首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The single-copy pahA gene from Penicillium chrysogenum encodes a phenylacetate 2-hydroxylase that catalyzes the first step of phenylacetate catabolism, an oxidative route that decreases the precursor availability for penicillin G biosynthesis. PahA protein is homologous to cytochrome P450 monooxygenases involved in the detoxification of xenobiotic compounds, with 84% identity to the Aspergillus nidulans homologue PhacA. Expression level of pahA displays an inverse correlation with the penicillin productivity of the strain and is subject to induction by phenylacetic acid. Gene expression studies have revealed a reduced oxidative activity of the protein encoded by pahA genes from penicillin-overproducing strains of P. chrysogenum compared to the activity conferred by phacA of A. nidulans. Sequencing and expression of wild-type pahA from P. chrysogenum NRRL 1951 revealed that an L181F mutation was responsible for the reduced function in present industrial strains. The mutation has been tracked down to Wisconsin 49-133, a mutant obtained at the Department of Botany of the University of Wisconsin in 1949, at the beginning of the development of the Wisconsin family of strains.  相似文献   

2.
Aspergillus nidulans catabolizes phenylacetate (PhAc) and 3-hydroxy-, 4-hydroxy-, and 3,4-dihydroxyphenylacetate (3-OH-PhAc, 4-OH-PhAc, and 3,4-diOH-PhAc, respectively) through the 2,5-dihydroxyphenylacetate (homogentisic acid) catabolic pathway. Using cDNA subtraction techniques, we isolated a gene, denoted phacB, which is strongly induced by PhAc (and its hydroxyderivatives) and encodes a new cytochrome P450 (CYP450). A disrupted phacB strain (delta phacB) does not grow on 3-hydroxy-, 4-hydroxy-, or 3,4-dihydroxy-PhAc. High-performance liquid chromatography and gas chromatography-mass spectrum analyses of in vitro reactions using microsomes from wild-type and several A. nidulans mutant strains confirmed that the phacB-encoded CYP450 catalyzes 3-hydroxyphenylacetate and 3,4-dihydroxyphenylacetate 6-hydroxylations to generate 2,5-dihydroxyphenylacetate and 2,4,5-trihydroxyphenylacetate, respectively. Both of these compounds are used as substrates by homogentisate dioxygenase. This cytochrome P450 protein also uses PhAc as a substrate to generate 2-OH-PhAc with a very low efficiency. The phacB gene is the first member of a new CYP450 subfamily (CYP504B).  相似文献   

3.
4.
5.
6.
The role of cAMP signalling during germination of asexual spores (conidia) of the filamentous fungus Aspergillus nidulans was investigated. A. nidulans strains defective for adenylate cyclase (CyaA) or for the functionally overlapping cAMP-dependent protein kinase (PkaA) and newly characterized SchA protein kinase, homologous to Saccharomyces cerevisiae Sch9, show altered trehalose mobilization and kinetics of germ tube outgrowth, in addition to other defects in colony formation. cAMP-dependent trehalose breakdown is triggered by the addition of a carbon source independently of further catabolism, suggesting that cAMP signalling controls early events of conidial germination in response to carbon source sensing. Additional results suggest that cAMP has targets other than PkaA and SchA and that PkaA retains activity in the absence of cAMP. Conversely, PkaA regulates cAMP levels in A. nidulans because these are elevated by approximately 250-fold in a strain that lacks PkaA. Furthermore, analysis of mutant strains impaired in both adenylate cyclase and RasA GTPase previously implicated in the control of A. nidulans spore germination suggested that RasA and cAMP signalling proceed independently during germination in A. nidulans.  相似文献   

7.
It is well established that the mitochondrial and the microsomal cytochromes in Saccharomyces cerevisiae are regulated differently. Mutations affecting the mitochondrial cytochromes aa3 or c had no effect on the concentration of the microsomal cytochrome P450 even during haem limitation. Moreover, a defect in the cytochrome P450 gene did not affect mitochondrial cytochromes. However, a regulatory mutation present in strain SG1 decreased both mitochondrial and microsomal cytochrome contents. This mutation also affected the intracellular haem concentration. The haem precursor 5-aminolaevulinate increased both mitochondrial and microsomal cytochrome contents. Our results indicate that carbon source and haem concentration are involved in the regulation of cytochrome P450.  相似文献   

8.
Analysis of the catabolic potential of Pseudomonas putida KT2440 against a wide range of natural aromatic compounds and sequence comparisons with the entire genome of this microorganism predicted the existence of at least four main pathways for the catabolism of central aromatic intermediates, that is, the protocatechuate (pca genes) and catechol (cat genes) branches of the beta-ketoadipate pathway, the homogentisate pathway (hmg/fah/mai genes) and the phenylacetate pathway (pha genes). Two additional gene clusters that might be involved in the catabolism of N-heterocyclic aromatic compounds (nic cluster) and in a central meta-cleavage pathway (pcm genes) were also identified. Furthermore, the genes encoding the peripheral pathways for the catabolism of p-hydroxybenzoate (pob), benzoate (ben), quinate (qui), phenylpropenoid compounds (fcs, ech, vdh, cal, van, acd and acs), phenylalanine and tyrosine (phh, hpd) and n-phenylalkanoic acids (fad) were mapped in the chromosome of P. putida KT2440. Although a repetitive extragenic palindromic (REP) element is usually associated with the gene clusters, a supraoperonic clustering of catabolic genes that channel different aromatic compounds into a common central pathway (catabolic island) was not observed in P. putida KT2440. The global view on the mineralization of aromatic compounds by P. putida KT2440 will facilitate the rational manipulation of this strain for improving biodegradation/biotransformation processes, and reveals this bacterium as a useful model system for studying biochemical, genetic, evolutionary and ecological aspects of the catabolism of aromatic compounds.  相似文献   

9.
10.
L-Phenylalanine and L-tyrosine were completely catabolized through homogentisate by Streptomyces setonii 75Vi2 but only partially degraded by Streptomyces badius 252, Streptomyces sioyaensis P5, Streptomyces viridosporus T7A, and Streptomyces sp. strain V7. Intermediates of catabolism were confirmed by thin-layer, gas, and high-pressure liquid chromatography. Homogentisate 1,2-dioxygenase was present in all cell extracts.  相似文献   

11.
L-Phenylalanine and L-tyrosine were completely catabolized through homogentisate by Streptomyces setonii 75Vi2 but only partially degraded by Streptomyces badius 252, Streptomyces sioyaensis P5, Streptomyces viridosporus T7A, and Streptomyces sp. strain V7. Intermediates of catabolism were confirmed by thin-layer, gas, and high-pressure liquid chromatography. Homogentisate 1,2-dioxygenase was present in all cell extracts.  相似文献   

12.
Two unlinked loci, gmdA and bzuA, have previously been identified as being required for the utilization of benzamide as the sole nitrogen source by Aspergillus nidulans. We have cloned each of these genes via direct complementation. The gmdA gene encodes a predicted product belonging to the amidase signature sequence family that displays similarity to AmdS from A. nidulans. However, identity is significantly higher to the amdS gene from Aspergillus niger. The bzuA gene encodes a protein belonging to the cytochrome P450 superfamily and is orthologous to the benzoate para-hydroxylase-encoding gene bphA of A. niger. The bzuA1 mutation prevents the use of benzoate as a carbon source and intracellular accumulation of benzoate results in growth inhibition on benzamide. Northern blot analysis has shown that gmdA expression is subject solely to AreA-dependent nitrogen metabolite repression while bzuA is strongly benzoate inducible and subject to CreA-mediated carbon catabolite repression and a probable inactivation of benzoate induction by glucose. Fluorescence microscopy of a fusion of the N-terminal end of BzuA to green fluorescent protein revealed that this protein localizes to the endoplasmic reticulum.  相似文献   

13.
An immobilized system was developed to detect interactions of human cytochromes P450 (P450) with the accessory proteins NADPH-P450 reductase and cytochrome b(5) (b(5)) using an enzyme-linked affinity approach. Purified enzymes were first bound to wells of a polystyrene plate, and biotinylated partner enzymes were added and bound. A streptavidin-peroxidase complex was added, and protein-protein binding was monitored by measuring peroxidase activity of the bound biotinylated proteins. In a model study, we examined protein-protein interactions of Pseudomonas putida putidaredoxin (Pdx) and putidaredoxin reductase (PdR). A linear relationship (r(2)=0.96) was observed for binding of PdR-biotin to immobilized Pdx compared with binding of Pdx-biotin to immobilized PdR (the estimated K(d) value for the Pdx.PdR complex was 0.054muM). Human P450 2A6 interacted strongly with NADPH-P450 reductase; the K(d) values (with the reductase) ranged between 0.005 and 0.1muM for P450s 2C19, 2D6, and 3A4. Relatively weak interaction was found between holo-b(5) or apo-b(5) (devoid of heme) with NADPH-P450 reductase. Among the rat, rabbit, and human P450 1A2 enzymes, the rat enzyme showed the tightest interaction with b(5), although no increases in 7-ethoxyresorufin O-deethylation activities were observed with any of the P450 1A2 enzymes. Human P450s 2A6, 2D6, 2E1, and 3A4 interacted well with b(5), with P450 3A4 yielding the lowest K(d) values followed by P450s 2A6 and 2D6. No appreciable increases in interaction between human P450s with b(5) or NADPH-P450 reductase were observed when typical substrates for the P450s were included. We also found that NADPH-P450 reductase did not cause changes in the P450.substrate K(d) values estimated from substrate-induced UV-visible spectral changes with rabbit P450 1A2 or human P450 2A6, 2D6, or 3A4. Collectively, the results show direct and tight interactions between P450 enzymes and the accessory proteins NADPH-P450 reductase and b(5), with different affinities, and that ligand binding to mammalian P450s did not lead to increased interaction between P450s and the reductase.  相似文献   

14.
15.
Rat liver microsomes catalyze the oxidative denitration of N omega-hydroxy-L-arginine (NOHA) by NADPH and O2 with formation of citrulline and nitrogen oxides like NO and NO2-. Besides NO2- and citrulline, whose simultaneous formation is linear for at least 20 min, the formation of NO could be detected under the form of its P450 and P420-Fe(II) complexes by UV-visible and EPR spectroscopy. Classical inhibitors of NO-synthases, like N omega-methyl-and N omega-nitro-arginine, fail to inhibit the microsomal oxidation of NOHA to citrulline and NO2-. On the contrary classical inhibitors of hepatic cytochromes P450 like CO, miconazole, dihydroergotamine and troleandomycin, strongly inhibit this monooxygenase reaction. These results show that the oxygenation of NOHA by NADPH and O2 with formation of citrulline and NO can be efficiently catalyzed by cytochromes P450 (with rates up to 1.5 turnovers per min for the cytochromes of the 3A subfamily).  相似文献   

16.
Limited proteolysis of rat liver microsomes was used to probe the topography and structure of cytochrome P450 bound to the endoplasmic reticulum. Three cytochromes P450 from two families were examined. Monoclonal antibodies to cytochrome P450 forms 1A1, 2B1, and 2E1 were used to immunopurify these proteolyzed cytochromes P450 from microsomes from rats treated with 3-methylcholanthrene, phenobarbital, and acetone, respectively. Electrophoretic and immunoblot analysis of tryptic fragments revealed a highly sensitive cleavage site in all three cytochromes P450. N-Terminal sequencing was performed on the fragments after transfer onto poly(vinylidene difluoride) membranes and showed that this preferential cleavage site is at amino acid position 298 of P450 1A1, position 277 of P450 2B1, and position 278 of P450 2E1. Multiple sequence alignment revealed that these positions are at the amino terminal of a highly conserved region of these cytochromes P450. The important functional role implied by primary sequence conservation along with the proteolytic sensitivity at its amino terminal suggests that this region is a protein domain. Comparison with the known structure of the bacterial cytochrome P450cam predicts that this proteolytically sensitive site is within an interhelical turn region connected to the distal helix that partially encompasses the heme-containing active site. Substrate binding to the cleaved cytochromes P450 was examined in order to determine whether the newly added conformational freedom near the cleavage site functionally altered these cytochromes P450. Cleavage of P450 2B1 abolished benzphetamine binding, which indicates that the cleavage site contains an important structural determinant for binding this substrate. However, cleavage did not affect benzo[a]pyrene binding to P450 1A1.  相似文献   

17.
18.
烷烃对P450酶的诱导及二元酸发酵工艺改进   总被引:1,自引:0,他引:1  
α、ω 长链二元酸 (Long chainα ,ω dicarboxylicacid ,DCA)是一种重要的化工原料 ,是合成工程塑料、香料、耐寒性增塑剂、涂料、液晶等物质的重要原料。目前主要利用热带假丝酵母 (Candidatroplicalis)转化烷烃生产[1,2 ] 。在以往发酵的过程中 ,通常在初始培养液中加入 5 %~10 %的烷烃。且有文献表明在发酵初期加入烷烃有利于产酸的提高。但我们的研究表明 ,在发酵初期加入烷烃也有其不利的一面 ,如高浓度的烷烃对于菌体的生长有一定的抑制作用。而且有实验表明 :适当提高细胞的培养液…  相似文献   

19.
Models capable of predicting the possible involvement of cytochromes P450 in the metabolism of drugs or drug candidates are important tools in drug discovery and development. Ideally, functional information would be obtained from crystal structures of all the cytochromes P450 of interest. Initially, only crystal structures of distantly related bacterial cytochromes P450 were available-comparative modeling techniques were used to bridge the gap and produce structural models of human cytochromes P450, and thereby obtain some useful functional information. A significant step forward in the reliability of these models came four years ago with the first crystal structure of a mammalian cytochrome P450, rabbit CYP2C5, followed by the structures of two human enzymes, CYP2C8 and CYP2C9, and a second rabbit enzyme, CYP2B4. The evolution of a CYP2D6 model, leading to the validation of the model as an in silico tool for predicting binding and metabolism, is presented as a case study.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号