首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ability of the periodontal pathogen Porphyromonas gingivalis to use different glycolipid structures as receptors has previously been demonstrated. The bacterium adhered to acid and nonacid glycolipids originating from human organs and to nonacid glycolipids of porcine origin. The aim of the present study was to analyze these binding epitopes by structural characterization. Glycolipid fractions with positive bacterial binding from e.g. human and porcine origin, were purified by the high performance liquid chromatography technique and thereafter used in bacterial overlay assays with (35)S-labeled P. gingivalis. Purified fractions with positive binding were structurally characterized by proton nuclear magnetic resonance spectroscopy. Complementing thin-layer chromatograms and bacterial overlay assays with pure reference glycolipid fractions and competition experiments with lactose were performed to define potential receptors. The P. gingivalis binding epitopes, including cerebrosides with nonhydroxy fatty acids, lactosylceramide with hydroxy fatty acids, sulfatides, lacto-, neolacto- and gangliotetraosylceramides, are in several instances similar to those found for other bacteria, e.g. H. pylori, H. influenzae and N. meningitidis. In addition P. gingivalis also bound to the Galalpha4Gal epitope of the globo series of glycolipids. In the future these results may be valuable for development of new treatment strategies, such as anti-adhesion therapies and vaccines specifically directed against P. gingivalis infection.  相似文献   

2.
Helicobacter pylori, like many other microbes, has the ability to bind to carbohydrate epitopes. Several sugar sequences have been reported as active for the bacterium, including some neutral, sulfated, and sialylated structures. We investigated structural requirements for the sialic acid-dependent binding using a number of natural and chemically modified gangliosides. We have chosen for derivatization studies two kinds of binding-active glycolipids, the simple ganglioside S-3PG (Neu5Ac alpha 3Gal beta 4GlcNAc beta 3Gal beta 4Glc beta 1Cer, sialylparagloboside) and branched polyglycosylceramides (PGCs) of human origin. The modifications included oxidation of the sialic acid glycerol chain, reduction of the carboxyl group, amidation of the carboxyl group, and lactonization. Binding experiments confirmed a preference of H. pylori for 3-linked sialic acid and penultimate 4-linked galactose. As expected, neolacto gangliosides (with Gal beta 4GlcNAc in the core structure) were active in our assays, whereas gangliosides with lacto (Gal beta 3GlcNAc) and ganglio (Gal beta 3GalNAc) carbohydrate chains were not. Negative binding results were also obtained for disialylparagloboside (with terminal NeuAc alpha 8NeuAc) and NeuAc alpha 6-containing glycolipids. Chemical studies revealed dependence of the binding on Neu5Ac and its glycerol and carboxyl side chains. Most of the derivatizations performed on these groups abolished the binding; however, some of the amide forms turned out to be active, and one of them (octadecylamide) was found to be an excellent binder. The combined data from molecular dynamics simulations indicate that the binding-active configuration of the terminal disaccharide of S-3PG is with the sialic acid in the anticlinal conformation, whereas in branched PGCs the same structural element most likely assumes the synclinal presentation.  相似文献   

3.
Total non-acid and acid glycolipid fractions were isolated from epithelial cell scrapings and the non-epithelial residue of a human upper ureter. The glycolipid fractions were structurally characterized as total mixtures by thin-layer chromatography, mass spectrometry, and proton NMR spectroscopy. Selected structural information was also obtained on binding of monoclonal antibodies and bacteria to the thin-layer chromatograms. The major epithelial cell glycolipids were Glc beta 1-1ceramide (75%), dihexosylceramide (10%) and NeuAcLacceramide (10%). In addition, 8 minor glycolipids belonging to the blood group P, Lewis and ABO systems were identified. The major glycolipids of the non-epithelial residues were mono- and dihexosylceramides together with globotriaosyl- and globotetraosylceramides. The epithelial mono- and diglycosylceramide compounds had an unusual ceramide composition with mainly C18 and C20 trihydroxy long chain bases in combination with C22-C24 hydroxy fatty acids in contrast to the non-epithelial glycolipids which contained mainly C18 dihydroxy long chain bases in combination with C16-C24 non-hydroxy fatty acids.  相似文献   

4.
The aglycone has been largely ignored in consideration of glycoconjugate function. Evidence is reviewed which suggests that the role of the lipid in glycolipid carbohydrate function may be particularly significant. The lipid moiety can promote or reduce carbohydrate exposure of membrane glycolipids. Theoretical calculation has indicated that the plane of the plasma membrane can restrict the permitted conformations of a given glycolipid oligosaccharide. Thus the lipid moiety may influence the relative conformation of such carbohydrate sequences. Evidence of ceramide regulation of glycolipid function can be found in studies of enzyme substrate specificity, antiglycolipid recognition and bacterial/host cell interactions. Studies of verotoxin binding to its glycolipid receptor globotriaosyl ceramide indicate that modulation of receptor function by glycolipid fatty acid content plays an important role inin vitro binding assays, cell cytotoxicity and intracellular routing.  相似文献   

5.
Interaction between the major fimbriae of Porphyromonas gingivalis and gingival epithelial cells is important for bacterial adhesion and invasion. In this study, we identified integrins as an epithelial cell cognate receptor for P. gingivalis fimbriae. Immunoprecipitation and direct binding assays revealed a physical association between recombinant fimbrillin and beta1 integrins. In vitro adhesion and invasion assays demonstrated inhibition of binding and invasion of P. gingivalis by beta1 integrin antibodies. In contrast, invasion of a fimbriae-deficient mutant of P. gingivalis was not affected by integrin antibodies. Infection of gingival epithelial cells with wild-type P. gingivalis induced tyrosine phosphorylation of the 68 kDa focal adhesion protein paxillin, whereas the fimbriae-deficient mutant failed to evoke similar changes. Interestingly, activation of paxillin was not accompanied by an increase in the phosphorylation of focal adhesion kinase (FAK). These results provide evidence that P. gingivalis fimbriae promote adhesion to gingival epithelial cells through interaction with beta1 integrins, and this association represents a key step in the induction of the invasive process and subsequent cell responses to P. gingivalis infection.  相似文献   

6.
Animal glycolipids as attachment sites for microbes   总被引:14,自引:0,他引:14  
The abundance of carbohydrate at the animal cell surface may explain why microbes have selected primarily carbohydrates as essential attachment sites for colonization or infection. Of the various surface glycoconjugates of interest, primary attention has been given to glycolipids, due in part to an efficient binding assay based on a thin-layer chromatogram with separated glycolipids. In this way the general character of carbohydrate recognition by microbes is being mapped. Mainly two examples are briefly described to illustrate some generalizations: lactosylceramide-recognition by several bacteria, and Gal alpha l----4Gal-binding by Escherichia coli and the Shiga toxin. The unique recognition of internally placed sequences, the often low-affinity binding, and the preference of certain sequences before others are interpreted to be of decisive biological value. The binding to internal parts makes it technically possible to approximate the binding epitope on a receptor glycolipid. For this the binding preferences to glycolipids carrying the binding site in different saccharide environments (isoreceptors) are compared with the computer-calculated preferred conformations (definition of steric hindrances to epitope access). Several binding epitopes dissected with this approach have a common surface character: a nonpolar area of ring hydrogens over one or two sugars, surrounded by polar oxygens or amide. This is in agreement with the recent Lemieux concept for antibody-carbohydrate interaction. This information facilitates a rational synthesis of receptor analogues for potential applications. An outline is finally given of an improved general approach for receptor analysis.  相似文献   

7.
The epithelial cells and the non-epithelial residue from large intestine of two inbred rat strains were separated and the glycosphingolipids characterized in comparison with earlier detailed data from small intestine of the same strains. Total acid and non-acid glycolipids were prepared and the non-acid glycolipids were further fractionated into subgroups as acetylated derivatives on silicic acid. The fractions obtained were characterized mainly by thin-layer chromatography, including binding of monoclonal anti-A and anti-B antibody to the chromatogram, and by direct-inlet mass spectrometry after derivatization. This combined technology allowed an overall conclusion from a small number of animals concerning relative amounts of glycolipids, microheterogeneity of blood group glycolipids and carbohydrate sequence and lipophilic components of major species of each subfraction. As for the small intestine, the two separated compartments differed distinctly in composition, with blood group fucolipids being confined to the epithelial cells, and a series of glycolipids with probably internal Galα being restricted to the non-epithelial part. The main difference between large and small intestine concerned fucolipids of the epithelium. Three blood group B active glycolipids with four, six and seven sugars were detected which were absent from the small intestine. The four-sugar glycolipid was a major glycolipid with the structure Galα1 → 3Gal(2 ← 1αFuc)β1 → 4Glcβ1 → 1Cer, as reported before. The six-sugar glycolipid was shown by mass spectrometry and NMR spectroscopy to have the probable structure Galα1 → 3Ga1(2 → αFuc)β1 → 3GlcNAcβ1 → 3Galβ1 → 4Glcβ1 → 1Cer. The seven-sugar glycolipid had an additional fucose linked to N-acetylhexosamine, as shown by mass spectrometry. Three blood group A active glycolipids with four, six and seven sugars were found in both rat strains, with sequences analogous to the B glycolipids but with a terminal GalNAc instead of Gal. The four and six-sugar blood group A compounds, but not the seven-sugar glycolipid, have been found before in the small intestine of one of the rat strains. In the small intestine, on the other hand, a branched-chain twelve-sugar blood group A active glycolipid has been found which was absent from the large intestine. Therefore large intestine of both rat strains expressed glycolipid-based blood group A and B activity, while small intestine lacked B activity and showed A activity only in one of the strains. Quantitatively the major glycolipids of the epithelial cells of large intestine were monoglycosylceramides (glucosylceramides, and smaller amounts of galactosylceramides which were absent from small intestinal epithelium) and tetraglycosylceramides (including the A and B active species and a tetrahexosylceramide). The major lipophilic components of the epithelial cell glycolipids were phytosphingosine and long-chain hydroxy fatty acids.  相似文献   

8.
A chemical investigation has been done on blood group active glycosphingolipids of both small intestine and pancreas from two individuals, one blood group A and one blood group B. Total non-acid glycolipid fractions were prepared and the major blood group fucolipids present were purified and structurally characterized by mass spectrometry, proton NMR spectroscopy, and degradation methods. The glycolipid structures identified were a blood group Leb hexaglycosylceramide, a B-hexaglycosylceramide with a type 1 (Gal beta 1 leads to 3GlcNAc) carbohydrate chain, A-hexaglycosylceramides with types 1 and 2 (Gal beta 1 leads to 4GlcNAc) carbohydrate chains, a B-heptaglycosylceramide with a type 1 carbohydrate chain, and A-heptaglycosylceramides with type 1 and 2 carbohydrate chains. In addition several minor glycolipids having more than seven sugar residues were detected by thin-layer chromatography. The small intestine and pancreas had some distinct differences in their expression of the major fucolipids. The small intestine contained only glycolipids based upon type 1 carbohydrate chain while the pancreas had both type 1 and type 2 structures. The intestines contained mainly difucosyl compounds while the pancreas tissues contained both mono- and difucosyl glycolipids. Monofucosylglycolipids based on both types 1 and 2 saccharides were present in one pancreas while the other one contained only monofucosylcomponents based on type 1 chain. The ceramides of the intestinal glycolipids were found to be more hydroxylated (trihydroxy long-chain base, hydroxy fatty acids) compared to the pancreas glycolipids (dihydroxy long-chain base, non-hydroxy fatty acids).  相似文献   

9.
We investigated whether the L2/HNK-1 carbohydrate epitope, expressed by two unusual glycolipids and several neural adhesion molecules, including L1, neural cell adhesion molecule, J1, and the myelin-associated glycoprotein, is involved in adhesion. Monoclonal L2 antibodies, the L2/HNK-1-reactive, sulfate-3-glucuronyl residue carrying glycolipids (L2 glycolipid) and a tetrasaccharide derived from the L2 glycolipid (L2 tetrasaccharide) were added to microexplant cultures of early postnatal mouse cerebellum, and cell migration and process extension were monitored. On the substrate poly-D-lysine, Fab fragments of L2 antibodies, L2 glycolipid, and L2 tetrasaccharide inhibited outgrowth of astrocytic processes and migration of cell bodies, but only L2 glycolipid and L2 tetrasaccharide reduced neurite outgrowth. On laminin, L2 antibodies, L2 glycolipid, and L2 tetrasaccharide inhibited outgrowth of astrocytic processes. Additionally, L2 glycolipid and L2 tetrasaccharide inhibited cell migration and neurite outgrowth. Several negatively charged glycolipids, lipids, and saccharides were tested for control and found to have no effect on outgrowth patterns, except for sulfatide and heparin, which modified outgrowth patterns in a similar fashion as L2 glycolipid and L2 tetrasaccharide. On astrocytes none of the tested compounds interfered with explant outgrowth. In short-term adhesion assays L2 glycolipid, sulfatide, and heparin inhibited adhesion of neural cells to laminin. L2 glycolipid and sulfatide interfered with neuron to astrocyte and astrocyte to astrocyte adhesion, but not with neuron-neuron adhesion. The most straightforward interpretation of these observations is that the L2/HNK-1 carbohydrate and the sulfated carbohydrates, sulfatide and heparin, act as ligands in cell adhesion.  相似文献   

10.
Glycolipids from mucosa scrapings of small intestine of neonatal and adult pigs were tested by the thin-layer chromatogram overlay assay for the binding of Escherichia coli K99. There was practically no binding to acid or non-acid glycolipids of adult pig, known to be resistant to infection with this bacterium. However, piglets, which are susceptible to infection, showed a clear binding to a doublet band in the acid glycolipid fraction. The receptor-active glycolipid was isolated and shown by mass spectrometry, NMR spectroscopy and degradation methods to be NeuGc alpha-3Gal beta 4Glc beta Cer (NeuGc-GM3), the two bands being due to heterogeneity of the ceramide. When tested against various reference glycolipids, NeuAc-GM3 was shown to be inactive. This ganglioside was dominating in adult pig. The apparent developmental disappearance of N-glycolyl groups in glycolipids of intestinal mucosa may have a correspondence in protein-linked sequences as well as thus explain the resistance of adult pigs to infection with E. coli K99.  相似文献   

11.
Glycolipids were depleted from the membranes of human A431 cells using 1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP), an inhibitor of glucosylceramide synthetase. After 6 days of culture in the presence of 5 microM D-threo-PDMP, glycolipid content was reduced to approximately 5% of control levels. By contrast, synthesis per cell of phosphatidylcholine, sphingomyelin, triglycerides, and glycoprotein was relatively unchanged in PDMP-treated cells. In parallel with glycolipid depletion, PDMP-treated cells exhibited a rapid loss of epithelial cell morphology, a reduced rate of cell growth, and inhibition of cell-substrate adhesion. The effects of D-threo-PDMP on cell morphology and substrate adhesion were blocked by exogenous GM3 addition and were not observed with L-threo-PDMP (a relatively inactive enantiomer). Fluorescence photobleaching and recovery (FPR) was used to investigate the hypothesis that glycolipids influence cell behavior, in part, by changing the diffusion characteristics of membrane proteins and lipids. Diffusion coefficients and mobile fractions of two integral membrane proteins, the EGF receptor and a class I MHC antigen, did not differ significantly between control and PDMP-treated cells. Diffusion coefficients of lipid probes, NBD-PC and fluorescent GM1 ganglioside, were similarly unaffected by glycolipid depletion. However, lipid probes did show a significant increase in mobile fraction (the fraction of lipids that are free to diffuse) in PDMP-treated cells. This increase was blocked by culturing cells in the presence of exogenous GM3 ganglioside. The results suggest that glycolipids play a role in the formation of lipid domains in A431 cell membranes. Glycolipid-mediated changes in membrane lipid organization may influence receptor activation and transmembrane signaling, leading to changes in cell growth, morphology, and adhesion.  相似文献   

12.
Pseudomonas aeruginosa infection in the lungs is a leading cause of death of patients with cystic fibrosis, yet a specific receptor that mediates adhesion of the bacteria to host tissue has not been identified. To examine the possible role of carbohydrates for bacterial adhesion, two species of Pseudomonas isolated from patients with cystic fibrosis were studied for binding to glycolipids. P. aeruginosa and P. cepacia labeled with 125I were layered on thin-layer chromatograms of separated glycolipids and bound bacteria were detected by autoradiography. Both isolates bound specifically to asialo GM1 (Gal beta 1-3GalNAc beta 1-4Gal beta 1-4Glc beta 1-1Cer) and asialo GM2 (GalNAc beta 1-4Gal beta 1-4Glc beta 1-1Cer) but not to lactosylceramide (Gal beta 1-4Glc beta 1-1Cer), globoside (GalNAc beta 1-3Gal alpha 1-4Gal beta 1-4Glc beta 1-1Cer), paragloboside (Gal beta 1-4GlcNAc beta 1-3Gal beta 1-4Glc beta 1-1Cer), or several other glycolipids that were tested. Asialo GM1 and asialo GM2 bound the bacteria equally well, exhibiting similar binding curves in solid-phase binding assays with a detection limit of 200 ng of either glycolipid. Both isolates also did not bind to GM1, GM2, or GDla suggesting that substitution of the glycolipids with sialosyl residues prevents binding. As the Pseudomonas do not bind to lactosylceramide, the beta-N-acetylgalactosamine residue, positioned internally in asialo GM1 and terminally in asialo GM2, is probably required for binding. beta-N-Acetylgalactosamine itself, however, is not sufficient as the bacteria do not bind to globoside or to the Forssman glycolipid. These data suggest that P. aeruginosa and P. cepacia recognize at least terminal or internal GalNAc beta 1-4Gal sequences in glycolipids which may be receptors for these pathogenic bacteria.  相似文献   

13.
The binding of human plasma low-density lipoproteins (LDL), freshly prepared by discontinuous ultracentrifugation, to several neutral and acidic glycosphingolipids was examined by TLC immunostaining with the anti [apolipoprotein B (apoB)] antibody. ApoB was found to bind characteristically to the asialogangliosides, gangliotetraosylceramide (Gg4Cer) and gangliotriaosylceramide (Gg3Cer), the former being a more potent receptor than the latter, indicating that the sequences Gal beta 1-3GalNAc beta 1-4Gal and GalNAc beta 1-4Gal are involved in the binding of apoB. A weak positive reaction with fucosylgangliotetraosylceramide (IV2Fuc-Gg4Cer), which has the same internal recognition sequences, was also observed (the binding ability was only 1/7 of that in the case of Gg4Cer). No binding to other neutral glycosphingolipids, or glycosphingolipid sulfates (I3-SO3-GalCer) and gangliosides, was detected, and therefore substitution of the receptor glycolipid with sialic acid was thought to inhibit the binding. The results indicate that, along with the binding of apoB to the LDL-binding domain of the receptor glycoprotein, interaction with some carbohydrate chains in the receptor, or with glycolipids coexisting on the plasma membrane, may be important for the binding of apoB to cells.  相似文献   

14.
The carbohydrate-binding specificities of the probiotic lactic acid bacterium Lactobacillus johnsonii La1 (a health-beneficial bacterial strain able to be incorporated into the human intestinal microflora) were investigated in vitro. First various soluble complex carbohydrates were tested as potential inhibitors of the strain adhesion onto Caco-2 intestinal epithelial cells, and then bacterial binding to glycolipids immobilized on TLC plates was probed. Two major carbohydrate-binding specificities of Lactobacillus johnsonii La1 were identified. A first one for an Endo-H treated yeast cell wall mannoprotein carrying mainly O:-linked oligomannosides, and a second one for the gangliotri- and gangliotetra-osylceramides (asialo-GM1). Similar carbohydrate-binding specificities are known to be expressed on cell surface adhesins of several enteropathogens, enabling them to adhere to the host gut mucosa. These findings corroborate the hypothesis that selected probiotic bacterial strains could be able to compete with enteropathogens for the same carbohydrate receptors in the gut.  相似文献   

15.
The same or a very similar carbohydrate determinant, as represented by some sulfated, glucuronic acid-containing glycosphingolipids of human peripheral nerve, occurs on several adhesion molecules in the mammalian nervous system. In the present study, the occurrence of this epitope on glycoproteins and glycolipids of the fly, Calliphora vicina, was investigated by Western blot analysis and thin-layer chromatogram immunostaining. Several monoclonal antibodies recognizing an epitope on various neural cell adhesion molecules, designated L2 (334, 336, 349, and 412); the monoclonal antibody HNK-1 (recognizing an epitope on human natural killer cells); and a human IgM M-protein were found to react by Western blot analysis with various glycoproteins from larval and adult brains, although the intensity of staining of bands recognized by each antibody varied. Acidic glycolipids from pupae were also recognized, but only by the L2 antibody 334 and IgM M-protein. After desulfation of the acidic glycolipid fraction, the immunostaining pattern remained the same, an observation suggesting that the L2/HNK-1 epitope on insect acidic glycolipids contains a nonsulfated, glucuronic acid moiety. These observations indicate that the L2/HNK-1 carbohydrate structure occurs not only in vertebrates but also in insects on both glycoproteins and glycolipids, a finding suggesting a high degree of phylogenetic stability of this functionally important carbohydrate.  相似文献   

16.
Water soluble glycolipids were extracted from guinea pig macrophages. These glycolipids, when incubated with macrophages, augment the cells' response to migration inhibitory factor. The glycolipids were fractionated by diethylaminoethyl-Sephadex ion exchange chromatography into neutral and acidic fractions. Only the acidic glycolipid fraction was able to enhance the responsiveness of macrophages to migration inhibitory factor. Additional studies indicate that the enhancing activity of these glycolipid preparations can be abrogated by the removal of terminal fucose residues with α-L-fucosidase. The possibility that fucose functions as an essential component of a macrophage glycolipid receptor for migration inhibitory factor is discussed.  相似文献   

17.
Verotoxins (or Shiga-like toxins) are a family of closely related toxins elaborated by Escherichia coli. At least three toxins have been described, VT1, VT2, and SLTII, in addition to Shiga toxin itself, and all bind to globotriaosyl ceramide, Gb3. Some discrepancies exist in the literature regarding the binding of the toxins to Gb4 as monitored by TLC overlay procedures. These procedures are widely used to investigate the specificity of carbohydrate-binding ligands. Polyisobutylmethacrylate, PIBM, is generally used in TLC overlay procedures to prevent silica loss and orient carbohydrate moieties for the binding of various ligands to glycolipids. We now report that pretreatment of chromatograms with PIBM modifies binding of VT1 to include Gb4 and decreases binding to Gb3 and the P1 glycolipid. We suggest that PIBM can alter the conformation of the glycolipid oligosaccharide, and therefore caution is advised in analysis of ligand binding to glycolipids after treatment with this compound.  相似文献   

18.
The cohesive properties of virulent pilated Neisseria gonorrhoeae strain P9 (P++) have been compared with those of a non-pilated isogenic variant (P-) possessing the same outer membrane components. The binding of P++ gonococci to buccal epithelial cells was dependent on pH, with an optimum at pH 6.5 to 7.0 . This adhesion was markedly inhibited by treatment of the buccal epithelial cells with a neuraminidase/exoglycosidase mixture. In contrast, the binding of P++ gonococci to erythrocytes was unaffected by pH. A possible explanation is that pili bind to a carbohydrate receptor present on buccal epithelial cells but lacking on erythrocytes. The adhesion of P- gonococci to erythrocytes and to buccal epithelial cells was unaffected by pH but enhanced by treatment of the cells with neuaminidase or periodate. Presumably, neuraminic acid residues on host cell surface carbohydrates inhibit adhesion. The finding that P- gonococci bind to amphipathic gels suggests hydrophobic interactions as a possible non-specific mechanism attaching P- gonococci to host cell surfaces.  相似文献   

19.
HNK-1 antibody reactive carbohydrate epitope carried by glycolipids and glycoproteins has been shown to be involved in cell to cell interactions. It has been proposed that the HNK-1 reactive 3-sulfoglucuronyl carbohydrate epitope in glycolipids may interact with a cell surface receptor to promote the biological response in the developing nervous system. The possible occurrence of such a receptor was examined in rat nervous system. A specific binding of sulfoglycolipids to a 30 kD protein from adult rat cerebellum is described. Little binding was found with neutral glycolipids and gangliosides. The 30 kD protein from cerebellum was partially purified on a sulfatide-octyl-Sepharose affinity column. Binding of sulfoglucuronyl glycolipids to a similar 30 kD protein from forebrain previously identified as amphoterin is also shown. Amphoterin is developmentally regulated and is involved in neural cell adhesion and neurite extension.  相似文献   

20.

Background

After uropathogenic Escherichia coli (UPEC), Enterococcus faecalis is the second most common pathogen causing urinary tract infections. Monoglucosyl-diacylglycerol (MGlcDAG) and diglucosyl-diacylglycerol (DGlcDAG) are the main glycolipids of the E. faecalis cell membrane. Examination of two mutants in genes bgsB and bgsA (both glycosyltransferases) showed that these genes are involved in cell membrane glycolipid biosynthesis, and that their inactivation leads to loss of glycolipids DGlcDAG (bgsA) or both MGlcDAG and DGlcDAG (bgsB). Here we investigate the function of bgsB and bgsA regarding their role in the pathogenesis in a mouse model of urinary tract infection and in bacterial adhesion to T24 bladder epithelial cells.

Results

In a mouse model of urinary tract infection, we showed that E. faecalis 12030ΔbgsB and E. faecalis 12030ΔbgsA mutants, colonize uroepithelial surfaces more efficiently than wild-type bacteria. We also demonstrated that these mutants showed a more than three-fold increased binding to human bladder carcinoma cells line T24 compared to the wild-type strain. Bacterial binding could be specifically inhibited by purified glycolipids. Lipoteichoic acid (LTA), wall-teichoic acid (WTA), and glycosaminoglycans (GAGs) were not significantly involved in binding of E. faecalis to the bladder epithelial cell line.

Conclusions

Our data show that the deletion of bgsB and bgsA and the absence of the major glycolipid diglucosyl-diacylglycerol increases colonization and binding to uroepithelial cells. We hypothesize that secreted diglucosyl-diacylglycerol blocks host binding sites, thereby preventing bacterial adhesion. Further experiments will be needed to clarify the exact mechanism underlying the adhesion through glycolipids and their cognate receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号