首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
We report the discovery of a CTX-M-15-producing Escherichia coli (STEC) of serogroup O111:H8, a major serotype responsible for human enterohemorrhagic Escherichia coli (EHEC) infections. In line with the recent CTX-M-15/O104:H4 E. coli outbreak, these data may reflect an accelerating spread of resistance to expanded-spectrum cephalosporins within the E. coli population, including STEC isolates.  相似文献   

2.
Hypoxanthine–guanine phosphoribosyltransferase (HGPRT) (EC 2.4.2.8) is an important enzyme involved in the recycling of purine nucleotides in all cells. Parasitic protozoa of the order Kinetoplastida are unable to synthesize purines de novo and use the salvage pathway for the synthesis of nucleotides; therefore, this pathway is an attractive target for antiparasitic drug design. The hgprt gene was cloned from a Leishmania tarentolae genomic library and the sequence determined. The L. tarentolae hgprt gene contains a 633-nucleotide open reading frame that encodes a 23.4-kDa protein. A pairwise alignment of the different HGPRT's sequences revealed a 26%–53% sequence identity with the Leishmania sequences and 87% identity to the HGPRT of Leishmania donovani. A recombinant protein was expressed in Escherichia coli, purified to homogeneity and found to retain enzymatic activity. The steady-state kinetic parameters were determined for the recombinant enzyme and the enzyme is active as a homodimer in solution. Single crystals were obtained for the L. tarentolae HGPRT representing the first Leishmania HGPRT crystallized and initial crystallographic data were collected. The crystals obtained belong to the orthorhombic space group (P212121) with unit cell parameters a=58.104 Å, b=85.443 Å and c=87.598 Å and diffract to a resolution of 2.3 Å. The availability of the HGPRT enzyme from Leishmania and its crystallization suitable for X-ray diffraction data collection should provide the basis for a functional and structural analysis of this enzyme, which has been proposed as a potential target for rational drug design, in a Leishmania model system.  相似文献   

3.
4.
An electron density map of crystalline R-TEM Escherichia coli β-lactamase (penicillinase) has been calculated from X-ray diffraction data at 5.5 Å resolution with protein phases based on Friedel mates from a high-quality samarium derivative. The mean figure of merit for 854 independent reflections is 0.75. The monomeric molecule is slightly ellipsoidal and contains one and possibly two regions of α-helix which are 25 Å long. The Crystallographic search for the substrate binding site has so far been inconclusive. The radius of gyration of the enzyme in solution at pH 7 is 17.1 ± 1.0 Å from small-angle X-ray scattering measurements. This compares with 18.6 å calculated from the low-resolution electron density map of the molecule in the crystal.  相似文献   

5.
We investigated the effects of replacing third-/fourth-generation cephalosporins with piperacillin–tazobactam on the rate of acquisition of extended spectrum β-lactamase-producing Klebsiella pneumoniae and Escherichia coli by patients hospitalized in a Department of Respiratory Medicine.This 9-month, prospective, non-controlled, intervention study comprised two phases: a 3-month pre-intervention phase (Phase I) and a 6-month intervention phase (Phase II), during which the use of third-/forth-generation cephalosporins was restricted and replaced by piperacillin–tazobactam. Rectal swabs were obtained within 24 h after admission (baseline screening), weekly, and 48 h before discharge during Phase I and the last 3 months of Phase II (Phase IIb). Swabs were tested for E. coli and K. pneumoniae, and extended spectrum β-lactamase production was detected with the double disc test.Use of third/fourth-generation cephalosporins decreased by 63.0% and 100%, respectively; while the use of piperacillin–tazobactam increased by 28-fold. The rate of acquisition of extended spectrum β-lactamase-producing E. coli and K. pneumoniae together in rectal swab specimens decreased in Phase IIb as compared with Phase I (19.5% vs 29.5%). Few rectal swab specimens were positive for extended spectrum β-lactamases-producing K. pneumoniae, and no substantial decrease in the rate of its acquisition was observed.  相似文献   

6.
The spread of multidrug-resistant strains of Klebsiella pneumoniae in hospitals is of concern to clinical microbiologists, health care professionals, and physicians because of the impact infections caused by these bacteria have in causing morbidity and mortality. Clinical isolates of K.?pneumoniae have been found to show resistance to third-generation cephalosporins as a result of acquiring extended-spectrum β-lactamase-producing genes, such as bla(CTX-M). Since little is known about the mechanisms of antibiotic resistance observed in Kasserine hospital, Tunisia, this study was undertaken to investigate the mechanisms by which clinical isolates of K.?pneumoniae resist β-lactam antibiotics. Twelve strains of K.?pneumoniae were collected from patients admitted to Kasserine hospital; these isolates showed multiresistance phenotypes. Molecular genetics investigations using polymerase chain reaction, S1 digestion, and pulsed-field gel electrophoresisshowed that bla(CTX-M-15) in association with ISEcp1 is responsible for the resistance of these strains to third-generation cephalosporins. It has been determined that bla(CTX-M-15) is chromosomally mediated and plasmid mediated, which alarming need for infection control to prevent the outbreak of such a resistance mechanism.  相似文献   

7.
CTX-M-15 are the most prevalent types of β-lactamases that hydrolyze almost all antibiotics of β-lactam group lead to multiple-antibiotic resistance in bacteria. Three β-lactam inhibitors are available for use in combination with different antibiotics of cephalosporine group against the CTX-M-15-producing strains. Therefore, strategies to identify novel anti β-lactamase agents with specific mechanisms of action are the need of an hour. In this study, we screened three novel non-β-lactam inhibitors against CTX-M-15 by multi-step virtual screening approach. The potential for virtually screened drugs was estimated through in vitro cell assays. Hence, we proposed a study to understand the binding mode of CTX-M-15 with inhibitors using bioinformatics and experimental approach. We calculated the dissociation constants (Kd), association constant (Ka), stoichiometry (n) and binding energies (ΔG) of compounds with the respective targets. Molecular dynamic simulation carried out for 25 ns, revealed that these complexes were found stable throughout the simulation with relative RMSD in acceptable range. Moreover, microbiological and kinetic studies further confirmed high efficacies of these inhibitors by reducing the minimum inhibitory concentration (MIC) and catalysis of antibiotics by β-lactamases in the presence of inhibitors. Therefore, we conclude that these potential inhibitors may be used as a lead molecule for future drug candidates against β-lactamases-producing bacteria.  相似文献   

8.

Introduction

Patients with hematologic malignancies have greater risk-factors for primary bloodstream infections (BSI).

Methods

From 2004–2009, we analyzed bacteremia caused by extended-spectrum beta-lactamase Escherichia coli (ESBL-EC) (n = 100) and we compared with bacteremia caused by cephalosporin-susceptible E. coli (n = 100) in patients with hematologic malignancies.

Objective

To assess the clinical features, risk factors, and outcome of ESBL-EC BSI in patients with hematologic malignancies, and to study the molecular epidemiology of ESBL-EC isolates.

Results

The main diagnosis was acute leukemia in 115 patients (57.5%). Death-related E. coli infection was significantly increased with ESBL-EC (34% vs. control group, 19%; p = 0.03). Treatment for BSI was considered appropriate in 64 patients with ESBL-EC (mean survival, 245±345 days), and in 45 control patients this was 443±613 (p = 0.03). In patients not receiving appropriate antimicrobial treatment, survival was significantly decreased in cases compared with controls (26±122 vs. 276±442; p = 0.001). Fifty six of the ESBL-EC isolates were characterized by molecular analysis: 47 (84%) expressed CTX-M-15, two (3.6%) SHV, and seven (12.5%) did not correspond to either of these two ESBL enzymes. No TLA-1 enzyme was detected.

Conclusions

Patients who had been previously hospitalized and who received cephalosporins during the previous month, have an increased risk of ESBL-EC bacteremia. Mortality was significantly increased in patients with ESBL-EC BSI. A polyclonal trend was detected, which reflects non-cross transmission of multiresistant E.coli isolates.  相似文献   

9.
Zymomonas mobilis, a Gram-negative ethanologenic non-pathogenic bacterium, is reported to exhibit resistance to high concentrations of β-lactam antibiotics. In the present study, Z. mobilis was found to be resistant to I-IV generations of cephalosporins and carbapenems, i.e. narrow, broad and extended spectrum β-lactam antibiotics. We have analysed the genome of Z. mobilis (GenBank accession No.: NC 006526) harbouring multiple genes coding for β-lactamases (BLA), β-lactamase domain containing proteins (BDP) and penicillin binding proteins (PBP). The conserved domain database analysis of BDPs predicted them to be members of metallo β-lactamase superfamily. Further, class C specific multidomain AmpC (β-lactamase C) was found in the three β-lactamases. The β-lactam resistance determinants motifs, HXHXD, KXG, SXXK, SXN, and YXN are present in the BLAs, BDPs and PBPs of Z. mobilis. The predicted theoretical pI and aliphatic index values suggested their stability. One of the PBPs, PBP2, was predicted to share functional association with rod shape determining proteins (GenBank accession Nos. YP_162095 and YP_162091). Homology modelling of three dimensional structures of the β-lactam resistance determinants and further docking studies with penicillin and other β-lactam antibiotics indicated their substrate-specificity. Semi-quantitative PCR analysis indicated that the expression of all BLAs and one BDP are induced by penicillin. Disk diffusion assay, SDS-PAGE and zymogram analysis confirms the substrate specificity of the β-lactam resistance determinants. This study gives a broader picture of the β-lactam resistance determinants of a non-pathogenic ethanologenic Z. mobilis bacterium that could have implications in laboratories since it is routinely used in many research laboratories in the world for ethanol, fructooligosaccharides, levan production and has also been reported to be present in wine and beer as a spoilage organism.  相似文献   

10.
3-(4-Hydroxypiperidine-1-yl) phthalic acid 1 shows potent inhibitory activity against metallo-β-lactamase, which is known to inactivate β-lactam antibiotics such as carbapenems. Here, the structure of co-crystals of the metallo-β-lactamase IMP-1 and 1 was first analyzed by X-ray crystallography, and then used for structure-based drug design. Four novel compounds bearing substituents at the 6-position were synthesized to produce 3,6-disubstituted phthalic acid derivatives, and their IMP-1 inhibitory activity and synergistic effect with the carbapenem biapenem (BIPM) were evaluated. 3,6-Disubstituted phthalic acid derivatives showed potent IMP-1 inhibitory activity. In particular, compound 13 showed 10-fold higher IMP-1 inhibitory activity as compared with the parent derivative 1.  相似文献   

11.
Seventy strains of Staphylococcus spp. and Escherichia coli (35 each) were isolated from various foodstuffs and identified on the basis of cultural, morphological and biochemical characteristics and were further tested for their antibiotic susceptibility with commonly used antibiotics/drugs. 69.2% of the strains of Staphylococci were resistant to co-trimazine and 34.6% were resistant to penicillin-G. 19.2% of the staphylococcal isolates exhibited resistance to cloxacillin, nalidixic acid, methicillin and tetracycline whereas 15.3% of the staphylococcal isolates were resistant to amoxycillin and nitrofurantoin. The isolated E. coli strains exhibited sharp peaks of resistance to antimicrobial agents such as tetracycline (72%), doxycycline (60%) and nalidixic acid (48%). Forty-four percent of the E. coli strains were resistant to nitrofurantoin and penicillin-G respectively. Among the 13 antibiotics/drugs tested for resistance, six different resistance patterns were observed in staphylococcal isolates and seven different resistance patterns were observed in the E. coli isolates from various foodstuffs. Bacterial strains exhibiting MIC values 100 g/ml for ampicillin and cloxacillin were screened for -lactamase activity and out of 10 staphylococcal isolates, seven were found to be positive for -lactamase, whereas out of 13 E. coli isolates tested for -lactamase production, only three were found to be positive.  相似文献   

12.

Background

The prevalence of extended-spectrum β-lactamase-producing Escherichia coli (ESBL-EC) has increased recently. The aim of this study was to further characterise and to assess the occurrence of ESBL-EC in Riyadh, to use pulsed field gel electrophoresis (PFGE) typing to investigate the epidemiology of ESBL-EC and to determine the prevalence of ST131 in ESBL-EC.

Methods

A total of 152 E. coli isolates were collected at a tertiary hospital in Riyadh from September 2010 to June 2011. Genotypic and phenotypic methods were used to characterise ESBLs. PFGE was used to determine genetic relatedness. Detection of ST131 and CTX-M-like ESBLs was performed using real-time PCR.

Results

Of 152 strains, 31 were positive for ESBLs by phenotypic methods. The bla CTX-M-15 gene was highly prevalent (30/31 strains, 96.77%) among the 31 ESBL-positive E. coli strains. The bla CTX-M-27 gene was detected in one strain. Twenty (64.5%) out of 31 of ESBL-EC were ST131. PFGE revealed 29 different pulsotypes.

Conclusions

Our study documented the high prevalence of ESBLs in E. coli isolates, with CTX-M-15 as the predominant ESBL gene. ST131 clone producing CTX-M-15 has a major presence in our hospital. The high prevalence of CTX-M producers was not due to the spread of a single clone. To the best of our knowledge, this study represents the first report of CTX-M-15 and CTX-M-27 β-lactamases and the detection of the ST131 clone in Saudi E. coli isolates.  相似文献   

13.
Thirty-three cefazolin-resistant extraintestinal pathogenic Escherichia coli strains from companion animals were screened for bla(CMY-1) , bla(CMY-2) , bla(SHV) , bla(TEM) , and bla(CTX-M) genes. Extended-spectrum β-lactamase-producing strains were further characterized by O serotyping and multilocus sequence typing. It was found that 20 and 17 isolates harbored TEM-1 and CMY-2 β-lactamases, respectively, and 13 isolates harbored both β-lactamases. One isolate harbored DHA-1 β-lactamase. Eleven isolates were found to possess CTX-M β-lactamases (CTX-M-27 [n= 6], CTX-M-14 [n= 3], CTX-M-15 [n= 1], and CTX-M-55 [n= 1]). Of 11 CTX-M-positive strains, four strains were O25b-ST131 clones harboring CTX-M-27, and the remaining seven strains belonged to O6-ST127, ONT-ST354, O159-ST539, O1-ST648, O8-ST1642, O25b-ST2042, and ONT-ST2178.  相似文献   

14.
A hallmark of the Gram-positive bacteria, such as the soil-dwelling bacterium Bacillus subtilis, is their cell wall. Here, we report that d -leucine and flavomycin, biofilm inhibitors targeting the cell wall, activate the β-lactamase PenP. This β-lactamase contributes to ampicillin resistance in B. subtilis under all conditions tested. In contrast, both Spo0A, a master regulator of nutritional stress, and the general cell wall stress response, differentially contribute to β-lactam resistance under different conditions. To test whether β-lactam resistance and β-lactamase genes are widespread in other Bacilli, we isolated Bacillus species from undisturbed soils, and found that their genomes can encode up to five β-lactamases with differentiated activity spectra. Surprisingly, the activity of environmental β-lactamases and PenP, as well as the general stress response, resulted in a similarly reduced lag phase of the culture in the presence of β-lactam antibiotics, with little or no impact on the logarithmic growth rate. The length of the lag phase may determine the outcome of the competition between β-lactams and β-lactamases producers. Overall, our work suggests that antibiotic resistance genes in B. subtilis and related species are ancient and widespread, and could be selected by interspecies competition in undisturbed soils.  相似文献   

15.
An endo β-l,3-glucanase was purified in crystalline form from a culture filtrate of Rhizopus chinensis R-69. Molecular weight of the enzyme was determined to be 23,000 by molecular sieve chromatography and the mode of action of the enzyme was suggested to be a less random type of β-1,3-glucanase. Km and Vmax of the enzyme for laminarin are 3.4 g/liter and 1541. U., respectively. The enzyme does not decompose the cell walls of living yeast; it decomposes, however, the preparation of yeast glucan.  相似文献   

16.
1. A procedure was devised which is suitable for the isolation of beta-lactamase I and beta-lactamase II from Bacillus cereus 569/H/9 on a large scale. After adsorption on to Celite both enzymes were eluted in good yield and separated by chromatography on Sephadex CM-50. 2. beta-Lactamase I was separated into three main components by isoelectric focusing and into two components by chromatography. 3. The Zn(2+)-requiring beta-lactamase II obtained by this procedure had a lower molecular weight (22000) than beta-lactamase I (28000) and also differed from the latter in containing one cysteine residue. 4. The beta-lactamase II contained no carbohydrate, but showed the thermostability of the enzyme isolated earlier as a protein-carbohydrate complex. 5. Amino acid analyses and tryptic-digest ;maps' indicate that some degree of homology between beta-lactamase I and beta-lactamase II is possible, but that beta-lactamase I is not composed of the entire sequence of beta-lactamase II together with an additional peptide fragment. 6. A 6-methylpenicillin and a 7-methylcephalosporin showed much lower affinities for both enzymes than did penicillins and cephalosporins themselves.  相似文献   

17.
Gaucher disease is caused by mutations in the enzyme acid β-glucosidase (GCase), the most common of which is the substitution of serine for asparagine at residue 370 (N370S). To characterize the nature of this mutation, we expressed human N370S GCase in insect cells and compared the x-ray structure and biochemical properties of the purified protein with that of the recombinant human GCase (imiglucerase, Cerezyme®). The x-ray structure of N370S mutant acid β-glucosidase at acidic and neutral pH values indicates that the overall folding of the N370S mutant is identical to that of recombinant GCase. Subtle differences were observed in the conformation of a flexible loop at the active site and in the hydrogen bonding ability of aromatic residues on this loop with residue 370 and the catalytic residues Glu-235 and Glu-340. Circular dichroism spectroscopy showed a pH-dependent change in the environment of tryptophan residues in imiglucerase that is absent in N370S GCase. The mutant protein was catalytically deficient with reduced Vmax and increased Km values for the substrate p-nitrophenyl-β-d-glucopyranoside and reduced sensitivity to competitive inhibitors. N370S GCase was more stable to thermal denaturation and had an increased lysosomal half-life compared with imiglucerase following uptake into macrophages. The competitive inhibitor N-(n-nonyl)deoxynojirimycin increased lysosomal levels of both N370S and imiglucerase 2–3-fold by reducing lysosomal degradation. Overall, these data indicate that the N370S mutation results in a normally folded but less flexible protein with reduced catalytic activity compared with imiglucerase.  相似文献   

18.
The metallo-β-lactamase (MBL) GOB-1 was expressed via a T7 expression system in Escherichia coli BL21(DE3). The MBL was purified to homogeneity and shown to exhibit a broad substrate profile, hydrolyzing all the tested β-lactam compounds efficiently. The GOB enzymes are unique among MBLs due to the presence of a glutamine residue at position 116, a zinc-binding residue in all known class B1 and B3 MBL structures. Here we produced and studied the Q116A, Q116N and Q116H mutants. The substrate profiles were similar for each mutant, but with significantly reduced activity compared with that of the wild-type. In contrast to the Q116H enzyme, which bound two zinc ions just like the wild-type, only one zinc ion is present in Q116A and Q116N. These results suggest that the Q116 residue plays a role in the binding of the zinc ion in the QHH site.  相似文献   

19.
20.
Crystalline β-galactosidase was prepared from the cell extract of Saccharomyces fragilis KY5463, by procedures including protamine sulfate treatment and DEAE-cellulose, hydroxylapatite and DEAE-Sephadex column chromatographies. Crystals were formed when solid ammonium sulfate was added to solutions of the purified enzyme. This procedure resulted in a 55-fold purification with an over-all yield of l5.4%. The crystalline enzyme appeared to be homogeneous on ultracentrifugation and electrophoresis.

The sedimentation coefficient, , was determined to be 10.0 S. The molecular weight was estimated to be approximately 203,000 by the sedimentation equilibrium method of Yphantis. Electrolysis with carrier ampholytes revealed that this enzyme has an isoelectric point at around pH 4.4.

The enzyme was activated by K+ in addition to bivalent cations, such as Mn2+, Mg2? and Co2+. The Km values for o-NPG and lactose were 4.0×10?3m and 21.0×10?3m, respectively. The enzyme is sulfhydryl dependent and was completely inactivated by mercuric ions or p-chloromercuribenzoate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号