首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effector/memory T cell pool branches in homing subsets selectively trafficking to organs such as gut or skin. Little is known about the critical factors in the generation of skin-homing CD8+ T cells, although they are crucial effectors in skin-restricted immune responses such as contact hypersensitivity and melanoma defense. In this study, we show that intracutaneous, but not i.v. injection of bone marrow-derived dendritic cells induced skin-homing CD8+ T cells with up-regulated E-selectin ligand expression and effector function in contact hypersensitivity. The skin-homing potential and E-selectin ligand expression remained stable in memory phase without further Ag contact. In contrast, i.p. injection induced T cells expressing the gut-homing integrin alpha(4)beta(7). Although differential expression of these adhesion molecules was strictly associated with the immunization route, the postulated skin-homing marker CCR4 was transiently up-regulated in all conditions. Interestingly, dendritic cells from different tissues effectively induced the corresponding homing markers on T cells in vitro. Our results suggest a crucial role for the tissue microenvironment and dendritic cells in the instruction of T cells for tissue-selective homing and demonstrate that Langerhans cells are specialized to target T cells to inflamed skin.  相似文献   

2.
CD1d-restricted invariant NKT (iNKT) cells can enhance immunity to cancer or prevent autoimmunity, depending on the cytokine profile secreted. Antitumor effects of the iNKT cell ligand alpha-galactosylceramide (alphaGC) and iNKT cell adoptive transfer have been demonstrated in various tumor models. Together with reduced numbers of iNKT cells in cancer patients, which have been linked to poor clinical outcome, these data suggest that cancer patients may benefit from therapy aiming at iNKT cell proliferation and activation. Herein we present results of investigations on the effects of human iNKT cells on Ag-specific CTL responses. iNKT cells were expanded using alphaGC-pulsed allogeneic DC derived from the acute myeloid leukemia cell line MUTZ-3, transduced with CD1d to enhance iNKT cell stimulation, and with IL-12 to stimulate type 1 cytokine production. Enhanced activation and increased IFN-gamma production was observed in iNKT cells, irrespective of CD4 expression, upon stimulation with IL-12-overexpressing dendritic cells. IL-12-stimulated iNKT cells strongly enhanced the MART-1 (melanoma Ag recognized by T cell 1)-specific CD8(+) CTL response, which was dependent on iNKT cell-derived IFN-gamma. Furthermore, autologous IL-12-overexpressing dendritic cells, loaded with Ag as well as alphaGC, was superior in stimulating both iNKT cells and Ag-specific CTL. This study shows that IL-12-overexpressing allogeneic dendritic cells expand IFN-gamma-producing iNKT cells, which may be more effective against tumors in vivo. Furthermore, the efficacy of autologous Ag-loaded DC vaccines may well be enhanced by IL-12 overexpression and loading with alphaGC.  相似文献   

3.
Minor histocompatibility antigens on canine hemopoietic progenitor cells   总被引:4,自引:0,他引:4  
Adoptive immunotherapy with CTL against minor histocompatibility Ags (mHA) provides a promising way to treat leukemia relapse in allogeneic chimeras. Here we describe the in vitro generation of CTL against mHA in the dog. We tested their inhibitory effect on the growth of hemopoietic progenitor cells stimulated by hemopoietic growth factors in a 4-day suspension culture. CTL were produced by coculture of donor PBMC with bone marrow-derived dendritic cells (DCs). These DCs were characterized by morphology, high expression of MHC class II and CD1a, and the absence of the monocyte-specific marker CD14. Characteristically these cells stimulated allogeneic lymphocytes (MLR) and, after pulsing with a foreign Ag (keyhole limpet hemocyanin), autologous T cells. CTL were generated either ex vivo by coculture with DCs of DLA-identical littermates or in vivo by immunization of the responder with DCs obtained from a DLA-identical littermate. In suspension culture assays the growth of hemopoietic progenitor cells was inhibited in 53% of DLA-identical littermate combinations. In canine families mHA segregated with DLA as restriction elements. One-way reactivity against mHA was found in five littermate combinations. In two cases mHA might be Y chromosome associated, in three cases autosomally inherited alleles were detected. We conclude that CTL can be produced in vitro and in vivo against mHA on canine hemopoietic progenitor cells using bone marrow-derived DCs.  相似文献   

4.
CTL lines were established in vitro by stimulating patient lymphocytes with autologous melanoma cells in the presence of IL-2. Resulting CTL lines lysed autologous melanoma and failed to lyse several allogeneic melanomas or K562. The mechanism of target cell recognition by autologous tumor-specific CTL was evaluated in this system, using several CTL lines: DT6, DT105, DT141, DT166, DT169, and DT179. Autologous melanoma lysis was inhibited by W6/32, mAb directed against HLA class I Ag, but not by L243, mAb directed against HLA class II Ag. CTL from DT6, DT141, DT166, DT169, and DT179 lysed fresh and cultured allogeneic melanomas, which shared the HLA-A2 Ag, but failed to lyse allogeneic melanomas, which shared B-region or C-region Ag, or shared no HLA class I Ag. CTL from DM141 lysed DM93, which shared A2 and Bw6, but failed to lyse DM105, which shared only Bw6. DM105 CTL failed to lyse allogeneic melanomas that shared HLA-A1, or that shared B or C region Ag, but they did lyse allogeneic melanoma DM49, which expressed an A region Ag that either was A10 or was serologically cross-reactive with A10. A T cell leukemia line, three EBV transformed B cell lines, and a pancreatic cancer line, all of which expressed HLA-A2, were not lysed by DM6 or DM179 CTL. Furthermore, HLA-matched nonmelanomas failed to inhibit autologous tumor lysis in cold target inhibition assays, whereas an HLA-A2+ allogeneic melanoma, DM93, inhibited autologous tumor lysis as effectively as the autologous tumor itself. HLA-A2, and possibly other HLA-A-region Ag, appear to function in HLA-restricted recognition of shared melanoma associated Ag by CTL.  相似文献   

5.
Allogeneic whole tumour cell vaccines are inherently practical compared with autologous vaccines. Cell lines are derived from allogeneic tumour, grown in bulk and then administered as a vaccine to the patient, following irradiation, which not only prevents any replication but also enhances antigen presentation. Protection is believed to occur through the presentation of antigens shared between the syngeneic and allogeneic tumours. Although cytokine-transfected tumour whole cell vaccines have been used clinically, little data is available comparing the effects of immunomodulatory cytokine-transfection directly on the same cells when used as both an allogeneic and autologous vaccine. To address this, weakly immunogenic B16-F10 (H-2b) murine melanoma was transfected to secrete either GM-CSF, IL-4 or IL-7. Prophylactic vaccination of both syngeneic C57/BL6 (H-2b) (B6) and allogeneic C3H/Hej (H-2k) (C3H) mice showed the effects of transfected cytokine varied between models. Both GM-CSF and IL-7 significantly (P<0.05) increased the levels of protection within syngeneic B6 mice, but had a diminished effect (P>0.05) within C3H allogeneic mice. Allogeneic B16-F10 cells and syngeneic K1735 cells generated CTL against K1735 suggesting cross-reactive immunity. Using cells labeled with fluorescent dye we demonstrate that irradiated vaccines, of either syngeneic or allogeneic origin, appear to generate potent immune responses and fragments of either vaccine remain at the injection site for up to 9 days. This study shows that protection can be enhanced in vivo by using transfected cytokine, but suggests that irradiated whole cell vaccines, of either tissue-type, are rapidly processed. This leads to the conclusion that the cytokine effects are transient and thus transfection with cytokine may be of limited long-term use in situ.  相似文献   

6.
T cell activation in response to allogeneic stimulation and hapten-specific delayed-contact hypersensitivity responses in vivo can be initiated by Ia-bearing epidermal Langerhans cells (LC). By using a murine heterotopic corneal allograft model, we have investigated the requirement for allogeneic LC as antigen-presenting cells (APC) in the in vivo induction of delayed-type hypersensitivity (DTH) and cytolytic T lymphocyte (CTL) responses to alloantigens in fully allogeneic and H-2 I region-disparate strain combinations. LC-deficient, avascular central corneal allografts from BALB/c donors failed to induce DTH responsiveness when grafted to a subdermal bed on C57BL/6 recipients (p greater than 0.05), yet antigen-specific primary CTL reactivity developed within 7 days after grafting. LC-containing corneal-limbus allografts or central corneal allografts containing a latex bead-induced infiltrate of LC resulted in intense DTH as well as CTL responsiveness when grafted in this same strain combination. Similarly, LC-containing but not LC-deficient corneal allografts from A.TL donors induced DTH responsiveness in I region-disparate A.TH hosts despite the fact that these grafts survived for prolonged duration (less than 28 days). By contrast, CTL induction in I region-disparate hosts was independent of the presence of allogeneic LC. Corneal epithelial cells of grafts removed from I region-disparate hosts 7 days posttransplantation were shown by immunohistology to express the Iak antigens of donor origin. The possibility that bone marrow-derived allogeneic LC were a sufficient requirement for DTH induction was confirmed in experiments performed with CB6F1----B6 bone marrow chimeras used as corneal allograft donors. Corneal-limbus grafts obtained from mice 90 days after chimerization were shown by immunohistology to contain Iad-bearing CB6F1 LC as a sole source of class II alloantigens. When grafted to C57BL/6 recipients, LC-containing chimeric corneas induced DTH responsiveness that was similar in magnitude to that observed in C57BL/6 mice grafted with chimeric skin, yet no DTH response to LC-deficient chimeric central corneal grafts was observed. Moreover, in all cases, the chimeric corneal and skin allografts survived for prolonged duration (greater than 28 days). These results demonstrate that donor-derived LC act as APC in the induction of DTH responsiveness to allogeneic tissue; however, there was no apparent requirement for allogeneic LC in the induction of CTL responses to class I or class II MHC alloantigens.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
Presentation of MHC class I-restricted peptides by dendritic cells (DCs) can elicit vigorous antigen-specific CTL responses in vivo. It is well established, however, that T cell help can augment CTL function, raising the question of how best to present tumor-associated MHC class I epitopes to induce effective tumor immunity. To this end, we have examined the role of MHC class II peptide-complexes present on the immunizing DCs in a murine melanoma model. To present MHC class I- and II-restricted Ags reliably on the same cell, we retrovirally transduced bone marrow-derived DCs with the model Ag OVA encoding well-defined class I- and II-restricted epitopes. The importance of CD4+ T cells activated by the immunizing DCs in this model is demonstrated by the following findings: 1) transduced DCs presenting class I and class II epitopes are more efficient than class I peptide-pulsed DCs; 2) MHC class II-deficient DCs fail to induce tumor protection; 3) CD4+ T cell depletion abolishes induction of tumor protection; and 4) DCs presenting bovine serum Ags are more effective in establishing tumor immunity than DCs cultured in syngeneic serum. When MHC class II-deficient DCs were directly activated via their CD40 receptor, we indeed observed a moderate elevation of OVA-specific CTL activity. However, this increase in CTL activity was not sufficient to induce in vivo tumor rejection. Thus, our results demonstrate the potency of genetically modified DCs that express both MHC class I and II epitopes, but caution against the use of DCs presenting only the former.  相似文献   

8.
Anchor residue-modified peptides derived from tumor-associated Ag have demonstrated success in engendering immune responses in clinical studies. However, tumor regression does not always correlate with immune responses. One hypothesis to explain this is that CTL resulting from such immunization approaches are variable in antitumor potency. In the present study, we evaluated this hypothesis by characterizing the activity of tumor-associated Ag-specific CTL. We chose an anchor residue-modified peptide from gp100, G209-2M, and used peptide-pulsed dendritic cells to generate CTL from PBMC of HLA-A2(+) normal donors. The specificities and avidities of the resulting CTL were evaluated. The results demonstrate that CTL generated by G209-2M can be classified into three categories: G209-2M-specific CTL which are cytotoxic only to G209-2M-pulsed targets; peptide-specific CTL which recognize both G209 and G209-2M peptides but not melanomas; and melanoma-reactive CTL which recognize peptide-pulsed targets as well as HLA-A2(+)gp100(+) melanomas. CTL that kill only peptide-pulsed targets require a higher peptide concentration to mediate target lysis, whereas CTL that lyse melanomas need a lower peptide concentration. Increasing peptide density on melanomas by loading exogenous G209 peptide enhances their sensitivity to peptide-specific CTL. High avidity CTL clones also demonstrate potent antimelanoma activity in melanoma model in nude mice. Injection of G209 peptide around transplanted tumors significantly enhances the antitumor activity of low avidity CTL. These results suggest that peptide stimulation causes expansion of T cell populations with a range of avidities. Successful immunotherapy may require selective expansion of the higher-avidity CTL and intratumor injection of the peptide may enhance the effect of peptide vaccines.  相似文献   

9.
Although reactive oxygen species (ROS) have long been considered to play pathogenic roles in various disorders, this classic view is now being challenged by the recent discovery of their physiological roles in cellular signaling. To determine the immunological consequence of pharmacological disruption of endogenous redox regulation, we used a selenium-containing antioxidant compound ebselen known to modulate both thioredoxin and glutaredoxin pathways. Ebselen at 5-20 micro M inhibited Con A-induced proliferation and cytokine production by the HDK-1 T cell line as well as the LPS-triggered cytokine production by XS52 dendritic cell (DC) line. Working with the in vitro-reconstituted Ag presentation system composed of bone marrow-derived DC, CD4(+) T cells purified from DO11.10 TCR-transgenic mice and OVA peptide (serving as Ag), we observed that 1) both T cells and DC elevate intracellular oxidation states upon Ag-specific interaction; 2) ebselen significantly inhibits ROS production in both populations; and 3) ebselen at 5-20 micro M inhibits DC-induced proliferation and cytokine production by T cells as well as T cell-induced cytokine production by DC. Thus, Ag-specific, bidirectional DC-T cell communication can be blocked by interfering with the redox regulation pathways. Allergic contact hypersensitivity responses in BALB/c mice to oxazolone, but not irritant contact hypersensitivity responses to croton oil, were suppressed significantly by postchallenge treatment with oral administrations of ebselen (100 mg/kg per day). These results provide both conceptual and technical frameworks for studying ROS-dependent regulation of DC-T cell communication during Ag presentation and for testing the potential utility of antioxidants for the treatment of immunological disease.  相似文献   

10.
The CD11c(int)B220(+)NK1.1(+)CD49(+) subset of cells has recently been described as IFN-producing killer dendritic cells (IKDC), which share phenotypic and functional properties of dendritic cells and NK cells. Herein we show that bone marrow-derived murine dendritic cell preparations contain abundant CD11c(int)B220(+)NK1.1(+)CD49(+) cells, the removal of which results in loss of tumoricidal activity of unpulsed dendritic cells in vivo. Moreover, following s.c. injection, as few as 5 x 10(3) highly pure bone marrow-derived IKDC cells are capable of shrinking small contralateral syngeneic tumors in C57BL/6 mice, but not in immunodeficient mice, implying the obligate involvement of host effector cells in tumor rejection. Our data suggest that bone marrow-derived IKDC represent a population that has powerful tumoricidal activity in vivo.  相似文献   

11.
Three predominantly CD8+ CTL lines, TIL 501, TIL 620, and TIL 660, were generated from three HLA-A2+ melanoma patients by culturing tumor-infiltrating lymphocytes in 1000 U/ml IL-2. These tumor-infiltrating lymphocytes lysed 12 of 18 HLA-A2+ autologous and allogeneic melanomas, but none of 20 HLA-A2-negative melanomas. They also did not lyse the MHC class I negative lymphoma-leukemia cell lines, Daudi, K562, or HLA-A2+ non-melanoma cell lines including PHA or Con A-induced lymphoblast, fibroblast, EBV-transformed B cell, Burkitt's B cell lymphoma, and colon cancer cell lines. Autologous and allogeneic melanoma lysis was inhibited by anti-CD3, by anti-MHC class I, and by anti-HLA-A2 mAb, indicating recognition of shared tumor Ag among melanoma cell lines in a TCR-dependent, HLA-A2-restricted manner. Six HLA-A2-negative melanoma cell lines obtained from five HLA-A2-negative patients were co-transfected with the HLA-A2.1 gene and pSV2neo. All 17 cloned transfectants expressing cell surface HLA-A2 molecules, but none of 12 transfectants lacking HLA-A2 expression, were lysed by these three HLA-A2-restricted, melanoma-specific CTL. Lysis of the HLA-A2+ transfectants was inhibited by anti-CD3, by anti-MHC class I, and by anti-HLA-A2 mAb, indicating recognition of shared tumor Ag on transfectants in a TCR-dependent, HLA-A2-restricted manner. These results identify the HLA-A2.1 molecule as an Ag-presenting molecule for melanoma Ag. They also suggest that common melanoma Ag are expressed among melanoma patients regardless of HLA type. These findings have implications for the development of melanoma vaccines that would induce antitumor T cell responses.  相似文献   

12.
Due to their capacity to induce primary immune responses, dendritic cells (DC) are attractive vectors for immunotherapy of cancer. Yet the targeting of tumor Ags to DC remains a challenge. Here we show that immature human monocyte-derived DC capture various killed tumor cells, including Jurkat T cell lymphoma, malignant melanoma, and prostate carcinoma. DC loaded with killed tumor cells induce MHC class I- and class II-restricted proliferation of autologous CD8+ and CD4+ T cells, demonstrating cross-presentation of tumor cell-derived Ags. Furthermore, tumor-loaded DC elicit expansion of CTL with cytotoxic activity against the tumor cells used for immunization. CTL elicited by DC loaded with the PC3 prostate carcinoma cell bodies kill another prostate carcinoma cell line, DU145, suggesting recognition of shared Ags. Finally, CTL elicited by DC loaded with killed LNCap prostate carcinoma cells, which express prostate specific Ag (PSA), are able to kill PSA peptide-pulsed T2 cells. This demonstrates that induced CTL activity is not only due to alloantigens, and that alloantigens do not prevent the activation of T cells specific for tumor-associated Ags. This approach opens the possibility of using allogeneic tumor cells as a source of tumor Ag for antitumor therapies.  相似文献   

13.
We investigated genetic restrictions in the induction of immediate tolerance to DNFB contact sensitivity in mice. Using spleen cells from various donor strains haptenated at 500 micro M DNFB, we were unable to detect any restrictions in tolerance induction in recipients that were either syngeneic or allogeneic to the donor strain. However, if the concentration of hapten used in the in vitro labeling was decreased (from 500 micro M to 2.5 to 5 micro M DNFB), differences in tolerogenesis between the various donor strain haplotypes were found. Haptenated spleen cells labeled with 5 micro M DNFB produced a profound level of unresponsiveness in allogeneic recipients but produced minimal tolerance in syngeneic animals. This tolerant state was shown to be antigen-specific and was not produced by unmodified allogeneic cells alone. Further genetic analysis demonstrated that an efficient tolerant state was produced when the donor of the tolerogen and recipient differed at the MLS locus rather than at either the MHC or minor regions. This phenomenon required viable, Thy 1-bearing cells in the haptenated donor population for efficient tolerogenesis to DNFB contact sensitivity.  相似文献   

14.
Many preclinical studies of cancer immunotherapy are based on the testing of a single vaccination strategy in several tumor models. Moreover, most of those studies used xenogeneic Ags, which, owing to their high immunogenicity, may not represent realistic models for the validation of cancer immunotherapies. To address these issues, we compared the vaccination efficacy of three well established strategies (i.e., naked DNA; peptide-pulsed dendritic cells (DC), or a mixture of peptide and the Escherichia coli toxin LTR72) using the xenogeneic OVA or the naturally expressed tyrosinase-related protein 2 (TRP-2) tumor Ag in the B16 melanoma model. C57BL/6 mice received one to three s.c. injections of peptide-pulsed DC or DNA, or one to four mucosal administrations of peptide-toxin mixture. One to 2 wk later, the animals were challenged s.c. with B16 or B16 cells expressing OVA (B16-OVA). Vaccination of mice with OVA induced in all cases melanoma-specific CTL and protection against B16-OVA. When TRP-2 was used, all three vaccines elicited B16-specific CTL, but only DC pulsed with the immunodominant T cell epitope TRP-2181-188 allowed protection against B16. Even more importantly, a vaccination regimen with TRP-2-pulsed DC, started 24 h after the injection of a lethal number of B16 cells, caused a therapeutic effect in 60% of the challenged animals. Our results strongly emphasize the relevance of the tumor Ag in the definition of immunotherapeutic strategies for cancer, and support the use of peptide-pulsed DC as cancer vaccine in humans.  相似文献   

15.
Chronic graft-versus-host disease (cGVHD) is considered an autoimmune-like disease mediated by donor CD4(+) T cells, but the origin of the autoreactive T cells is still controversial. In this article, we report that the transplantation of DBA/2 donor spleen cells into thymectomized MHC-matched allogeneic BALB/c recipients induced autoimmune-like cGVHD, although not in control syngeneic DBA/2 recipients. The donor-type CD4(+) T cells from the former but not the latter recipients induced autoimmune-like manifestations in secondary allogeneic BALB/c as well as syngeneic DBA/2 recipients. Transfer of donor-type CD4(+) T cells from secondary DBA/2 recipients with disease into syngeneic donor-type or allogeneic host-type tertiary recipients propagated autoimmune-like manifestations in both. Furthermore, TCR spectratyping revealed that the clonal expansion of the autoreactive CD4(+) T cells in cGVHD recipients was initiated by an alloimmune response. Finally, hybridoma CD4(+) T clones derived from DBA/2 recipients with disease proliferated similarly in response to stimulation by syngeneic donor-type or allogeneic host-type dendritic cells. These results demonstrate that the autoimmune-like manifestations in cGVHD can be mediated by a population of donor CD4(+) T cells in transplants that simultaneously recognize Ags presented by both donor and host APCs.  相似文献   

16.
17.
Cloned cytotoxic T lymphocytes (CTL) specific for lymphocytic choriomeningitis virus (LCMV) were adoptively transferred to syngeneic mice acutely or persistently (carrier mice) infected with LCMV. Although infectious virus was cleared from the spleens during acute LCMV infection begun 24 hr earlier and the spleens remained clear of virus for the 4 days of testing, there was no concomitant reduction of viral titers in lymph nodes. In contrast, adoptive transfer of cloned CTL into animals with persistent rather than acute LCMV infection resulted in deaths of syngeneic but not allogeneic recipients. LCMV-immune spleen cells taken 30 to 50 days after a primary immunization and activated by in vitro stimulation before transfer also caused death of syngeneic carrier mice. However, LCMV-immune spleen cell per se provoked no clinical manifestations when transferred but cleared infectious virus and viral nucleic acid sequences from syngeneic carrier mice. The migration of 51Cr-labeled, LCMV-specific, H-2-restricted cloned CTL was assessed in vivo. The circulation of these CTL clearly differed from that of spleen cells freshly isolated from uninfected mice and from non-LCMV-specific CTL clone. Further, the circulatory pattern of LCMV-specific, H-2-restricted, cloned CTL in carrier mice was markedly different than in uninfected animals; only 7% of the injected cells remained in the lungs of uninfected mice 8 hr after injection, whereas 30% had accumulated in the liver. However, 55% of the cells injected into carrier mice still remained in their lungs 8 to 16 hr later. Hence, LCMV-specific, H-2-restricted, cloned CTL have unique trafficking patterns in the presence of LCMV antigens and immune activities in vivo.  相似文献   

18.
The human high m.w.-melanoma-associated Ag (HMW-MAA) is an attractive target for the immunotherapy of melanoma, due to its relatively high expression in a high percentage of melanoma lesions and its restricted distribution in normal tissues. Active immunization with HMW-MAA mimics has been previously shown to induce a HMW-MAA-specific, T cell-dependent Ab response associated with an apparent clinically beneficial effect in advanced melanoma patients. Although T cells play an important role in controlling tumor growth, only limited information is available to date about the induction of HMW-MAA-specific CTL. In this report, we show that immunization of HLA-A2/K(b) transgenic mice with HMW-MAA cDNA-transfected syngeneic dendritic cells elicited a CD8(+) CTL response specific for HMW-MAA peptides with HLA-A2 Ag-binding motifs. The elicited CTL lysed HLA-A2(+)HMW-MAA(+) melanoma cells in vitro, and mouse HLA-A2/K(b) cells pulsed with HMW-MAA-derived peptides in vitro and in vivo. Although this CTL response could be generated in the absence of CD4(+) T cell help, harnessing CD4(+) T cell help in a noncognate Ag-specific manner with the polyclonal activator staphylococcal enterotoxin A augmented the CTL response. These results imply that dendritic cell-based immunization, in combination with CD4(+) T cell help, represents an effective strategy to implement T cell-based immunotherapy targeting HMW-MAA in patients with HMW-MAA-bearing tumors.  相似文献   

19.
Intravenous administration of APC such as splenocytes loaded with a soluble protein Ag has been shown to prime for an Ag-specific CTL response. It is thought that the APC directly presents loaded Ag in a MHC-restricted manner. However, it is demonstrated in this study that allogeneic splenocytes, MHC-free RBC, and even synthetic lipid vesicles (liposomes) after loading with OVA can elicit an OVA-specific and MHC-restricted CTL response. Biodistribution studies of these Ag-associated vehicles showed that the liver, spleen, and lung were the major organs responsible to scavenge these carriers, suggesting that the monocyte-macrophage system was involved in the Ag presentation for CTL. Depletion of macrophages by a specific macrophage killer, Cl2MDP, containing liposomes, abolished the CTL induction by immunization with OVA Ag carried by these vehicles except the induction by syngeneic splenocytes. Thus, the syngeneic splenocytes present Ag directly to the T cells, but other membranous vehicles carry the Ag to the host APC including macrophages, which then present it to the T cells. These results indicate that formulation of an Ag in membranous/colloidal vehicles may be a way to prime for a CTL response.  相似文献   

20.
Dendritic cells (DCs) are well known for their capacity to induce adaptive antitumor immune response through Ag presentation and tumor-specific T cell activation. Recent findings reveal that besides this role, DCs may display additional antitumor effects. In this study, we provide evidence that LPS- or IFN-gamma-activated rat bone marrow-derived dendritic cells (BMDCs) display killing properties against tumor cells. These cytotoxic BMDCs exhibit a mature DC phenotype, produce high amounts of IL-12, IL-6, and TNF-alpha, and retain their phagocytic properties. BMDC-mediated tumor cell killing requires cell-cell contact and depends on NO production, but not on perforin/granzyme or on death receptors. Furthermore, dead tumor cells do not exhibit characteristics of apoptosis. Thus, intratumoral LPS injections induce an increase of inducible NO synthase expression in tumor-infiltrating DCs associated with a significant arrest of tumor growth. Altogether, these results suggest that LPS-activated BMDCs represent powerful tumoricidal cells which enforce their potential as anticancer cellular vaccines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号