首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
2.
3.
A class of nuclear genes termed "restorers of fertility" (Rf) acts to suppress the expression of abnormal mitochondrial genes associated with cytoplasmic male sterility (CMS). In petunia, both the nuclear Rf gene and mitochondrial CMS-associated gene have previously been identified. The CMS-associated gene is an aberrant chimera in which portions of several mitochondrially encoded genes are fused to an unknown reading frame. The dominant Rf allele reduces the CMS-associated protein to nearly undetectable levels and alters the RNA population derived from the CMS locus, but its mechanism of action has not been determined. The petuniaRf gene is a member of the pentatricopeptide repeat gene family (PPR), an unusually large gene family in Arabidopsis (approximately 450 genes) compared with yeast (five genes) and mammalian genomes (six genes). The PPR gene family has been implicated in the control of organelle gene expression. To gain insight into the mode of action of PPR genes, we generated transgenic petunia plants expressing a functional tagged version of Rf. Analysis of the restorer protein revealed that it is part of a soluble mitochondrial inner-membrane-associated, RNase-sensitive high-molecular-weight protein complex. The complex is associated with mRNA derived from the CMS locus.  相似文献   

4.
5.
6.
7.
8.
Cytoplasmic male sterility (CMS) in plants is a maternally inherited inability to produce functional pollen, and is often associated with mitochondrial DNA abnormalities. Specific nuclear loci that suppress CMS, termed as restorers of fertility (Rf), have been identified. Previously, we identified an Rf for the CMS Kosena radish and used genetic analysis to identify the locus and create a contig covering the critical interval. To identify the Rf gene, we introduced each of the lambda and cosmid clones into the CMS Brassica napus and scored for fertility restoration. Fertility restoration was observed when one of the lambda clones was introduced into the CMS B. napus. Furthermore, introduction of a 4.7-kb BamHI/HpaI fragment of the lambda clone is enough to restore male fertility. A cDNA strand isolated from a positive fragment contained a predicted protein (ORF687) of 687 amino acids comprising 16 repeats of the 35-amino acid pentatricopeptide repeat (PPR) motif. Kosena CMS radish plants were found to express an allele of this gene possessing four substituted amino acids in the second and third repeats of the PPR suggesting that the domains formed by these repeats in ORF687 are essential for fertility restoration. Protein levels of the Kosena CMS-associated mitochondrial protein ORF125 were considerably reduced in plants in which fertility was restored, although mRNA expression was normal. Regarding the possible role for PPR-containing proteins in the regulation of the mitochondrial gene, we propose that ORF687 functions either directly or indirectly to lower the levels of ORF125, resulting in the restoration of fertility in CMS plants.  相似文献   

9.
Pentatricopeptide repeat (PPR) proteins are particularly numerous in plant mitochondria and chloroplasts, where they are involved in different steps of RNA metabolism, probably due to the repeated 35 amino acid PPR motifs that are thought to mediate interactions with RNA. In non-photosynthetic eukaryotes only a handful of PPR proteins exist, for example the human LRPPRC, which is involved in a mitochondrial disease. We have conducted a systematic study of the PPR proteins in the fission yeast Schizosaccharomyces pombe and identified, in addition to the mitochondrial RNA polymerase, eight proteins all of which localized to the mitochondria, and showed some association with the membrane. The absence of all but one of these PPR proteins leads to a respiratory deficiency and modified patterns of steady state mt-mRNAs or newly synthesized mitochondrial proteins. Some cause a general defect, whereas others affect specific mitochondrial RNAs, either coding or non-coding: cox1, cox2, cox3, 15S rRNA, atp9 or atp6, sometimes leading to secondary defects. Interestingly, the two possible homologs of LRPPRC, ppr4 and ppr5, play opposite roles in the expression of the cox1 mt-mRNA, ppr4 being the first mRNA-specific translational activator identified in S. pombe, whereas ppr5 appears to be a general negative regulator of mitochondrial translation.  相似文献   

10.
Pentatricopeptide repeat proteins and their emerging roles in plants.   总被引:6,自引:0,他引:6  
Several protein families with tandem repeat motifs play a very important role in plant development and defense. The pentatricopeptide repeat (PPR) protein family, one of the largest families, is the most perplexing one in plants. PPR proteins have been implicated in many crucial functions broadly involving organelle biogenesis and plant development. PPR motifs are degenerate motifs, each with 35-amino-acid sequences and are present in tandem arrays of 2-27 repeats per protein. Although PPR proteins are found in other eukaryotes, their large number is probably required in plants to meet the specific needs of organellar gene expression. The repeats of PPR proteins form a superhelical structure to bind a specific ligand, probably a single-stranded RNA molecule, and modulate its expression. Functional studies on different PPR proteins have revealed their role in organellar RNA processing, fertility restoration in CMS plants, embryogenesis, and plant development. Functional genomic techniques can help identify the diverse roles of the PPR family of proteins in nucleus-organelle interaction and in plant development.  相似文献   

11.
12.
13.
14.
15.
16.
PPR (Pentatricopeptide repeat) proteins are mainly involved in RNA metabolism. In Arabidopsis, the PPR family is composed of more than 450 members; however, only few of them were functionally characterized. In a previous report,1 we identified a novel mitochondrial PPR RNA editing factor, named SLO2, which is responsible for 7 editing events in Arabidopsis. Loss-of-function mutation in SLO2 results in plant growth retardation, and delayed development, and leads to the dysfunction of mitochondrial complex I, III and IV. slo2 is the first example of a single gene mutation affecting 3 complexes of the mitochondrial electron transport chain. This Short Communication discusses the conservation of upstream regions of editing sites affected by SLO2 and illustrates the effect of mutation of SLO2 on activation of the alternative pathway. We also reflect upon the implications and perspectives of these findings.  相似文献   

17.
The pentatricopeptide repeat (PPR) is a helical repeat motif found in an exceptionally large family of RNA-binding proteins that functions in mitochondrial and chloroplast gene expression. PPR proteins harbor between 2 and 30 repeats and typically bind single-stranded RNA in a sequence-specific fashion. However, the basis for sequence-specific RNA recognition by PPR tracts has been unknown. We used computational methods to infer a code for nucleotide recognition involving two amino acids in each repeat, and we validated this model by recoding a PPR protein to bind novel RNA sequences in vitro. Our results show that PPR tracts bind RNA via a modular recognition mechanism that differs from previously described RNA-protein recognition modes and that underpins a natural library of specific protein/RNA partners of unprecedented size and diversity. These findings provide a significant step toward the prediction of native binding sites of the enormous number of PPR proteins found in nature. Furthermore, the extraordinary evolutionary plasticity of the PPR family suggests that the PPR scaffold will be particularly amenable to redesign for new sequence specificities and functions.  相似文献   

18.
19.
Mitochondrial function depends on the coordinate action of nuclear and mitochondrial genomes. The genetic dissection of these interactions presents special challenges in obligate aerobes, because the viability of these organisms depends on mitochondrial respiration. The plant trait cytoplasmic male sterility (CMS) is determined by the mitochondrial genome and is associated with a pollen sterility phenotype that can be suppressed or counteracted by nuclear genes known as restorer-of-fertility genes. Here, I review the nature and the origin of the genes that determine CMS, together with recent investigations that have exploited CMS to provide new insights into plant mitochondrial-nuclear communication. These studies have implicated mitochondrial signaling pathways, including those involved in regulating cell death and nuclear gene expression, in the elaboration of CMS. The molecular cloning of nuclear genes that restore fertility (i.e. restorer-of-fertility genes) has identified genes encoding pentatricopeptide-repeat proteins as key regulators of plant mitochondrial gene expression.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号