首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nicotinic acetylcholine receptors (nAChRs) mediate fast synaptic transmission in the insect brain and are target sites for neonicotinoid insecticides. Seven nAChR subunits (four alpha-type and three beta-type) have been cloned previously from Drosophila melanogaster, the model insect system and characterized by heterologous expression. Recently, three further putative nAChR alpha subunits (Dalpha5, Dalpha6 and Dalpha7) with sequence similarity to the vertebrate alpha7 subunit have been identified from Drosophila genome sequence data but there have been no reports, as yet, of their characterization by heterologous expression. In the present study, we report the first isolation of a full-length Dalpha7 cDNA and the independent molecular cloning of Dalpha6. Binding of nicotinic radioligands was not detected to full-length Dalpha6 or Dalpha7 subunits when expressed alone or when or co-expressed with other nAChR subunits in Drosophila or mammalian cell lines, but specific cell-surface binding of [(125)I]alpha-bungarotoxin (K(d) = 0.68 +/- 0.22 nm) and [(3)H]methyllycaconitine (K(d) = 0.27 +/- 0.06 nm) was detected after expression of a subunit chimera containing the ligand-binding domains of Dalpha6 fused to the C-terminal domain of the 5-hydroxytryptamine receptor 5HT(3A). Although cell-surface binding was not detected with a Dalpha7/5HT(3Alpha) chimera expressed alone, co-expression of the two subunit chimeras resulted in significantly enhanced levels of nicotinic radioligand binding (with no change in affinity). This is the first evidence for the formation of a nAChR binding site by heterologously expressed Drosophila nAChR subunits in the absence of a co-expressed vertebrate nAChR subunit. In addition to the formation of homomeric nAChR complexes, evidence has been obtained from both radioligand binding and co-immunoprecipitation studies for the co-assembly of Dalpha6 and Dalpha7 into heteromeric cell surface complexes.  相似文献   

2.
3.
Dalpha3 is a functional alpha-subunit of Drosophila melanogaster nicotinic acetylcholine receptors (nAChRs). Here, we produced Dalpha3-specific antibodies to study which other nAChR subunits can co-assemble with Dalpha3 in receptor complexes of the Drosophila nervous system. Immunohistochemical studies revealed that Dalpha3 is co-distributed with the beta-subunit ARD in synaptic neuropil regions of the optic lobe. Both subunits can be co-purified by alpha-bungarotoxin affinity chromatography. Dalpha3 antibodies co-immunoprecipitate Dalpha3 and ARD proteins and, vice versa, anti-ARD antibodies co-precipitate ARD and Dalpha3. These data demonstrate that one type of fly nAChRs includes these two subunits as integral components.  相似文献   

4.
5.
Nicotinic acetylcholine receptors (nAChRs) are targets for insect-selective neonicotinoid insecticides exemplified by imidacloprid (IMI) and mammalian-selective nicotinoids including nicotine and epibatidine (EPI). Despite their importance, insect nAChRs are poorly understood compared with their vertebrate counterparts. This study characterizes the [(3)H]IMI, [(3)H]EPI, and [(3)H]alpha-bungarotoxin (alpha-BGT) binding sites in hybrid nAChRs consisting of Drosophila melanogaster (fruit fly) or Myzus persicae (peach-potato aphid) alpha2 coassembled with rat beta2 subunits (Dalpha2/Rbeta2 and Mpalpha2/Rbeta2) and compares them with native insect and vertebrate alpha4beta2nAChRs. [(3)H]IMI and [(3)H]EPI bind to Dalpha2/Rbeta2 and Mpalpha2/Rbeta2 hybrids but [(3)H]alpha-BGT does not. In native Drosophila receptors, [(3)H]EPI has a single high-affinity binding site that is independent from that for [(3)H]IMI and, interestingly, overlaps the [(3)H]alpha-BGT site. In the Mpalpha2/Rbeta2 hybrid, [(3)H]IMI and [(3)H]EPI bind to the same site and have similar pharmacological profiles. On considering both neonicotinoids and nicotinoids, the Dalpha2/Rbeta2 and Mpalpha2/Rbeta2 receptors display intermediate pharmacological profiles between those of native insect and vertebrate alpha4beta2 receptors, limiting the use of these hybrid receptors for predictive toxicology. These findings are consistent with the agonist binding site being located at the nAChR subunit interface and indicate that both alpha and beta subunits influence the pharmacological properties of insect nAChRs.  相似文献   

6.
The recent introduction of the chloronicotinyl insecticide imidacloprid, targeting insect nicotinic acetylcholine receptors (nAChRs), emphasises the importance of a detailed molecular characterisation of these receptors. We are investigating the molecular diversity of insect nAChR subunit genes in an important agricultural pest, the peach-potato aphid Myzus persicae. Two M. persicae alpha-subunit cDNAs, Mp alpha1 and Mp alpha2, have been cloned previously. Here we report the isolation of three novel alpha-subunit genes (Mp alpha3-5) with overall amino acid sequence identities between 43 and 76% to characterised insect nAChR subunits. Alignment of their amino acid sequences with other invertebrate and vertebrate nAChR subunits suggests that the insect alpha subunits evolved in parallel to the vertebrate neuronal nAChRs and that the insect non-alpha subunits are clearly different from vertebrate neuronal beta and muscle non-alpha subunits. The discovery of novel subtypes in M. persicae is a further indicator of the complexity of the insect nAChR gene family. Heterologous co-expression of M. persicae nAChR alpha-subunit cDNAs with the rat beta2 in Drosophila S2 cells resulted in high-affinity binding of nicotinic radioligands. The affinity of recombinant nAChRs for [3H]imidacloprid was influenced strongly by the alpha subtype. This is the first demonstration that imidacloprid selectively acts on Mp alpha2 and Mp alpha3 subunits, but not Mp alpha1, in M. persicae.  相似文献   

7.
Nicotinic acetylcholine receptors (nAChRs) are the binding sites for nicotinoid drugs, such as nicotine and epibatidine, and are the molecular targets of the selectively insecticidal neonicotinoids. In this study we report the full length cDNA cloning of the three Ctenocephalides (C.) felis (cat flea) nAChR α subunits Cfα1, Cfα2, and Cfα3. When expressed in Xenopus oocytes as hybrid receptors with the Gallus gallus (chicken) β2 (Ggβ2) subunit, these cat flea α subunits formed acetylcholine-responsive ion channels. Acetylcholine-evoked currents of Cfα2/Ggβ2 were resistant to α-bungarotoxin, while those of Cfα1/Ggβ2 were sensitive to this snake toxin. The pharmacological profiles of Cfα1/Ggβ2, Cfα2/Ggβ2 and the chicken neuronal receptor Ggα4/Ggβ2 for acetylcholine, two nicotinoids and 6 insecticidal neonicotinoids were determined and compared. Particularly remarkable was the finding that Cfα1/Ggβ2 was far more sensitive to acetylcholine, nicotine and neonicotinoid agonists than either Cfα2/Ggβ2 or Ggα4/Ggβ2: for the anti flea neonicotinoid market compound imidacloprid the respective EC??s were 0.02 μM, 1.31 μM and 10 μM. These results were confirmed for another insect species, Drosophila melanogaster, where the pharmacological profile of the Dmα1 and Dmα2 subunits as hybrid receptors with Ggβ2 in Xenopus oocyte expressions resulted in a similar sensitivity pattern as those identified for the C. felis orthologs. Our results show that at least in a Ggβ2 hybrid receptor setting, insect α1 subunits confer higher sensitivity to neonicotinoids than α2 subunits, which may contribute in vivo to the insect-selective action of this pesticide class.  相似文献   

8.
A null mutation of the nicotinic acetylcholine receptor (nAChR) subunit Dalpha6, in Drosophila melanogaster, confers 1181-fold resistance to a new and increasingly important biopesticide, spinosad. This study's molecular characterisation of a spinosad resistance mechanism identifies Dalpha6 as a major spinosad target in D. melanogaster. Although D. melanogaster is not a major field pest, target site resistances found in this species are often conserved in pest species. This, combined with the high degree of evolutionary conservation of nAChR subunits, suggests that mutations in Dalpha6 orthologues may underpin the spinosad resistance identified in several economically important field pests.  相似文献   

9.
Acetylcholine is the major excitatory neurotransmitter in the central nervous system of insects. Mutant analysis of the Dalpha7 nicotinic acetylcholine receptor (nAChR) of Drosophila shows that it is required for the giant fiber-mediated escape behavior. The Dalpha7 protein is enriched in the dendrites of the giant fiber, and electrophysiological analysis of the giant fiber circuit showed that sensory input to the giant fiber is disrupted, as is transmission at an identified cholinergic synapse between the peripherally synapsing interneuron and the dorsal lateral muscle motor neuron. Moreover, we found that gfA1, a mutation identified in a screen for giant fiber defects more than twenty years ago, is an allele of Dalpha7. Therefore, a combination of behavioral, electrophysiological, anatomical, and genetic data indicate an essential role for the Dalpha7 nAChR in giant fiber-mediated escape in Drosophila.  相似文献   

10.
Nicotinic acetylcholine receptors (nAChRs) are important for fast synaptic cholinergic transmission. They are targets of drugs/chemicals for human and animal health as well as for pest control. With the advent of genome sequencing, entire nAChR gene families have now been described for vertebrates and invertebrates. Mostly, these are extensive with a large number of distinct subunits, making possible many nAChR subtypes differing in transmitter affinity, channel conductance, ion selectivity, desensitization, modulation and pharmacology. The smallest nAChR gene family to date is that of the fruit fly, Drosophila melanogaster, with only 10 members. This apparently compact family belies its true diversity as 4 of the 10 subunits show alternative splicing. Also, using Drosophila, A-to-I pre-mRNA editing has been demonstrated for the first time in nAChRs. Such is the extent of this variation, that one subunit alone (Dalpha6) can potentially generate far more isoforms than seen in entire gene families from other species. We present here three-dimensional models constructed for insect nAChRs, which show that many variations introduced by alternative splicing and RNA editing may influence receptor function.  相似文献   

11.
Although neuronal nicotinic acetylcholine receptors from insects have been reconstituted in vitro more than a decade ago, our knowledge about the subunit composition of native receptors as well as their functional properties still remains limited. Immunohistochemical evidence has suggested that two alpha subunits, alpha-like subunit (ALS) and Drosophila alpha2 subunit (Dalpha2), are colocalized in the synaptic neuropil of the Drosophila CNS and therefore may be subunits of the same receptor complex. To gain further understanding of the composition of these nicotinic receptors, we have examined the possibility that a receptor may imbed more than one alpha subunit using immunoprecipitations and electrophysiological investigations. Immunoprecipitation experiments of fly head extracts revealed that ALS-specific antibodies coprecipitate Dalpha2, and vice versa, and thereby suggest that these two alpha subunits must be contained within the same receptor complex, a result that is supported by investigations of reconstituted receptors in Xenopus oocytes. Discrimination between binary (ALS/beta2 or Dalpha2/beta2) and ternary (ALS/Dalpha2/beta2) receptor complexes was made on the basis of their dose-response curve to acetylcholine as well as their sensitivity to alpha-bungarotoxin or dihydro-beta-erythroidine. These data demonstrate that the presence of the two alpha subunits within a single receptor complex confers new receptor properties that cannot be predicted from knowledge of the binary receptor's properties.  相似文献   

12.
A nicotinic acetylcholine receptor (nAChR) subunit gene, Mdalpha2, was isolated and characterized from the house fly, Musca domestica. This is the first nAChR family member cloned from house flies. Mdalpha2 had a cDNA of 2,607 bp, which included a 696 bp 5'-untranslated region (UTR), an open reading frame of 1,692 bp, and a 219 bp 3'-UTR. Its deduced amino acid sequence possesses the typical characteristics of nAChRs. Mdalpha2 genomic sequence was 11.2 kb in length in the aabys strain and 10.9 kb in the OCR strain, including eight exons and seven introns. Based on the deduced amino acid sequence, Mdalpha2 had the closest phylogenetic relationship to the Drosophila melanogaster Dalpha2 and Anopheles gambiae Agamalpha2, and a similar genomic structure to Dalpha2. Quantitative real-time PCR analysis showed that Mdalpha2 is expressed in the head and the thorax at 150- and 8.5-fold higher levels than in the abdomen. Linkage analysis of a Mdalpha2 polymorphism indicates this gene is on autosome 2. The importance of these results in understanding the diversity and phylogenetic relationships of insect nAChRs, the physiology of nAChRs in the house fly, and the utility of nAChR sequences in resistance detection/monitoring is discussed.  相似文献   

13.
The value of the diffusion coefficient for oxygen in muscle is uncertain. The diffusion coefficient is important because it is a determinant of the extracellular oxygen tension at which the core of muscle fibers becomes anoxic (Po(2crit)). Anoxic cores in muscle fibers impair muscular function and may limit adaptation of muscle cells to increased load and/or activity. We used Hill's diffusion equations to determine Krogh's diffusion coefficient (Dalpha) for oxygen in single skeletal muscle fibers from Xenopus laevis at 20 degrees C (n = 6) and in myocardial trabeculae from the rat at 37 degrees C (n = 9). The trabeculae were dissected from the right ventricular myocardium of control (n = 4) and monocrotaline-treated, pulmonary hypertensive rats (n = 5). The cross-sectional area of the preparations, the maximum rate of oxygen consumption (Vo(2 max)), and Po(2crit) were determined. Dalpha increased in the following order: Xenopus muscle fibers Dalpha = 1.23 nM.mm(2).mmHg(-1).s(-1) (SD 0.12), control rat trabeculae Dalpha = 2.29 nM.mm(2).mmHg(-1).s(-1) (SD 0.24) (P = 0.0012 vs. Xenopus), and hypertrophied rat trabeculae Dalpha = 6.0 nM.mm(2).mmHg(-1).s(-1) (SD 2.8) (P = 0.039 vs. control rat trabeculae). Dalpha increased with extracellular space in the preparation (Spearman's rank correlation coefficient = 0.92, P < 0.001). The values for Dalpha indicate that Xenopus muscle fibers cannot reach Vo(2 max) in vivo because Po(2crit) can be higher than arterial Po(2) and that hypertrophied rat cardiomyocytes can become hypoxic at the maximum heart rate.  相似文献   

14.
Abstract: Neonicotinoids such as the insecticide imidacloprid (IMI) act as agonists at the insect nicotinic acetylcholine receptor (nAChR). Head membranes of Drosophila melanogaster and Musca domestica have a single high-affinity binding site for [3H]IMI with K D values of 1–2 n M and B max values of 560–850 fmol/mg of protein. Locusta and Periplaneta nAChRs isolated with an α-bungarotoxin (α-BGT)-agarose affinity column are known to be α-subunit homooligomers. This study uses 1 - [ N - (6 - chloro - 3 - pyridylmethyl) - N - ethyl]amino - 1 - amino-2-nitroethene (which inhibits [3H]IMI binding to Drosophila and Musca head membranes at 2–3 n M ) to develop a neonicotinoid-agarose affinity column. The procedure—introduction of Triton-solubilized Drosophila or Musca head membranes into this neonicotinoid-based column, elution with IMI, and analysis by lithium dodecyl sulfate-polyacrylamide gel electrophoresis—gives only three proteins (69, 66, and 61 kDa) tentatively assigned as putative subunits of the nAChR; the same three proteins are obtained with Musca using the α-BGT-agarose affinity column. Photoaffinity labeling of the Drosophila and Musca putative subunits from the neonicotinoid column with 125I-α-BGT-4-azidosalicylic acid gives a labeled derivative of 66–69 kDa. The yield is 2–5 µg of receptor protein from 1 g of Drosophila or Musca heads. Neonicotinoid affinity chromatography to isolate native Drosophila and Musca receptors will facilitate studies on the structure and function of insect nAChRs.  相似文献   

15.
To investigate the persistence of flea larvicidal activity in the immediate environment of cats treated with imidacloprid, eggs of the cat flea Ctenocephalides felis felis Bouché (Siphonaptera: Pulicidae), from untreated donor cats, were incubated on samples of fleece blanket taken from the floor of cages used by treated or untreated cats for a total of 10 or 20 6-h periods over 2-4 weeks, respectively. Sufficient imidacloprid accumulated during these periods to reduce the emergence of adult fleas by 94.7-97.6% when the blankets were tested after 18 weeks' storage at room temperature. A typical laundry procedure (washing with detergent at 50 degrees C and low temperature tumble drying) removed this biological activity. Unwashed control blankets did not support the flea life-cycle as effectively as washed blankets or a sand substrate.  相似文献   

16.
Abstract: Heterologous expression of cloned Drosophila nicotinic acetylcholine receptor (nAChR) subunits indicates that these proteins misfold when expressed in mammalian cell lines at 37°C. This misfolding can, however, be overcome either by growing transfected mammalian cells at lower temperatures or by the expression of Drosophila nAChR subunits in a Drosophila cell line. Whereas the Drosophila nAChR β subunit (SBD) cDNA, reported previously, lacked part of the SBD coding sequence, here we report the construction and expression of a full-length SBD cDNA. We have examined whether problems in expressing functional Drosophila nAChRs in either Xenopus oocytes or mammalian cell lines can be attributed to an inability of these expression systems to assemble correctly Drosophila nAChRs. Despite expression in what might be considered a more native cellular environment, we have been unable to detect functional nAChRs in a Drosophila cell line unless Drosophila nAChR subunit cDNAs are coexpressed with vertebrate nAChR subunits. Our results indicate that the folding of Drosophila nAChR subunits is temperature-sensitive and strongly suggest that the inability of these Drosophila nAChR subunits to generate functional channels in the absence of vertebrate subunits is due to a requirement for coassembly with as yet unidentified Drosophila nAChR subunits.  相似文献   

17.
Insect nicotinic acetylcholine receptors (nAChRs) play a central role in mediating neuronal synaptic transmission and are the target sites for the increasingly important group of neonicotinoid insecticides. Six nicotinic acetylcholine receptor (nAChR) subunits (four alpha-type and two beta-type) have been cloned previously from the model insect species Drosophila melanogaster. Despite extensive efforts, it has not been possible to generate functional recombinant nAChRs by heterologous expression of any combination of these six subunits. It has, however, been possible to express functional hybrid receptors when Drosophila alpha subunits are co-expressed with vertebrate beta subunits. This has led to the assumption that successful heterologous expression might require an, as yet, uncloned beta-type insect subunit. Examination of the recently completed Drosophila genomic sequence data has identified a novel putative nAChR beta-type subunit. Here we report the molecular cloning, heterologous expression and characterization of this putative Drosophila nAChR subunit (Dbeta3). Phylogenetic comparisons with other ligand-gated ion channel subunit sequences support its classification as a nAChR subunit but show it to be a distantly related member of this neurotransmitter receptor subunit family. Evidence that the Dbeta3 subunit is able to coassemble with other Drosophila nAChR subunits and contribute to recombinant nAChRs has been obtained by both radioligand binding and coimmunoprecipitation studies in transfected Drosophila S2 cells.  相似文献   

18.
Nicotinic acetylcholine receptor (nAChR) is a target for insect-selective neonicotinoid insecticides (NNs), exemplified by imidacloprid (IMI). In the present study, 78 IMI derivatives reported as inhibitors of Drosophila melanogaster nAChR (Dm-nAChR) and Musca domestica nAChR (Md-nAChR) were used for three-dimensional quantitative structure-activity relationship (3D-QSAR) studies. Two optimal models with good predictive power were obtained: Q(2) = 0.64, R(2)(pred) = 0.72 for Dm-nAChR, and Q(2) = 0.63, R(2)(pred) = 0.62 for Md-nAChR. In addition, homology modeling, molecular dynamic (MD) simulation, and molecular docking also showed that amino acids located within loops A, C, D and E play key roles in the interaction of Dm-/Md-nAChR with NNs. This is highly consistent with the results of graphical analysis of 3D-QSAR contour plots. Mutation analysis also implicates the Y/S mutation within loop B as being associated closely with NN resistance in Drosophila and Musca. The results obtained lead to a better understanding not only of interactions between these antagonists and Dm-/Md-nAChR, but also of the essential features that should be considered when designing novel inhibitors with desired activities.  相似文献   

19.
The american cockroach (Periplaneta americana) dorsal unpaired median (DUM) neurons provide an native tool to analyze the functional and pharmacological properties of ion channels and membrane receptors, such as nicotine acetylcholine receptors (nAChRs). Here the imidacloprid-activated nAChR subtypes were examined in DUM neurons by the patch-clamp technique and the potential subunits involved in important subtypes were analyzed by combining with RNA interference (RNAi) technique. Imidacloprid exerted agonist activities on one subtype in α-Bgt-sensitive nAChRs and another subtype in α-Bgt-resistant nAChRs, in which the α-Bgt-resistant subtype showed much higher sensitivity to imidacloprid than the α-Bgt-sensitive subtype, with the difference close to 200-fold. In α-Bgt-resistant nAChRs, nicotine exerted the agonist activity on two subtypes (nAChR1 and nAChR2), although imidacloprid only activated nAChR1. RNAi against Paα3, Paα8 and Paβ1 significantly reduced both imidacloprid- and nicotine-activated currents on nAChR1. In contrast, RNAi against Paα1, Paα2 and Paβ1 decreased nicotine-activated currents on nAChR2. The results indicated that, in α-Bgt-resistant nAChRs, Paα3, Paα8 and Paβ1 might be involved in the subunit composition of nAChR1, and Paα1, Paα2 and Paβ1 in nAChR2. In summary, from the present study and previous reports, we deduced that there are at least three nAChR subtypes that are sensitive to imidacloprid in the cockroach DUM neurons.  相似文献   

20.
Ansong C  Fay PJ 《Biochemistry》2005,44(24):8850-8857
Factor VIIIa consists of subunits designated A1, A2, and A3C1C2. Reassociation of the A1 and A3C1C2 subunits monitored by the factor Xa generation assay and fluorescence resonance energy transfer yielded intersubunit affinity values (K(d)) of 58.0 +/- 12.5 and 58.8 +/- 16.8 nM, respectively. These affinity values were equivalent to that previously determined for factor VIII heavy and light chains [Wakabayashi, H., et al. (2001) Biochemistry 40, 10293-10300], suggesting that the A2 domain makes a minimal contribution to the interchain affinity in factor VIII. Ca(2+) showed no effect on A1/A3C1C2 intersubunit affinity (K(d) = 51.6 +/- 16.6 nM), while Cu(2+) enhanced the A1/A3C1C2 intersubunit affinity approximately 5-fold (K(d) = 12.5 +/- 2.3 nM). A synthetic peptide to A3 domain residues 1954-1961 inhibited association of the A1 and A3C1C2 subunits (K(i) = 65.8 +/- 11.9 microM). Three factor VIII point mutants, His1957Ala, Gly1960Val, and His1961Asp, were stably expressed in BHK cells and purified. All mutants exhibited reduced specific activity (39, 42, and 4%, respectively) compared with that of wild-type factor VIII, and their activity was less stable following heat denaturation analysis (t(1/2) values of 13.3 +/- 0.7, 8.7 +/- 0.3, and 8.1 +/- 0.1 min, respectively) compared with that of the wild type (18.8 +/- 0.8 min). This reduced stability appeared to result from an approximately 2-fold increased dissociation rate for the Gly1960Val and His1961Asp dimers as judged by solid-phase binding assays. We propose that residues 1954-1961 of the A3 domain contribute to interactions with the A1 domain, facilitating their association in factor VIII.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号