首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 102 毫秒
1.
Inhibition of NK cell cytotoxicity by killer cell Ig-like receptors (KIR) depends on phosphorylation of cytoplasmic tyrosines in KIR, which recruit tyrosine phosphatase Src homology protein tyrosine phosphatase 1. It is not clear how KIR, whose function lies downstream of a tyrosine kinase, succeeds in blocking proximal NK cell activation signals upon binding HLA class I on target cells. Here we show that mixing NK cells with insect cells expressing HLA-C was sufficient to induce clustering of KIR, and phosphorylation of KIR and SHP-1. Transient phosphorylation of KIR was detected in the presence of pervanadate, an inhibitor of protein tyrosine phosphatases, at suboptimal concentration. Phosphorylation of KIR was specifically induced by ligand binding because it was detected only when HLA-C was loaded with a peptide that permits KIR binding. KIR phosphorylation was not dependent on ICAM-1-mediated adhesion and was not blocked by inhibition of actin polymerization, but required Zn(2+). Fluorescence resonance energy transfer between HLA-C molecules revealed close molecular interactions induced by KIR binding. These results demonstrate tight clustering of KIR and rapid KIR phosphorylation induced simply by binding to HLA-C. The unique property of KIR to become phosphorylated in the absence of adhesion and of actin cytoskeleton rearrangement explains how KIR can efficiently block early activation signals during NK-target cell contacts.  相似文献   

2.
Killer cell immunoglobulin-like receptors (KIR) inhibit the cytotoxic activity of natural killer (NK) cells by recruitment of the tyrosine phosphatase SHP-1 to immunoreceptor tyrosine-based inhibition motif (ITIM) sequences in the KIR cytoplasmic tail [1]. The precise steps in the NK activation pathway that are inhibited by KIR are yet to be defined. Here, we have studied whether the initial step of adhesion molecule LFA-1-dependent adhesion to target cells was altered by the inhibitory signal. Using stable expression of an HLA-C-specific KIR in the NK cell line YTS [2] and a two-color flow cytometry assay for conjugate formation, we show that adhesion to a target cell expressing cognate HLA-C was disrupted by KIR engagement. Conjugate formation was abruptly interrupted by KIR within less than 5 minutes. Inhibition of adhesion to target cells was mediated by a chimeric KIR molecule carrying catalytically active SHP-1 in place of its cytoplasmic tail. These results suggest that other ITIM-bearing receptors, many of which have no known function, may regulate adhesion in a wide variety of cell types.  相似文献   

3.
Natural killer (NK) cell activation receptors accumulate by an actin-dependent process at cytotoxic immune synapses where they provide synergistic signals that trigger NK cell effector functions. In contrast, NK cell inhibitory receptors, including members of the MHC class I-specific killer cell Ig-like receptor (KIR) family, accumulate at inhibitory immune synapses, block actin dynamics, and prevent actin-dependent phosphorylation of activation receptors. Therefore, one would predict inhibition of actin-dependent accumulation of activation receptors when inhibitory receptors are engaged. By confocal imaging of primary human NK cells in contact with target cells expressing physiological ligands of NK cell receptors, we show here that this prediction is incorrect. Target cells included a human cell line and transfected Drosophila insect cells that expressed ligands of NK cell activation receptors in combination with an MHC class I ligand of inhibitory KIR. The two NK cell activation receptors CD2 and 2B4 accumulated and co-localized with KIR at inhibitory immune synapses. In fact, KIR promoted CD2 and 2B4 clustering, as CD2 and 2B4 accumulated more efficiently at inhibitory synapses. In contrast, accumulation of KIR and of activation receptors at inhibitory synapses correlated with reduced density of the integrin LFA-1. These results imply that inhibitory KIR does not prevent CD2 and 2B4 signaling by blocking their accumulation at NK cell immune synapses, but by blocking their ability to signal within inhibitory synapses.  相似文献   

4.
Functional polymorphism of the KIR3DL1/S1 receptor on human NK cells   总被引:6,自引:0,他引:6  
NK cells express both inhibitory and activatory receptors that allow them to recognize target cells through HLA class I Ag expression. KIR3DL1 is a receptor that recognizes the HLA-Bw4 public epitope of HLA-B alleles. We demonstrate that polymorphism within the KIR3DL1 receptor has functional consequences in terms of NK cell recognition of target. Inhibitory alleles of KIR3DL1 differ in their ability to recognize HLA-Bw4 ligand, and a consistent hierarchy of ligand reactivity can be defined. KIR3DS1, which segregates as an allele of KIR3DL1, has a short cytoplasmic tail characteristic of activatory receptors. Because it is very similar to KIR3DL1 in the extracellular domains, it has been assumed that KIR3DS1 will recognize a HLA-Bw4 ligand. In this study, we demonstrate that KIR3DS1 is expressed as a protein at the cell surface of NK cells, where it is recognized by the Z27 Ab. Using this Ab, we found that KIR3DS1 is expressed on a higher percentage of NK cells in KIR3DS1 homozygous compared with heterozygous donors. In contrast to the inhibitory KIR3DL1 allotypes, KIR3DS1 did not recognize HLA-Bw4 on EBV-transformed cell lines.  相似文献   

5.
NK cells are cytotoxic to virus-infected and tumor cells that have lost surface expression of class I MHC proteins. Target cell expression of class I MHC proteins inhibits NK cytotoxicity through binding to inhibitory NK receptors. In contrast, a similar family of activating NK receptors, characterized by the presence of a charged residue in their transmembrane portion and a truncated cytoplasmic tail, augment lysis by NK cells when ligated by an appropriate class I MHC protein. However, the class I MHC specificity of many of these activating NK receptors is still unknown. Here, we show enhanced lysis of HLA-Cw4 but not HLA-Cw6-expressing cells, by a subset of NK clones. This subset may express killer cell Ig-like receptor two-domain short tail number 4 (KIR2DS4), as suggested by staining with various mAb. It is still possible, however, that these clones may express receptors other than KIR2DS4 that might recognize HLA-Cw4. Binding of KIR2DS4-Ig fusion protein to cells expressing HLA-Cw4 but not to those expressing HLA-Cw6 was also observed. The binding of KIR2DS4-Ig to HLA-Cw4 is weaker than that of killer cell Ig-like receptor two-domain long tail number 1 (KIR2DL1)-Ig fusion protein; however, such weak recognition is capable of inhibiting lysis by an NK transfectant expressing a chimeric molecule of KIR2DS4 fused to the transmembrane and cytoplasmic portion of KIR2DL1. Residue alpha14 is shown to be important in the KIR2DS4 binding to HLA-Cw4. Implications of the role of the activating NK receptors in immunosurveillance are discussed.  相似文献   

6.
KIR3DL1 and KIR3DL2 are NK cell receptors for polymorphic HLA-B and -A determinants. The proportion of NK cells that bind anti-KIR3DL1-specific Ab DX9 and their level of binding vary between individuals. To determine whether these differences are due to KIR polymorphism, we assessed KIR3D gene diversity in unrelated individuals and families. Both KIR3DL1 and KIR3DL2 are highly polymorphic genes, with KIR3DS1 segregating like an allele of KIR3DL1. A KIR haplotype lacking KIR3DL1 and KIR3DS1 was defined. The two KIR3DL1 alleles of a heterozygous donor were expressed by different, but overlapping, subsets of NK cell clones. Sequence variation in KIR3DL1 and KIR3DL2 appear distinct; recombination is more evident in KIR3DL1, and point mutation is more evident in KIR3DL2. The KIR3DL1 genotype correlates well with levels of DX9 binding by NK cells, but not with the frequency of DX9-binding cells. Different KIR3DL1 alleles determine high, low, and no binding of DX9 Ab. Consequently, heterozygotes for high and low binding KIR3DL1 alleles have distinct subpopulations of NK cells that bind DX9 at high and low levels, giving characteristic bimodal distributions in flow cytometry. The Z27 Ab gave binding patterns similar to those of DX9. Four KIR3DL1 alleles producing high DX9 binding phenotypes were distinguished from four alleles producing low or no binding phenotypes by substitution at one or more of four positions in the encoded protein: 182 and 283 in the extracellular Ig-like domains, 320 in the transmembrane region, and 373 in the cytoplasmic tail.  相似文献   

7.
An adequate immune response is the result of the fine balance between activation and inhibitory signals. The exact means by which inhibitory signals obviate activation signals in immune cells are not totally elucidated. Human CD94/NKG2A is an ITIM-containing inhibitory receptor expressed by NK cells and some CD8+ T cells that recognize HLA-E. We show that the engagement of this receptor prevents NK cell activation by disruption of the actin network and exclusion of lipid rafts at the point of contact with its ligand (inhibitory NK cell immunological synapse, iNKIS). CD94/NKG2A engagement leads to recruitment and activation of src homology 2 domain-bearing tyrosine phosphatase 1. This likely explains the observed dephosphorylation of guanine nucleotide exchange factor and regulator of actin, Vav1, as well as ezrin-radixin-moesin proteins that connect actin filaments to membrane structures. In contrast, NK cell activation by NKG2D induced Vav1 and ezrin-radixin-moesin phosphorylation. Thus, CD94/NKG2A prevents actin-dependent recruitment of raft-associated activation receptors complexes to the activating synapse. This was further substantiated by showing that inhibition of actin polymerization abolished lipid rafts exclusion at the iNKIS, whereas cholesterol depletion had no effect on actin disruption at the iNKIS. These data indicate that the lipid rafts exclusion at the iNKIS is an active process which requires an intact cytoskeleton to maintain lipid rafts outside the inhibitory synapse. The net effect is to maintain an inhibitory state in the proximity of the iNKIS, while allowing the formation of activation synapse at distal points within the same NK cell.  相似文献   

8.
9.
Natural Killer (NK) cell activation is dynamically regulated by numerous activating and inhibitory surface receptors that accumulate at the immune synapse. Quantitative analysis of receptor dynamics has been limited by methodologies that rely on indirect measurements such as fluorescence recovery after photobleaching. Here, we report an apparently novel approach to study how proteins traffic to and from the immune synapse using NK cell receptors tagged with the photoswitchable fluorescent protein tdEosFP, which can be irreversibly photoswitched from a green to red fluorescent state by ultraviolet light. Thus, after a localized switching event, the movement of the photoswitched molecules can be temporally and spatially resolved by monitoring fluorescence in two regions of interest. By comparing images with mathematical models, we evaluated the diffusion coefficient of the receptor KIR2DL1 (0.23 ± 0.06 μm2 s−1) and assessed how synapse formation affects receptor dynamics. Our data conclude that the inhibitory NK cell receptor KIR2DL1 is continually trafficked into the synapse, and remains surprisingly stable there. Unexpectedly, however, in NK cells forming synapses with multiple target cells simultaneously, KIR2DL1 at one synapse can relocate to another synapse. Thus, our results reveal a previously undetected intersynaptic exchange of protein.  相似文献   

10.
Natural Killer (NK) cell activation is dynamically regulated by numerous activating and inhibitory surface receptors that accumulate at the immune synapse. Quantitative analysis of receptor dynamics has been limited by methodologies that rely on indirect measurements such as fluorescence recovery after photobleaching. Here, we report an apparently novel approach to study how proteins traffic to and from the immune synapse using NK cell receptors tagged with the photoswitchable fluorescent protein tdEosFP, which can be irreversibly photoswitched from a green to red fluorescent state by ultraviolet light. Thus, after a localized switching event, the movement of the photoswitched molecules can be temporally and spatially resolved by monitoring fluorescence in two regions of interest. By comparing images with mathematical models, we evaluated the diffusion coefficient of the receptor KIR2DL1 (0.23 ± 0.06 μm2 s−1) and assessed how synapse formation affects receptor dynamics. Our data conclude that the inhibitory NK cell receptor KIR2DL1 is continually trafficked into the synapse, and remains surprisingly stable there. Unexpectedly, however, in NK cells forming synapses with multiple target cells simultaneously, KIR2DL1 at one synapse can relocate to another synapse. Thus, our results reveal a previously undetected intersynaptic exchange of protein.  相似文献   

11.
T-cell activation by antigen-presenting cells is accompanied by actin polymerization, T-cell receptor (TCR) capping, and formation of the immunological synapse. However, whether actin-dependent events are required for T-cell function is poorly understood. Herein, we provide evidence for an unexpected negative regulatory role of the actin cytoskeleton on TCR-induced cytokine production. Disruption of actin polymerization resulted in prolonged intracellular calcium elevation in response to anti-CD3, thapsigargin, or phorbol myristate acetate plus ionomycin, leading to persistent NFAT (nuclear factor of activated T cells) nuclear duration. These events were dominant, as the net effect of actin blockade was augmented interleukin 2 promoter activity. Increased surface expression of the plasma membrane Ca(2+) ATPase was observed upon stimulation, which was inhibited by cytochalasin D, suggesting that actin polymerization contributes to calcium export. Our results imply a novel role for the actin cytoskeleton in modulating the duration of Ca(2+)-NFAT signaling and indicate that actin dynamics regulate features of T-cell activation downstream of receptor clustering.  相似文献   

12.
Interaction of NK cells with target cells leads to formation of an immunological synapse (IS) at the contact site. NK cells form two distinctly different IS, the inhibitory NK cell IS (NKIS) and the cytolytic NKIS. Cognate ligand binding is sufficient to induce clustering of inhibitory killer cell Ig-like receptors (KIR) and phosphorylation of both the receptor and the phosphatase Src homology domain 2-containing protein tyrosine phosphatase 1 (SHP-1). Recruitment and activation of SHP-1 by a signaling competent inhibitory receptor are essential early events for NK cell inhibition. We have in the present study used three-dimensional immunofluorescence microscopy to analyze distribution of inhibitory KIR, SHP-1, LFA-1, and lipid rafts within the NKIS during cytolytic and noncytolytic interactions. NK clones retrovirally transduced with the inhibitory KIR2DL3 gene fused to GFP demonstrate colocalization of KIR2DL3 with SHP-1 in the center of early inhibitory NKIS. Ligand binding translocates the receptor to the center of the IS where activation signals are accumulating and provides a docking site for SHP-1. SHP-1 and rafts cluster in the center of early inhibitory NKIS and late cytolytic NKIS, and whereas rafts continue to increase in size in cytolytic conjugates, they are rapidly dissolved in inhibitory conjugates. Furthermore, rafts are essential only for cytolytic, not for inhibitory, outcome. These results indicate that the outcome of NK cell-target cell interactions is dictated by early quantitative differences in cumulative activating and inhibitory signals.  相似文献   

13.
The inhibitory killer cell Ig-like receptors (KIR) negatively regulate NK cell cytotoxicity by activating the Src homology 2 domain-containing protein tyrosine phosphatases 1 and 2 following ligation with MHC class I molecules expressed on normal cells. This requires tyrosine phosphorylation of KIR on ITIMs in the cytoplasmic domain. Surprisingly, we have found that KIR3DL1 is strongly and constitutively phosphorylated on serine and weakly on threonine residues. In this study, we have mapped constitutive phosphorylation sites for casein kinases, protein kinase C, and an unidentified kinase on the KIR cytoplasmic domain. Three of these phosphorylation sites are highly conserved in human inhibitory KIR. Functional studies of the wild-type receptor and serine/threonine mutants indicated that phosphorylation of Ser(394) by protein kinase C slightly suppresses KIR3DL1 inhibitory function, and reduces receptor internalization and turnover. Our results provide evidence that serine/threonine phosphorylation is an important regulatory mechanism of KIR function.  相似文献   

14.
The cytolytic activity of NK cells is tightly regulated by inhibitory receptors specific for MHC class I Ags. We have investigated the composition of signal transduction molecules in the supramolecular activation clusters in the MHC class I-regulated cytolytic and noncytolytic NK cell immune synapses. KIR2DL3-positive NK clones that are specifically inhibited in their cytotoxicity by HLA-Cw*0304 and polyclonal human NK cells were used for conjugate formation with target cells that are either protected or are susceptible to NK cell-mediated cytotoxicity. Polarization of talin, microtubule-organizing center, and lysosomes occurred only during cytolytic interactions. The NK immune synapses were analyzed by three-dimensional immunofluorescence microscopy, which showed two distinctly different synaptic organizations in NK cells during cytolytic and noncytolytic interactions. The center of a cytolytic synapse with MHC class I-deficient target is comprised of a complex of signaling molecules including Src homology (SH)2-containing protein tyrosine phosphatase-1 (SHP-1). Closely related molecules with overlapping functions, such as the Syk kinases, SYK, and ZAP-70, and adaptor molecules, SH2 domain-containing leukocyte protein of 76 kDa and B cell linker protein, are expressed in activated NK cells and are all recruited to the center of the cytolytic synapse. In contrast, the noncytolytic synapse contains SHP-1, but is lacking other components of the central supramolecular activation cluster. These findings indicate a functional role for SHP-1 in both the cytolytic and noncytolytic interactions. We also demonstrate, in three-cell conjugates, that a single NK cell forms a cytolytic synapse with a susceptible target cell in the presence of both susceptible and nonsusceptible target cells.  相似文献   

15.
To elucidate the role of the cytoskeleton regulating avidity or affinity changes in the leukocyte adhesion receptor lymphocyte function-associated antigen-1 (LFA-1) (alpha(L)beta(2)), we generated mutant cytoplasmic LFA-1 receptors and expressed these into the erythroleukemic cell line K562. We determined whether intercellular adhesion molecule-1 (ICAM-1)-mediated adhesion of LFA-1, lacking parts of its cytoplasmic tails, is regulated through receptor diffusion/clustering and/or by altered ligand binding affinity. All cytoplasmic deletion mutants that lack the complete beta(2) cytoplasmic tail and/or the conserved KVGFFKR sequence in the alpha(L) cytoplasmic tail were constitutively active and expressed high levels of the activation epitopes NKI-L16 and M24. Surprisingly, whereas these mutants showed a clustered cell surface distribution of LFA-1, the ligand-binding affinity as measured by titration of soluble ligand ICAM-1 remained unaltered. The notion that redistribution of LFA-1 does not alter ligand-binding affinity is further supported by the finding that disruption of the cytoskeleton by cytochalasin D did not alter the binding affinity nor adhesion to ICAM-1 of these mutants. Most cytoplasmic deletion mutants that spontaneously bound ICAM-1 were not capable to spread on ICAM-1, demonstrating that on these mutants LFA-1 is not coupled to the actin cytoskeleton. From these data we conclude that LFA-1-mediated cell adhesion to ICAM-1 is predominantly regulated by receptor clustering and that affinity alterations do not necessarily coincide with strong ICAM-1 binding.  相似文献   

16.
Human killer immunoglobulin-like receptors (KIR) are expressed on natural killer (NK) cells and are involved in their immunoreactivity. While KIR with a long cytoplasmic tail deliver an inhibitory signal when bound to their respective major histocompatibility complex class I ligands, KIR with a short cytoplasmic tail can activate NK responses. The expansion of the KIR gene family originally appeared to be a phenomenon restricted to primates (human, apes, and monkeys) in comparison to rodents, which via convergent evolution have numerous C-type lectin-like Ly49 molecules that function analogously. Further studies have shown that multiple KIR are also present in cow and horse. In this study, we have identified by comparative genomics the first and possibly only KIR gene, named KIR2DL1, in the domesticated pig (Sus scrofa) allowing further evolutionary comparisons to be made. It encodes a protein with two extracellular immunoglobulin domains (D0 + D2), and a long cytoplasmic tail containing two inhibitory motifs. We have mapped the pig KIR2DL1 gene to chromosome 6q. Flanked by LILRa, LILRb, and LILRc, members of the leukocyte immunoglobulin-like receptor (LILR) family, on the centromeric end, and FCAR, NCR1, NALP7, NALP2, and GP6 on the telomeric end, pig demonstrates conservation of synteny with the human leukocyte receptor complex (LRC). Both the porcine KIR and LILR genes have diverged sufficiently to no longer be clearly orthologous with known human LRC family members.  相似文献   

17.
18.
Here, we present data suggesting a novel mechanism for regulation of natural killer (NK) cell cytotoxicity through inhibitory receptors. Interaction of activation receptors with their ligands on target cells induces cytotoxicity by NK cells. This activation is under negative control by inhibitory receptors that recruit tyrosine phosphatase SHP-1 upon binding major histocompatibility class I on target cells. How SHP-1 blocks the activation pathway is not known. To identify SHP-1 substrates, an HLA-C-specific inhibitory receptor fused to a substrate-trapping mutant of SHP-1 was expressed in NK cells. Phosphorylated Vav1, a regulator of actin cytoskeleton, was the only protein detectably associated with the catalytic site of SHP-1 during NK cell contact with target cells expressing HLA-C. Vav1 trapping was independent of actin polymerization, suggesting that inhibition of cellular cytotoxicity occurs through an early dephosphorylation of Vav1 by SHP-1, which blocks actin-dependent activation signals. Such a mechanism explains how inhibitory receptors can block activating signals induced by different receptors.  相似文献   

19.
20.
We report the supramolecular organization of killer Ig–like receptor (KIR) phosphorylation using a technique applicable to imaging phosphorylation of any green fluorescent protein–tagged receptor at an intercellular contact or immune synapse. Specifically, we use fluorescence lifetime imaging (FLIM) to report Förster resonance energy transfer (FRET) between GFP-tagged KIR2DL1 and a Cy3-tagged generic anti-phosphotyrosine monoclonal antibody. Visualization of KIR phosphorylation in natural killer (NK) cells contacting target cells expressing cognate major histocompatibility complex class I proteins revealed that inhibitory signaling is spatially restricted to the immune synapse. This explains how NK cells respond appropriately when simultaneously surveying susceptible and resistant target cells. More surprising, phosphorylated KIR was confined to microclusters within the aggregate of KIR, contrary to an expected homogeneous distribution of KIR signaling across the immune synapse. Also, yellow fluorescent protein–tagged Lck, a kinase important for KIR phosphorylation, accumulated in a multifocal distribution at inhibitory synapses. Spatial confinement of receptor phosphorylation within the immune synapse may be critical to how activating and inhibitory signals are integrated in NK cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号