellow carotenoid nostoxanthin. However, the carotenoid biosynthetic pathway of these species remains unclear. In this study, we cloned and characterized a carotenoid biosynthesis gene cluster containing four carotenogenic genes (crtG, crtY, crtI and crtB) and a β-carotene hydroxylase gene (crtZ) located outside the cluster, from the gellan-gum producing bacterium Sphingomonas elodea ATCC 31461. Each of these genes was inactivated, and the biochemical function of each gene was confirmed based on chromatographic and spectroscopic analysis of the intermediates accumulated in the knockout mutants. Moreover, the crtG gene encoding the 2,2'-β-hydroxylase and the crtZ gene encoding the β-carotene hydroxylase, both responsible for hydroxylation of β-carotene, were confirmed by complementation studies using Escherichia coli producing different carotenoids. Expression of crtG in zeaxanthin and β-carotene accumulating E. coli cells resulted in the formation of nostoxanthin and 2,2'-dihydroxy-β-carotene, respectively. Based on these results, a biochemical pathway for synthesis of nostoxanthin in S. elodea ATCC 31461 is proposed.  相似文献   

6.
7.
The role of carotenoid genes crtB and crtE has been functionally assigned. These genes were cloned from Erwinia into Escherichia coli or Agrobacterium tumefaciens. Their functions were elucidated by assaying early isoprenoid enzymes involved in phytoene formation. In vitro reactions from extracts of E. coli carrying the crtE gene or a complete carotenogenic gene cluster in which crtB was deleted showed an elevated conversion of farnesyl pyrophosphate (FPP) into geranylgeranyl pyrophosphate (GGPP). These results strongly indicate that the crtE gene encodes GGPP synthase. Introduction of the crtB gene into A. tumefaciens led to the conversion of GGPP into phytoene. This activity was absent in similar transformants with the crtE gene. Thus, the crtB gene probably encodes phytoene synthase, which was further supported by demonstration that phytoene accumulated in E. coli harboring both the crtB and crtE genes.  相似文献   

8.
To determine whether Saccharomyces cerevisiae can serve as a host for efficient carotenoid and especially β-carotene production, carotenogenic genes from the carotenoid-producing yeast Xanthophyllomyces dendrorhous were introduced and overexpressed in S. cerevisiae. Because overexpression of these genes from an episomal expression vector resulted in unstable strains, the genes were integrated into genomic DNA to yield stable, carotenoid-producing S. cerevisiae cells. Furthermore, carotenoid production levels were higher in strains containing integrated carotenogenic genes. Overexpression of crtYB (which encodes a bifunctional phytoene synthase and lycopene cyclase) and crtI (phytoene desaturase) from X. dendrorhous was sufficient to enable carotenoid production. Carotenoid production levels were increased by additional overexpression of a homologous geranylgeranyl diphosphate (GGPP) synthase from S. cerevisiae that is encoded by BTS1. Combined overexpression of crtE (heterologous GGPP synthase) from X. dendrorhous with crtYB and crtI and introduction of an additional copy of a truncated 3-hydroxy-3-methylglutaryl-coenzyme A reductase gene (tHMG1) into carotenoid-producing cells resulted in a successive increase in carotenoid production levels. The strains mentioned produced high levels of intermediates of the carotenogenic pathway and comparable low levels of the preferred end product β-carotene, as determined by high-performance liquid chromatography. We finally succeeded in constructing an S. cerevisiae strain capable of producing high levels of β-carotene, up to 5.9 mg/g (dry weight), which was accomplished by the introduction of an additional copy of crtI and tHMG1 into carotenoid-producing yeast cells. This transformant is promising for further development toward the biotechnological production of β-carotene by S. cerevisiae.  相似文献   

9.
It is proposed that the lytB gene encodes an enzyme of the deoxyxylulose-5-phosphate (DOXP) pathway that catalyzes a step at or subsequent to the point at which the pathway branches to form isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). A mutant of the cyanobacterium Synechocystis strain PCC 6803 with an insertion in the promoter region of lytB grew slowly and produced greenish-yellow, easily bleached colonies. Insertions in the coding region of lytB were lethal. Supplementation of the culture medium with the alcohol analogues of IPP and DMAPP (3-methyl-3-buten-1-ol and 3-methyl-2-buten-1-ol) completely alleviated the growth impairment of the mutant. The Synechocystis lytB gene and a lytB cDNA from the flowering plant Adonis aestivalis were each found to significantly enhance accumulation of carotenoids in Escherichia coli engineered to produce these colored isoprenoid compounds. When combined with a cDNA encoding deoxyxylulose-5-phosphate synthase (dxs), the initial enzyme of the DOXP pathway, the individual salutary effects of lytB and dxs were multiplied. In contrast, the combination of lytB and a cDNA encoding IPP isomerase (ipi) was no more effective in enhancing carotenoid accumulation than ipi alone, indicating that the ratio of IPP and DMAPP produced via the DOXP pathway is influenced by LytB.  相似文献   

10.
以白心木薯华南6068、华南9号、紫叶黄心木薯BGM019和粉红木薯Mirasol为材料,探究木薯块根膨大期和成熟期与类胡萝卜素代谢通路相关的14个基因和4种蛋白质表达水平变化。用HPLC检测块根β-胡萝卜素含量的变化,分别用qRT-PCR和Western blot方法对类胡萝卜素代谢通路相关基因和蛋白酶的表达水平进行分析。以华南6068为对照,研究结果表明:华南9号和紫叶黄心木薯BGM019成熟期中的类胡萝卜素合成途径关键基因PSY2、LCYB基因显著高于膨大期,而降解相关的关键基因CCD1、NCED3在成熟期的表达量显著低于膨大期(P0.05)。粉红木薯Mirasol成熟期中PSY2、LCYB的显著下调与CCD1、NCED3的显著上调(P0.05)是造成β-胡萝卜素含量差异的原因之一。通过分析不同木薯品种(系)在膨大期和成熟期块根类胡萝卜素代谢途径相关基因的表达水平,有助于解析β-胡萝卜素积累的分子机理。此外,Western blot结果显示抗坏血酸过氧化物酶、谷胱甘肽还原酶、超氧化物歧化酶和HSP70虽然和块根类胡萝卜素代谢途径没有直接关联,但它们在木薯膨大期和成熟期块根表达水平有显著差异(P0.05)。  相似文献   

11.
The demand for bio-based retinol (vitamin A) is currently increasing, however its instability represents a major bottleneck in microbial production. Here, we developed an efficient method to selectively produce retinol in Yarrowia lipolytica. The β-carotene 15,15′-dioxygenase (BCO) cleaves β-carotene into retinal, which is reduced to retinol by retinol dehydrogenase (RDH). Therefore, to produce retinol, we first generated β-carotene-producing strain based on a high-lipid-producer via overexpressing genes including heterologous β-carotene biosynthetic genes, GGS1F43I mutant of endogenous geranylgeranyl pyrophosphate synthase isolated by directed evolution, and FAD1 encoding flavin adenine dinucleotide synthetase, while deleting several genes previously known to be beneficial for carotenoid production. To produce retinol, 11 copies of BCO gene from marine bacterium 66A03 (Mb.Blh) were integrated into the rDNA sites of the β-carotene overproducer. The resulting strain produced more retinol than retinal, suggesting strong endogenous promiscuous RDH activity in Y. lipolytica. The introduction of Mb.Blh led to a considerable reduction in β-carotene level, but less than 5% of the consumed β-carotene could be detected in the form of retinal or retinol, implying severe degradation of the produced retinoids. However, addition of the antioxidant butylated hydroxytoluene (BHT) led to a >20-fold increase in retinol production, suggesting oxidative damage is the main cause of intracellular retinol degradation. Overexpression of GSH2 encoding glutathione synthetase further improved retinol production. Raman imaging revealed co-localization of retinol with lipid droplets, and extraction of retinol using Tween 80 was effective in improving retinol production. By combining BHT treatment and extraction using Tween 80, the final strain CJ2104 produced 4.86 g/L retinol and 0.26 g/L retinal in fed-batch fermentation in a 5-L bioreactor, which is the highest retinol production titer ever reported. This study demonstrates that Y. lipolytica is a suitable host for the industrial production of bio-based retinol.  相似文献   

12.
Maize was genetically engineered for the biosynthesis of the high value carotenoid astaxanthin in the kernel endosperm. Introduction of a β-carotene hydroxylase and a β-carotene ketolase into a white maize genetic background extended the carotenoid pathway to astaxanthin. Simultaneously, phytoene synthase, the controlling enzyme of carotenogenesis, was over-expressed for enhanced carotenoid production and lycopene ε-cyclase was knocked-down to direct more precursors into the β-branch of the extended ketocarotenoid pathway which ends with astaxanthin. This astaxanthin-accumulating transgenic line was crossed into a high oil- maize genotype in order to increase the storage capacity for lipophilic astaxanthin. The high oil astaxanthin hybrid was compared to its astaxanthin producing parent. We report an in depth metabolomic and proteomic analysis which revealed major up- or down- regulation of genes involved in primary metabolism. Specifically, amino acid biosynthesis and the citric acid cycle which compete with the synthesis or utilization of pyruvate and glyceraldehyde 3-phosphate, the precursors for carotenogenesis, were down-regulated. Nevertheless, principal component analysis demonstrated that this compositional change is within the range of the two wild type parents used to generate the high oil producing astaxanthin hybrid.  相似文献   

13.
Erwinia herbicola is a nonphotosynthetic bacterium that is yellow pigmented due to the presence of carotenoids. When the Erwinia carotenoid biosynthetic genes are expressed in Escherichia coli, this bacterium also displays a yellow phenotype. The DNA sequence of the plasmid pPL376, carrying the entire Erwinia carotenoid gene cluster, has been found to contain 12 open reading frames (ORFs). Six of the ORFs have been identified as carotenoid biosynthesis genes that code for all the enzymes required for conversion of farnesyl pyrophosphate (FPP) to zeaxanthin diglucoside via geranylgeranyl pyrophosphate, phytoene, lycopene, -carotene, and zeaxanthin. These enzymatic steps were assigned after disruption of each ORF by a specific mutation and analysis of the accumulated intermediates. Carotenoid intermediates were identified by the absorption spectra of the colored components and by high pressure liquid chromatographic analysis. The six carotenoid genes are arranged in at least two operons. The gene coding for -carotene hydroxylase is transcribed in the opposite direction from that of the other carotenoid genes and overlaps with the gene for phytoene synthase.  相似文献   

14.
15.
Metabolic engineering of the early non-mevalonate terpenoid pathway of Escherichia coli was carried out to increase the supply of prenyl pyrophosphates as precursor for carotenoid production. Transformation with the genes dxs for over-expression of 1-deoxy-d-xylulose 5-phosphate synthase, dxr for 1-deoxy-d-xylulose 5-phosphate reductoisomerase and idi encoding an isopentenyl pyrophosphate stimulated carotenogenesis up to 3.5-fold. Co-transformation of idi with either dxs or dxr had an additive effect on ß-carotene and zeaxanthin production which reached 1.6 mg g–1 dry wt.  相似文献   

16.
The yeast Candida utilis does not possess an endogenous biochemical pathway for the synthesis of carotenoids. The central isoprenoid pathway concerned with the synthesis of prenyl lipids is present in C. utilis and active in the biosynthesis of ergosterol. In our previous study, we showed that the introduction of exogenous carotenoid genes, crtE, crtB, and crtI, responsible for the formation of lycopene from the precursor farnesyl pyrophosphate, results in the C. utilis strain that yields lycopene at 1.1 mg per g (dry weight) of cells (Y. Miura, K. Kondo, T. Saito, H. Shimada, P. D. Fraser, and N. Misawa, Appl. Environ. Microbiol. 64:1226–1229, 1998). Through metabolic engineering of the isoprenoid pathway, a sevenfold increase in the yield of lycopene has been achieved. The influential steps in the pathway that were manipulated were 3-hydroxy methylglutaryl coenzyme A (HMG-CoA) reductase, encoded by the HMG gene, and squalene synthase, encoded by the ERG9 gene. Strains overexpressing the C. utilis HMG-CoA reductase yielded lycopene at 2.1 mg/g (dry weight) of cells. Expression of the HMG-CoA catalytic domain alone gave 4.3 mg/g (dry weight) of cells; disruption of the ERG9 gene had no significant effect, but a combination of ERG9 gene disruption and the overexpression of the HMG catalytic domain yielded lycopene at 7.8 mg/g (dry weight) of cells. The findings of this study illustrate how modifications in related biochemical pathways can be utilized to enhance the production of commercially desirable compounds such as carotenoids.  相似文献   

17.
18.
We have engineered a conventional yeast, Saccharomyces cerevisiae, to confer a novel biosynthetic pathway for the production of β-carotene and lycopene by introducing the bacterial carotenoid biosynthesis genes, which are individually surrounded by the promoters and terminators derived from S. cerevisiae. β-Carotene and lycopene accumulated in the cells of this yeast, which was considered to be a result of the carbon flow for the ergosterol biosynthetic pathway being partially directed to the pathway for the carotenoid production.  相似文献   

19.
20.
Plant cells synthesize a myriad of isoprenoid compounds in different subcellular compartments, which include the plastid, the mitochondria, and the endoplasmic reticulum cytosol. To start the study of the regulation of these parallel pathways, we used pepper (Capsicum annuum) fruit as a model. Using different isoprenoid biosynthetic gene probes from cloned cDNAs, we showed that only genes encoding the plastid enzymes (geranylgeranyl pyrophosphate synthase, phytoene synthase, phytoene desaturase, and capasanthin-capsorubin synthase) are specifically triggered during the normal period of development, at the ripening stage. This pattern of expression can be mimicked and precociously induced by a simple wounding stress. Concerning the cytosol-located enzymes, we observed that the expression of the gene encoding farnesyl pyrophosphate synthase is constitutive, whereas that of farnesyl pyrophosphate cyclase (5-epi-aristolochene synthase) is undetectable during the normal development of the fruit. The expression of these later genes are, however, only selectively triggered after elicitor treatment. The results provide evidence for developmental control of isoprenoid biosynthesis occurring in plastids and that cytoplasmic isoprenoid biosynthesis is regulated, in part, by environmental signals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号