首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Retinoic acid (RA), which reduces the rate of cell proliferation in S91 mouse melanoma clone C2 cells, was found to stimulate the expression of their melanotic phenotype. RA treatment also induced the extension of long cellular processes. The RA effects on melanogenesis included stimulation of tyrosinase activity and augmentation of cellular melanin content to levels 3- to 4-fold higher than in untreated cultures at similar cell densities. These effects became apparent after 48 hours of exposure to 10(-5) M RA and increased thereafter. Half-maximal stimulation in cells treated for 6 days occurred at 5 X 10(-7) M RA. Although the degrees of melanogenesis enhancement by RA (10(-5) M) and by alpha-melanocyte stimulatory hormone (2 X 10(-7) M) were similar, the former did not alter the intracellular cAMP level, whereas the latter induced a transient 4-fold increase. In high-passage (p28) cells, as well as in low-passage cells (less than p10) treated with tyrosinase inhibitor phenylthiocarbamate, melanin synthesis was suppressed in the absence and presence of RA, yet the ability of RA to inhibit cell proliferation was not compromised. In the presence of the tumor promotor phorbol myristate acetate (greater than 5 X 10(-9) M) melanin synthesis in control as well as in cells exposed to RA was dramatically inhibited. Phorbol which is not active in tumor promotion had no effect on melanogenesis. In addition to RA, other retinoids, such as 13-cis-retinoic acid, retinyl acetate, the TMMP analog of RA and the phenyl analog of RA, but not the pyridyl analog of RA or retinyl palmitate, also inhibited cell growth and enhanced melanin synthesis.  相似文献   

3.
Tumour necrosis factor (TNF)-alpha causes the degradation of articular cartilage in arthritis via direct actions on chondrocytes. However, it remains unknown whether TNF-alpha affects chondrogenesis in chondroprogenitors. In the present study, we assessed the effects of TNF-alpha in vitro on chondrogenesis using mouse clonal chondrogenic EC cells, ATDC5. TNF-alpha (10 ng/ml) stimulated [3H] thymidine incorporation in undifferentiated ATDC5 cells, and suppressed cartilaginous nodule formation and the accumulation of cartilage-specific proteoglycan. We recently showed that undifferentiated ATDC5 cells express BMP-4 and that exogenously administered BMP-4 promotes chondrogenesis in these cells. Interestingly, TNF-alpha up-regulated the expression of BMP-4 mRNA in undifferentiated ATDC5 cells in time- and dose-dependent manners. However, exogenously administered BMP-4 was not capable of reversing the inhibitory action of TNF-alpha on chondrogenesis in ATDC5 cells. These results indicate that TNF-alpha stimulates both cell proliferation and BMP-4 expression but inhibits chondrogenesis in chondroprogenitor-like ATDC5 cells.  相似文献   

4.
The purpose of this study was to investigate the effects of all-trans retinoic acid (RA) on the induction of transforming growth factor-beta (TGF-beta) that is concerned with the proliferation and melanin synthesis of chick retinal pigment epithelial (RPE) cells in vitro. Chick RPE cells were cultured in the presence or absence of RA and anti-TGF-beta antibody for 7 days. The effects of RA and pan-specific TGF-beta antibody on RPE cell proliferation were assessed by counting the number of cells, and their effects on melanin synthesis were evaluated by measuring the melanin content of the cells. TGF-beta activity in the culture supernatant of RPE cells was measured using CCL-64 cells. RA significantly inhibited RPE cell proliferation and increased melanin synthesis. The addition of pan-specific TGF-beta antibody to the culture blocked the inhibition of RPE cell proliferation and the increased melanin synthesis. RA induced TGF-beta production in the culture supernatant of RPE cells. These findings indicate that RA regulates the proliferation and melanin synthesis of RPE cells via induction of TGF-beta.  相似文献   

5.
Edaravone inhibits rheumatoid synovial cell proliferation and migration   总被引:1,自引:0,他引:1  
Rheumatoid arthritis (RA) is characterized by synovial proliferation and migration which is induced by proinflammatory cytokines or oxidative stress, followed by joint destruction. Edaravone, clinically available free radical scavenger in Japan, is confirmed to be beneficial in the acute stage of cerebral infarction. We aimed to investigate whether edaravone suppressed in vitro proliferation and migration of synovial cells (SC) induced by IL-1β. SC proliferation and migration induced by IL-1β were dose-dependently suppressed by edaravone at the clinically available concentration. These data suggest that edaravone has potential effects to suppress SC proliferation and migration, followed by suppression of synovial proliferation in RA. Therefore, edaravone, an antioxidant agent, might be a novel therapeutic agent which develops the new strategy for treatment of RA, and more detailed studies are required to establish the therapeutic effect of edaravone on RA in vivo.  相似文献   

6.
7.
8.
To clarify the mechanism by which retinoid causes cleft palate, we investigated the effect of retinoic acid (RA) on proliferation activity and glycosaminoglycan (GAG) synthesis in mouse fetuses palatal mesenchymal (MFPM) cells. MFPM cells were incubated for 1-11 days with various concentrations of RA to examine its effect on growth rate. Also, confluent cultures were incubated with [3H]glucosamine or [35S]sulfate in the presence of various concentrations of RA to investigate the effect of RA on GAG synthesis. RA remarkably inhibited the growth of MFPM cells in a dose-dependent manner. RA also inhibited the synthesis of GAGs, with sulfated GAGs being more severely affected than hyaluronic acid. These data suggest that the inhibition of proliferation activity and GAG synthesis of palatal mesenchymal cells might be involved in the induction of cleft palate by retinoic acid.  相似文献   

9.
In absence of thyrotropin (TSH), FRTL-5 rat thyroid cells stop proliferating and lose the functional characteristics of thyroid tissue. FRTL-5 cells regain their differentiated state and their proliferation activity upon addition of TSH. In this study we investigated the synthesis of histone H1 variants and H19(0) in FRTL-5 cells exposed to 10(-8) M TSH, two days after TSH withdrawal. TSH induced the synthesis of some H1 variants and H1. This effect was already evident six hours after TSH addition, thus well before proliferation, DNA or thyroglobulin synthesis was induced. These data indicate that the induction of H1(0) and some H1 variants is an early event after TSH stimulation and may thus be related to the functional differentiation of FRTL-5 cells.  相似文献   

10.
Pannexin 3 (Panx3) is a new member of the gap junction pannexin family, but its expression profiles and physiological function are not yet clear. We demonstrate in this study that Panx3 is expressed in cartilage and regulates chondrocyte proliferation and differentiation. Panx3 mRNA was expressed in the prehypertrophic zone in the developing growth plate and was induced during the differentiation of chondrogenic ATDC5 and N1511 cells. Panx3-transfected ATDC5 and N1511 cells promoted chondrogenic differentiation, but the suppression of endogenous Panx3 inhibited differentiation of ATDC5 cells and primary chondrocytes. Panx3-transfected ATDC5 cells reduced parathyroid hormone-induced cell proliferation and promoted the release of ATP into the extracellular space, possibly by action of Panx3 as a hemichannel. Panx3 expression in ATDC5 cells reduced intracellular cAMP levels and the activation of cAMP-response element-binding, a protein kinase A downstream effector. These Panx3 activities were blocked by anti-Panx3 antibody. Our results suggest that Panx3 functions to switch the chondrocyte cell fate from proliferation to differentiation by regulating the intracellular ATP/cAMP levels.  相似文献   

11.
MPC-11 mouse plasmacytoma cells virtually lacking intermediate filament (IF) proteins can be induced to synthesize and accumulate the IF protein vimentin by treatment with the tumor promoting phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA). Like MPC-11 cells, X63-Ag8.6.5.3 mouse myeloma cells (Ag8) proved to be vimentin-negative, as assayed by immunoblotting of whole cellular protein using goat antiserum to vimentin and [125I]protein A. Vimentin synthesis could be elicited by a TPA concentration as low as 10(-9) M in cells grown in HB-102 serum-free medium. Transfer of these cells to medium containing 15% fetal calf cerum (FCS) greatly reduced the ability of these cells to synthesize vimentin upon TPA treatment. After 50 generations of culture in the presence of FCS, induction of vimentin synthesis was barely detectable even at a TPA concentration of 10(-6) M. Addition of FCS to cells grown in serum-free medium partially suppressed vimentin induction by TPA. This suppression seems to be due, at least in part, to nondialyzable, heat-sensitive components of FCS, since the dialyzable fraction even enhanced vimentin induction by TPA. When cells grown in the presence of FCS were transferred back to serum-free medium, their ability to synthesize vimentin in response to TPA treatment was readily restored. The individual components of serum-free medium which proved to support vimentin induction by TPA were insulin and the unsaturated fatty acids oleic acid and linoleic acid. An even stronger TPA response could be elicited by a combination of these components.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
13.
Mechano-growth factor (MGF) generated by cells in response to mechanical stimulation has been identified as a mechano effector molecule, playing a key role in regulating mesenchymal stem cell (MSC) function, including proliferation and migration. However, the mechanism(s) underlying how MGF-induced MSC migration occurs is still unclear. In the present study, MGF motivated migration of rat MSCs (rMSCs) in a concentration-dependent manner and optimal concentration of MGF at 50 ng/mL (defined as MGF treatment in this paper) was demonstrated. Notably, enhancement of mechanical properties that is pertinent to cell migration, such as cell traction force and cell stiffness were found to respond to MGF treatment. Furthermore, MGF increased phosphorylation of extracellular signal-regulated kinase (ERK), ERK inhibitor (i.e., PD98059) suppressed ERK phosphorylation, and abolished MGF-induced rMSC migration were found, demonstrating that ERK is involved molecule for MGF-induced rMSC migration. These in vitro evidences of MGF-induced rMSC migration and its direct link to altering rMSC mechanics and activating the ERK pathway, uncover the underlying biomechanical and biological mechanisms of MGF-induced rMSC migration, which may help find MGF-based application of MSC in clinical therapeutics.  相似文献   

14.
15.
Mechano-growth factor (MGF) is a product of alternative splicing of the insulin-like growth factor 1 (IGF-1) mRNA. MGF is known to stimulate myoblast proliferation and to protect neurons and cardiomyocytes from apoptosis. MGF expression is dramatically increased in response to mechanical stimuli and tissue damage. The mechanisms of induction of MGF expression are as yet imperfectly understood. There is certain evidence that some protein factors able to stimulate MGF synthesis in normal myoblasts are released from damaged muscle. This study was undertaken to explore the nature of these protein inductors of MGF expression and to investigate the mechanism of their action. We report here that myofibrillar fraction of skeletal muscle homogenate activated MGF expression in murine myoblasts and myotubes in culture. The expression of another splice form of IGF-1 gene, IGF-1Ea, was also stimulated by myofibrils. Three myofibrillar proteins able to stimulate MGF synthesis were isolated. These proteins were identified by MALDI and immunoblotting as myomesin, myosin-binding protein C, and titin. The activation of MGF expression was associated with the increase of cAMP level in the cells. Inhibitor of adenylyl cyclase dideoxyadenosine arrested stimulation of MGF synthesis by all three myofibrillar proteins.  相似文献   

16.
Human cells were transfected with a mouse vimentin cDNA expression vector containing the hormone response element of mouse mammary tumor virus. The distribution of mouse vimentin after induction with dexamethasone was examined by indirect immunofluorescence with antivimentin antibodies specific for either mouse or human vimentin. In stably transfected HeLa cells, which contain vimentin filaments, addition of dexamethasone resulted in the initial appearance of mouse vimentin in discrete areas, usually perinuclear, that always corresponded to areas of the human filament network with the most intense fluorescence. Within 20 h after addition of dexamethasone, the mouse and human vimentin immunofluorescence patterns were identical. However, in stably transfected MCF-7 cells, which lack vimentin filaments, induction of mouse vimentin synthesis resulted in assembly of vimentin filaments throughout the cytoplasm without any obvious local concentrations. Transient expression experiments with SW-13 cell subclones that either lack or contain endogenous vimentin filaments yielded similar results to those obtained with MCF-7 and HeLa transfectants, respectively. Further experiments with HeLa transfectants were conducted to follow the fate of the mouse protein after synthesis had dropped after withdrawal of dexamethasone. The mouse vimentin-specific fluorescence was initially lost from peripheral areas of the cells while the last detectable mouse vimentin always corresponded to the human filament network with the most intense fluorescence. These studies are consistent with a uniform assembly of vimentin filaments throughout the cytoplasm and suggest that previous observations of polarized or vectorial assembly from a perinuclear area to more peripheral areas in cells may be attributable to the nonuniformly distributed appearance of vimentin filaments in immunofluorescence microscopy.  相似文献   

17.
Inhibition of DNA synthesis in F9 embryonal carcinoma cells with high thymidine induces differentiation similar to that induced with retinoic acid (RA). The presence of differentiated cells is evident after 15 h of treatment with 2 mM thymidine, during which period DNA synthesis is inhibited 99%. The addition of RA during the period of high thymidine treatment does not increase the amount of differentiation seen at the end of the 15-h treatment, but does increase the amount seen after thymidine is removed. The inhibition of proliferation by low serum concentration does not induce differentiation in the absence of RA. In partially synchronized cultures of F9 cells, the addition of RA alters the pattern of DNA replication during the first third of S phase. If RA is present during this part of S phase, differentiation is evident both morphologically and biochemically during the following cell cycle. Addition of RA during the second half of S phase does not lead to obvious differentiation until after the next cell cycle. These results suggest that particular events during the early replication period of F9 cells are targets for RA action in induction of differentiation of F9 cells.  相似文献   

18.
Cellular condensation of chondroprogenitors is a distinct cellular event in chondrogenesis. During this process, N-cadherin mediates cell-cell interactions responsible for the initial stage of cellular condensation and subsequently fibronectin contributes to cell-matrix interactions mediating a progression of chondrogenesis. We previously showed that chondrogenesis in mouse chondrogenic EC cells, ATDC5, was induced, at a high incidence in the presence of insulin, through formation of cellular condensation. In this study, we took advantage of the sequential progression of chondrogenesis in ATDC5 cells and evaluated, in vitro in these cells, the role of endogenous transforming growth factor (TGF)-beta in chondrogenesis. ATDC5 cells expressed TGF-beta2 mRNA at a cellular condensation stage. The treatment of undifferentiated ATDC5 cells with anti-TGF-beta32 neutralizing antibody inhibited the accumulation of Alcian blue stainable proteoglycan in a dose-dependent manner. Transfection of a dominant-negative mutant of mouse TGF-beta type II receptor to undifferentiated ATDC5 cells completely inhibited cellular condensation. Moreover, exogenously administered TGF-beta2 upregulated the expression of fibronectin and type II collagen (a phenotypic marker gene of chondrogenesis) mRNAs and downregulated that of N-cadherin mRNA in time- and dose-dependent manners. These results indicate that TGF-beta stimulates chondrogenesis via initiation of cellular condensation by transition from an initial N-cadherin-contributing stage to a fibronectin-contributing stage during processes of chondrogenesis in ATDC5 cells.  相似文献   

19.
Glial fibrillary acidic protein (GFAP) was induced in rat C6 glioma cells grown in M199 and HAM F10 media by addition of 1 mM dibutyryl cyclic AMP. The amount of GFAP per cell increased 7- and 33-fold in M199 and HAM F10 media, respectively. GFAP could be induced in each phase of the cell culture except for the lag phase, where GFAP synthesis was delayed until the onset of the logarithmic growth. The induction took place under conditions where the total protein content of the cell decreased. Measurement of the amount of vimentin indicated that GFAP was induced under conditions of low vimentin concentration. Our results do not support the hypothesis that GFAP induction depends on cell-cell contact or cell proliferation. They indicate a shift from vimentin to GFAP synthesis by an as yet unknown mechanism.  相似文献   

20.
Achondroplasia (ACH), the most common form of short-limbed dwarfism, and its related disorders are caused by constitutively activated point-mutated fibroblast growth factor receptor 3 (FGFR3). Recent studies have provided a large body of evidence to prove chondrocyte proliferation and differentiation in these disorders. However, little is known about the possible effects of the FGFR3 mutants on apoptosis of chondrocytes. In the present study, we analyzed apoptosis using a chondrogenic cell line, ATDC5, expressing the FGFR3 mutants causing ACH and thanatophoric dysplasia, which is a more severe neonatal lethal form comprising type I and type II. We found that the introduction of these mutated FGFR3s into ATDC5 cells decreased mRNA expression of parathyroid hormone-related peptide (PTHrP) and induced apoptosis. Importantly, replacement of PTHrP prevented the apoptotic changes in ATDC5 cells expressing ACH mutant. Insulin-like growth factor (IGF)-I, which is an important mediator of growth hormone (GH), also reduced apoptosis in ATDC5 cells expressing ACH mutant. IGF-I prevented apoptosis through the phosphatidylinositol 3-kinase and mitogen-activated protein kinase pathways, indicating the mechanisms by which GH treatment improves disturbed bone growth in ACH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号