首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A prototype chronoamperometric biosensor for the determination of total cholesterol was developed that consists of a homemade potentiostat and disposable strips immobilized with Fe(3)O(4), cholesterol oxidase (ChOx), and cholesterol esterase (ChE). The principle of sensing cholesterol is based on the detection of reduction signal of hydrogen peroxide generated in two enzymatic reactions. The co-immobilization of ChE and ChOx allows the sensor to detect both concentrations of esterified and free cholesterol. The effects of biosensor on catalyst, enzymes, applied potential, and buffer pH was investigated, and the operation conditions were optimized. The detection of cholesterol can be accomplished in one step, a 10 microL of sample was dropped onto the area of sensing strip and the reduction signal was obtained at an applied potential of -200 mV (vs. Ag/Ag(+)). The pre-reaction time was set at 15s before applying potential on the strip and the sampling time was 5s. The sensing device displays a linear response over the range of 100-400mg/dL (R(2)=0.999) for cholesteryl oleate. The coefficient variation was determined as 5.06% (N=20) for 100mg/dL cholesteryl oleate and the detection limit is 19.4 mg/dL (S/N=3). The probable interferences in bio-matrix were selected to test the selectivity and no significant response was observed in the biosensor.  相似文献   

2.
3.
Treatment of cultured bovine luteal cells with the cytokine, interferon-gamma, induces the expression of Class II major histocompatibility complex antigens (MHC Ags). To determine if Class II MHC Ags are present on the CL in vivo and if the degree of Ag expression changes during luteal life span, bovine corpora lutea were obtained on Day 6, Days 10-12, and Day 18 of the estrous cycle and MHC Ag expression was evaluated via indirect immunofluorescence. Flow cytometry was used to determine the percentage of MHC Ag-positive cells on cell populations distinguished by cell size and intracellular density. Minimal Class II MHC Ag expression was detected on Day 6 CL (approximately 25%), which consisted primarily of smaller cells. The midcycle and late CL consisted of these small cells (SC) and two populations of large cells that differed in intracellular density, or right-angle light scatter. In midcycle CL, few (less than 25%) SC or large, dense cells (LDC) expressed the Class II MHC Ag whereas a high percentage (75%) of the large, less-dense cells (LLDC) were Class II MHC Ag-positive. Class II MHC Ag expression remained negligible on the LDC of the Day 18 CL; however, there was an elevation in the percentage of SC and LLDC expressing Class II Ag (p less than 0.05). To determine if Class II MHC Ag expression also varied with different functional states of the CL, bovine CL were collected after prostaglandin (PG) F2 alpha-induced regression and on Day 18 of early pregnancy. When luteolysis was allowed to progress in vivo, the percentage of Class II MHC Ag-positive cells was increased in all cell populations (p less than 0.05). Class II MHC Ag expression was significantly lower (p less than 0.05) on the three cell populations comprising the CL of pregnancy as compared to the Day 18 cyclic CL. It is hypothesized that enhanced expression of Class II MHC Ags on the late CL and during PGF2 alpha-induced regression may potentiate immune response mechanisms for luteolysis.  相似文献   

4.
The rate and products of trichloroethylene (TCE) oxidation by Methylomicrobium album BG8 expressing membrane-associated methane monooxygenase (pMMO) were determined using 14C radiotracer techniques. [(14)C]TCE was degraded at a rate of 1.24 nmol (min mg protein)(-1) with the initial production of glyoxylate and then formate. Radiolabeled CO(2) was also found after incubating M. album BG8 for 5 h with [(14)C]TCE. Experiments with purified pMMO from Methylococcus capsulatus Bath showed that TCE could be mineralized to CO(2) by pMMO. Oxygen uptake studies verified that M. album BG8 could oxidize glyoxylate and that pMMO was responsible for the oxidation based on acetylene inactivation studies. Here we propose a pathway of TCE oxidation by pMMO-expressing cells in which TCE is first converted to TCE-epoxide. The epoxide then spontaneously undergoes HCl elimination to form glyoxylate which can be further oxidized by pMMO to formate and CO(2).  相似文献   

5.
A novel method for real-time investigating the binding interaction between human serum albumin (HSA) and salicylic acid with capacitive sensing technique was successfully proposed. HSA was immobilized on the surface of a gold electrode modified with an insulating poly (o-phenylenediamine) (o-PD) film and colloid Au nanoparticles layers. The bioactivity of HSA was remained and major binding sites were available because of the excellent biocompatibility of gold nanoparticles. The capacitance and interfacial electron resistance of the sensor were altered, owing to the binding of HSA to salicylic acid. The time courses of the capacitance change were acquired with capacitive sensing technique during the binding process. Based on the capacitance response curves with time, the response model for the binding was derived in theory and the corresponding regression parameters were determined by fitting the real-time experimental data to the model. The binding and the dissociation rate constants (k(1) and k(-1)) were estimated to be 54.8 (mol l(-1))(-1) s(-1) and 2.9 x 10(-3) s(-1), respectively. And the binding equilibrium constant (K(a)) was calculated to be 1.89 x 10(4) (mol l(-1))(-1).  相似文献   

6.
Cometabolic degradation of trichloroethylene in a bubble column bioscrubber   总被引:1,自引:0,他引:1  
A bubble column bioreactor was used as bioscrubber to carry out a feasibility study for the cometabolic degradation of trichloroethylene (TCE). Phenol was used as cosubstrate and inducer. The bioreactor was operated like a conventional chemostat with regard to the cosubstrate and low dilution rates were used to minimize the liquid outflow. TCE degradation measurements were carried out using superficial gas velocities between 0.47and 4.07 cm s(-1) and TCE gas phase loads between 0.07 and 0.40 mg L(-1) Depending on the superficial gas velocity used, degrees of conversion between 30% and 80% were obtained. A simplified reactor model using plug flow for the gas phase, mixed flow for the liquid phase, and pseudo first order reaction kinetics for the conversionof TCE was established. The model is able to give a reasonable approximation of the experimental data. TCE degradation at the used experimental conditions is mainly limited by reaction rate rather than by mass transfer rate. The model can be used to calculate the reactor volume and the biomass concentration for a required conversion. (c) 1995 John Wiley & Sons Inc.  相似文献   

7.
Various bacterial isolates from enrichments with isopropylbenzene (cumene), toluene or phenol as carbon and energy sources were tested as to their potential to oxidize trichloroethene (TCE). In contrast to toluene and phenol, all isolates enriched on isopropylbenzene were able to oxidize TCE. Two isolates, strain JR1 and strain BD1, were identified as Pseudomonas spec. and as Rhodococcus erythropolis, respectively. TCE oxidation was accompanied by the liberation of stoichiometric amounts of chloride. Initial TCE oxidation rate increased proportional to the substrate concentration from 25 to 200 M TCE. Maximal initial TCE-degradation rates found here were 4 to 5 nmol · min-1 · mg protein-1. The TCE degradation rate decreased with time. The two isolates showed a temperature optimum for TCE degradation between 10 and 20 °C. In addition to TCE, R. erythropolis BD1 degraded only cis- and trans-dichloroethene whereas Pseudomonas spec. JR1 was able to oxidize also 1,1-dichloroethene, vinyl chloride, trichloroethane, and 1,2-dichloroethane.Abbrevations DMF dimethylformamide - TCE trichloroethene  相似文献   

8.
Microbial degradation of trichloroethylene (TCE) has been demonstrated under aerobic conditions with propane. The primary objective of this research was to evaluate the feasibility of introducing a vapor phase form of TCE in the presence of propane to batch bioreactors containing a liquid phase suspension of Mycobacterium vaccae JOB5 to accomplish degradation. The reactor system consisted of three phases: a vapor phase introducing air, propane, and TCE; a liquid phase of the microbial suspension; and a solid phase in the form of the microorganisms. Long-term and initial rate experiments were conducted on three culture sets to evaluate microbial response. In two long-term test fed propane and approximately 0.1 mg/L and 1 mg/L of TCE, respectively, propane utilization was more efficient at the high TCE concentration (600 mmol propane/mmol TCE versus 11,900 mmol propane/mmol TCE), because the propane degradation rate was approximately the same for both tests (6.73 mg/L . h and 7.85 mg/L . h for the high and low tests). In addition, TCE utilization decreased after complete propane consumption. Initial rate tests on culture sets fed propane only revealed that cells with a history of exposure to a high concentration of TCE had the highest specific growth rate, but the lowest half-saturation constant (7.60e(-3) h(-1) and 0.10 mg/L, respectively). Tests fed variable TCE concentrations (0.031 to 5.378 mg/L in the liquid phase) with no propane showed TCE depletion but no biomass growth. The tests revealed that the TCE removal increased as the TCE concentration increased, indicating a greater removal efficiency at the higher concentrations. Tests with a constant initial propane concentration and variable liquid phase TCE concentration revealed that specific propane utilization was essentially the same. (c) 1995 John Wiley & Sons, Inc.  相似文献   

9.
The strain Burkholderia cepacia G4 aerobically mineralized trichloroethene (TCE) to CO(2) over a time period of approximately 20 h. Three biodegradation experiments were conducted with different bacterial optical densities at 540 nm (OD(540)s) in order to test whether isotope fractionation was consistent. The resulting TCE degradation was 93, 83.8, and 57.2% (i.e., 7.0, 16.2, and 42.8% TCE remaining) at OD(540)s of 2.0, 1.1, and 0.6, respectively. ODs also correlated linearly with zero-order degradation rates (1.99, 1.11, and 0.64 micromol h(-1)). While initial nonequilibrium mass losses of TCE produced only minor carbon isotope shifts (expressed in per mille delta(13)C(VPDB)), they were 57.2, 39.6, and 17.0 per thousand between the initial and final TCE levels for the three experiments, in decreasing order of their OD(540)s. Despite these strong isotope shifts, we found a largely uniform isotope fractionation. The latter is expressed with a Rayleigh enrichment factor, epsilon, and was -18.2 when all experiments were grouped to a common point of 42.8% TCE remaining. Although, decreases of epsilon to -20.7 were observed near complete degradation, our enrichment factors were significantly more negative than those reported for anaerobic dehalogenation of TCE. This indicates typical isotope fractionation for specific enzymatic mechanisms that can help to differentiate between degradation pathways.  相似文献   

10.
In this work, a novel chemiluminescence (CL) flow biosensor for glucose was proposed. Glucose oxidase (GOD), horseradish peroxidase (HRP) and gold nanoparticles were immobilized with sol-gel method on the inside surface of the CL flow cell. The CL detection involved enzymatic oxidation of glucose to d-gluconic acid and H(2)O(2), and then the generated H(2)O(2) oxidizing luminol to produce CL emission in the presence of HRP. It was found that gold nanoparticles could remarkably enhance the CL respond of the glucose biosensor. The enhanced effect was closely related to the sizes of gold colloids, and the smaller the size of gold colloids had the higher CL respond. The immobilization condition and the CL condition were studied in detail. The CL emission intensity was linear with glucose concentration in the range of 1.0 x 10(-5)molL(-1) to 1.0 x 10(-3)molL(-1), and the detection limit was 5 x 10(-6)molL(-1) (3sigma). The apparent Michaelis-Menten constant of GOD in gold nanoparticles/sol-gel matrix was evaluated to be 0.3mmolL(-1), which was smaller than that of GOD immobilized in sol-gel matrix without gold nanoparticles. The proposed biosensor exhibited short response time, easy operation, low cost and simple assembly, and the proposed biosensor was successfully applied to the determination of glucose in human serum.  相似文献   

11.
Degradation with an aerobic consortium was used to evaluate the bioremediation trichloroethylene (TCE) as a model substrate. After one week, 228-1186 mg TCE l(-1) was degraded at rates of 20-50 microg TCE l(-1) h(-1). The introduction of 10 mg toluene l(-1) enhanced the degradation rates for TCE when greater than 600 mg l(-1). Using isolated enzymes, a TCE degradation intermediate(s) appears inhibitory to the oxygenase enzymes thereby diminishing the overall degradation.  相似文献   

12.
The effects of four aeration and four organic loading (OLR) rates on trichloroethylene (TCE) degradation in methanogenic-methanotrophic coupled reactors were studied using ethanol as the carbon source for the methanogens. Microcosm and PCR studies demonstrated that methanotrophs capable of mineralizing TCE and methanogens were present in the biomass throughout the study. The gene for the particulate form of methane monooxygenase (pMMO) was detected by PCR, but not that for the soluble form (sMMO). TCE mineralization by methanotrophs was therefore due primarily to pMMO activity. Low TCE concentrations were measured in effluent and off-gas samples in all cases. Volatilization losses were 0-5%. Dichloroethylene (DCE) was also observed, but vinyl chloride and ethylene were never detected. Changes in the aeration rate had no effect on TCE removal, but did influence DCE degradation. Reductive dechlorination of TCE to DCE was favored at low and no-aeration conditions, and DCE accumulation occurred due to slow DCE degradation. Low DCE levels were observed at the higher aeration rates, which indicated that conditions in these reactors were amenable to the aerobic co-metabolism of TCE and DCE. The OLR did have an effect on TCE removal. TCE and DCE removal were negatively affected when the OLR was increased. An OLR of 0.3 g COD l(rx)(-1)day(-1) or lower with an aeration rate of 3 l(O2 )l(rx)(-1)day(-1) and higher is the recommended operating condition of a coupled reactor for removal of TCE.  相似文献   

13.
The effects of more than 2 years of trichloroethene (TCE) application on community succession and function were studied in two aerobic sequencing batch reactors. One reactor was fed phenol, and the second reactor was fed both phenol and TCE in sequence twice per day. After initiation of TCE loading in the second reactor, the TCE transformation rates initially decreased, but they stabilized with an average second-order rate coefficient of 0.044 liter mg(-1) day(-1) for 2 years. In contrast, the phenol-fed reactor showed higher and unstable TCE transformation rates, with an average rate coefficient of 0.093 liter mg(-1) day(-1). Community analysis by terminal restriction fragment length polymorphism (T-RFLP) analysis of the 16S rRNA genes showed that the phenol-plus-TCE-fed reactor had marked changes in community structure during the first 100 days and remained relatively stable afterwards, corresponding to the period of stable function. In contrast, the community structure of the phenol-fed reactor changed periodically, and the changes coincided with the periodicity observed in the TCE transformation rates. Correspondence analysis of each reactor community showed that different community structures corresponded with function (TCE degradation rate). Furthermore, the phenol hydroxylase genotypes, as determined by restriction fragment length polymorphism analysis, corresponded to community structure patterns identified by T-RFLP analysis and to periods when the TCE transformation rates were high. Long-term TCE stress appeared to select for a different and stable community structure, with lower but stable TCE degradation rates. In contrast, the community under no stress exhibited a dynamic structure and dynamic function.  相似文献   

14.
A new method based on natural animal tissue porcine kidney as recognition element for chemiluminescence sensing of lactic acid is proposed in this paper. The principle for lactic acid sensing is that lactic acid is oxidized by oxygen under the catalysis of alpha-hydroxy acid oxidase in the tissue column to produce hydrogen peroxide, which can react with luminol in the presence of potassium ferricyanide to generate a CL signal. The experimental results show that the CL emission intensity was linear with lactic acid concentration in the range of 1-1000 micromol/L and the detection limit (3sigma) for lactic acid was 0.2 micromol/L. The biosensor could be used continuously for 6h with no significant changes in the response. More than 240 measurements were carried out during this time. A complete analysis, including sampling and washing, could be performed in 1.5 min with a relative standard deviation of 1.12% for 100 micromol/L lactic acid. The reproducibility among tissue columns was satisfactory (RSD among columns is less than 5%). The biosensor has been applied successfully to the analysis of lactic acid in plasma and milk samples.  相似文献   

15.
16.
An aerobic, single-pass, fixed-film bioreactor was designed for the continuous degradation and mineralization of gas-phase trichloroethylene (TCE). A pure culture of Burkholderia cepacia PR1(23)(TOM(23C)), a Tn5transposon mutant of B. cepacia G4 that constitutively expresses the TCE-degrading enzyme, toluene ortho-monooxygenase (TOM), was immobilized on sintered glass (SIRANtrade mark carriers) and activated carbon. The inert open-pore structures of the sintered glass and the strongly, TCE-absorbing activated carbon provide a large surface area for biofilm development (2-8 mg total cellular protein/mL carrier with glucose minimal medium that lacks chloride ions). At gas-phase TCE concentrations ranging from 0.04 to 2.42 mg/L of air and 0.1 L/min of air flow, initial maximum TCE degradation rates of 0.007-0.715 nmol/(min mg protein) (equivalent to 8.6-392.3 mg TCE/L of reactor/day) were obtained. Using chloride ion generation as the indicator of TCE mineralization, the bioreactor with activated carbon mineralized an average of 6.9-10.3 mg TCE/L of reactor/day at 0.242 mg/L TCE concentration with 0.1 L/min of air flow for 38-40 days. Although these rates of TCE degradation and mineralization are two- to 200-fold higher than reported values, TOM was inactivated in the sintered-glass bioreactor at a rate that increased with increasing TCE concentration (e.g., in approximately 2 days at 0.242 mg/L and <1 day at 2.42 mg/L), although the biofilter could be operated for longer periods at lower TCE concentrations. Using an oxygen probe and phenol as the substrate, the activity of TOM in the effluent cells of the bioreactor was monitored; the loss of TOM activity of the effluent cells corroborated the decrease in the TCE degradation and mineralization rates in the bioreactor. Repeated starving of the cells was found to restore TOM activity in the bioreactor with activated carbon and extended TCE mineralization by approximately 34%. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 674-685, 1997.  相似文献   

17.
The retention and expression of the plasmid-borne, TCE degradative toluene-ortho-monooxygenase (TOM) pathway in suspended continuous cultures of transconjugant Burkholderia cepacia 17616 (TOM31c) were studied. Acetate growth and TCE degradation kinetics for the transconjugant host are described and utilized in a plasmid loss model. Plasmid maintenance did not have a significant effect on the growth rate of the transconjugant. Both plasmid-bearing and plasmid-free strains followed Andrews inhibition growth kinetics when grown on acetate and had maximum growth rates of 0.22 h-1. The transconjugant was capable of degrading TCE at a maximum rate of 9.7 nmol TCE/min. mg protein, which is comparable to the rates found for the original plasmid host, Burkholderia cepacia PR131 (TOM31c). The specific activity of the TOM pathway was found to be a linear function of growth rate. Plasmid maintenance was studied at three different growth rates: 0.17/h, 0.1/h, and 0.065/h. Plasmid maintenance was found to be a function of growth rate, with the probability of loss ranging from 0.027 at a growth rate of 0.065/h to 0.034 at a growth rate 0.17/h.  相似文献   

18.
Increasing age is associated with the development of CD8+ T cell clonal expansions (TCE) that can dominate the peripheral T cell repertoire and interfere with immune responses to infection and vaccination. Some TCE are driven by chronic infections, consistent with dysregulated outgrowth of T cell clones in response to persistent antigenic stimulation. However, a second class of TCE develops with age in the absence of chronic infections and is poorly understood in terms of origin or Ag dependence. In this study, we present evidence that Ag-specific TCE develop at high frequencies from conventional memory CD8+ T cell pools elicited by nonpersistent influenza and parainfluenza virus infections. Putative TCE occurred in both the central- and effector-memory CD8+ T cell populations and did not require Ag for their maintenance. In addition, they were similar to normal memory T cells in terms of phenotype and function, suggesting that they develop stochastically from the memory T cell pool. These data suggest that memory T cell pools become progressively dysregulated over time and this may have a significant impact on immune responsiveness in the aged.  相似文献   

19.
The phytoremediation of trichloroethylene (TCE) from contaminated groundwater has been extensively studied using the hybrid poplar tree (Populus spp.). Several metabolites of TCE have been identified in the tissue of poplar including trichloroethanol (TCEOH) and dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA). In addition to the use of hybrid poplar for the phytoremediation of TCE, it is important to screen native tree species that could be successful candidates for field use. This study involves a greenhouse-based comparison of four different native southeastern conifers to a hybrid poplar species for their potential to phytoremediate TCE through the analysis of various plant tissues for TCE and major TCE metabolites, as well as several growth parameters that are desirable for phytoremediation. Longleaf pine (Pinus palustris), Leyland cypress (X Cupressocyparis leylandii), two varieties of Loblolly pine (Pinus taeda), and hybrid poplar species H11-11 (Populus trichocarpa x deltoides) were examined for the concentration of TCE and its metabolites in their tissue following treatment with either a low (50 mg L?1) or high dose of TCE (150 mg L?1) for 2 mo. The amount of water taken up, change in height of the tree, TCE transpiration, and total fresh weight of various tissue types were also measured. All trees contained detectable levels of TCE in their root and stem tissue. TCEOH was found only in the tissue of longleaf pine, suggesting that TCE metabolism was occurring in this tree. TCAA was only detected in the leaves of hybrid poplar and piedmont loblolly pine. Conifers took up less water over the 2-mo treatment period than hybrid poplar and grew at a slower rate. However, phytoremediation field sites may benefit from the evergreen's ability to transpire water throughout the winter months.  相似文献   

20.

Purpose

To evaluate the displacement of the central ocular surface during non-contact tonometry with and without soft contact lenses and determine the factors associated with the displacement of the central ocular surface and intraocular pressure (IOP) reading changes caused by wearing soft contact lenses (CLs).

Methods

One eye each in 21 subjects was studied. The cornea was photographed using a high-speed camera at 5,000 frames/sec during non-contact tonometry without contact lenses (NCL), with -5.0 diopters (D), -0.5 D and +5.0 D CL. The displacement of the ocular surface and the factors affecting displacement at the IOP reading and maximum displacement time were investigated.

Results

The IOP readings while wearing +5 D CL were significantly higher than those obtained while wearing -5 D CL. The ocular surface displacement between +5 D CL and other groups were significantly different. A significant positive correlation was found between the ocular surface displacement of subjects at the IOP reading time and the IOP obtained with the non-contact tonometer. A significant negative correlation was found between the ocular surface curvature and the IOP obtained using the non-contact tonometer. The radius of curvature of the ocular surface affected the displacement during the IOP reading and maximum displacement time.

Conclusions

Our results indicate that soft contact lens use changes the ocular surface behavior and IOP readings during non-contact tonometry. The radius of curvature of the eye affects the ocular surface displacement and IOP readings in this situation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号