首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary A total of 107 bacterial strains were isolated from rhizosphere soil of Diplachne fusca naturally grown in industrial metal-contaminated soils. All the isolates were examined for their ability to tolerate Cd2+, Cr3+, Co2+, Cu2+, Pb2+, Ni2+ and Zn2+ in their growth medium, in addition, three related phenotypic characters, the ability to produce acids and siderophores and/or calcium phosphate solubilization, were tested. The resistance patterns, expressed as MICs, for all bacterial isolates to seven different metal ions were surveyed by using the agar dilution method. A great proportion of the isolates were resistant to Cr (99%), Pb (93%), Cu (87%) and Zn (86%). On the other hand, 77, 49 and 45% were sensitive to Co, Ni and Cd, respectively. The majority of the strains tested (98%) were multiple metal-resistant, with hexametal resistance as the major pattern (24.2%). The increase in metal ion uptake (especially Cr, Pb, Zn and Ni) by D. fusca was correlated with higher numbers of siderophore-producing, phosphate-solubilizing and acid-producing bacteria 95, 81 and 64%, respectively.  相似文献   

2.
This study was designed to isolate and characterize endophytic bacteria from sunflower (Helianthus annuus) grown under irrigation and water stress (drought) conditions, to analyze growth of isolated bacteria under drought condition, and to evaluate the ability of bacteria isolated from plants cultivated under drought to produce jasmonates (JAs) and abscisic acid (ABA). Bacteria were isolated from soil samples collected when sunflower plants were at the end of the vegetative stage. A total of 29 endophytic strains were isolated from plants grown under irrigation or drought condition. Eight strains (termed SF1 through SF8) were selected based on nitrogen-fixing ability. All eight strains showed positive catalase and oxidase activities; five strains (SF2, SF3, SF4, SF5, SF7) solubilized phosphates; none of the strains produced siderophores. Strains SF2, SF3, SF4, and SF5, the ones with the highest phosphate solubilization ability, strongly inhibited growth of the pathogenic fungi Verticillum orense and Sclerotinia sclerotiorum but had less inhibitory effect on Alternaria sp. Among the eight strains, SF2 showed 99.9% sequence homology with Achromobacter xiloxidans or Alcaligenes sp., while the other seven showed 99.9% homology with Bacillus pumilus. Strains SF2, SF3, and SF4 grown in control medium produced jasmonic acid (JA), 12-oxo-phytodienoic acid (OPDA), and ABA. These three strains did not differ in amount of JA or OPDA produced. ABA content was higher than that of JA, and production of both ABA and JA increased under drought condition. The characteristics of these isolated bacterial strains have technological implications for inoculant formulation and improved growth of sunflower crops.  相似文献   

3.
Fifty fluorescent pseudomonads were isolated from rhizospheric soil of green gram from nearby area of Kaziranga, Assam, India and assayed for their extracellular proteinase production. Out of these isolates, 20 were found to be prominent in proteinase production. Genetic diversity of the 20 isolates were analyzed through BOX-PCR fingerprinting and 16S rDNA-RFLP along with three reference strains, viz., Pseudomonas fluorescens (NCIM2099T), Pseudomonas aureofaciens (NCIM2026T), and Pseudomonas aeruginosa (MTCC2582T). BOX-PCR produced two distinct clusters at 56% similarity coefficient and seven distinct BOX profiles. 16S rDNA-RFLP with three tetra-cutters restriction enzymes (HaeIII, AluI, and MspI) revealed two major clusters A and B; cluster A contained only single isolate FPS9 while the rest of 22 isolates belonged to the cluster B. Based on phenotypic characters and 16S rDNA sequence similarity, all the eight highly proteinase-producing strains were affiliated with P. aeruginosa. The proteinase was extracted from two most prominent strains (KFP1 and KFP2), purified by a three-step process involving (NH4)2SO4 precipitation, gel filtration, and ion exchange chromatography. The enzyme had an optimal pH of 8.0 and exhibit highest activity at 60°C and 37°C by KFP1 and KFP2 respectively. The specific activities were recorded as 75,050 (for KFP1) and 81,320 U/mg (for KFP2). The purified enzyme was migrated as a single band on native and SDS-PAGE with a molecular mass of 32 kDa. Zn2+, Cu2+, and Ni2+ ion inhibited the enzyme activity. Enzyme activity was also inhibited by EDTA established as their metallo-proteinase nature.  相似文献   

4.
When Azotobacter vinelandii was grown in the presence of low levels of iron, the addition of 20 or 40 μM ZnSO4 caused earlier production of the catechol siderophores and a dramatic increase in the amount of azotobactin. The level of cellular iron was not significantly lowered in Zn2+ -grown cells, which suggested that Zn2+ was not causing more severe, or earlier, iron limitation. Also, Zn2+ did not appear to affect production of the high-molecular-weight outer membrane iron-repressible proteins that presumably function as ferrisiderophore receptors. Spectrophotometric examination of ion binding to the siderophores revealed that while the siderophores appeared to bind Zn2+, only in the case of azotochelin was iron unable to completely overcome any Zn2+ -induced changes in the absorption spectra. This appeared to rule out direct competition of Zn2+ with iron for binding to the siderophores. 55Fe uptake was depressed both in Zn2+ -grown cells and in Zn2+ -free cells to which Zn2+ was added during the uptake assay, except with azotobactin, with which the level of 55Fe uptake by Zn2+ -grown cells was close to control levels. These results suggested two possible sites where Zn2+ could be acting, one involving the biosynthesis of siderophores and possibly the genetic regulation of the iron assimilation system and the other involving an internal point common to iron assimilation by both high- and low-affinity iron uptake.  相似文献   

5.
Membrane-bound ATPase (EC 3.6.1.4) of acidophilic heterotrophic bacteria from mine environment was isolated and characterized. The enzyme preparations fromAcidiphilium symbioticum KM2 and the strains GS18h and GS19h have a pH optimum of 7.7, 8.2 and 7.7, respectively, in the presence of Mg2+ which is required for activity. In an assay system containing Mn2+ or Ca2+ only, some activity was also evident. These enzymes hydrolyzed inorganic diphosphate (PPi), guanosine triphosphate (GTP) and inosine triphosphate (ITP) as the better substrate than ATP and theK m values of the enzymes with respect to ATP were determined to be 238, 157 and 228 μmol/L forA. symbioticum KM2 and the strains GS18h and GS19h, respectively. The activity was stimulated by sulfite while Zn2+, Hg2+, 4-chloromercuribenzoic acid (p-CMB) and the specific inhibitors of F0F1 type ATPase,viz. N,N′-dicyclohexylcarbodiimide (DCCD), oligomycin and azide reduced the activity of the enzyme preparations.  相似文献   

6.
The differential availabilities of the hydroxamate siderophores ferrioxamine B (FOB) and ferrichrome (FC) and the pseudobactin siderophores St3, 7NSK2, and WCS 358 as sources of Fe for soil and rhizosphere bacteria were studied. About 20% of the total bacterial CFU from the rhizospheres of four plant species were able to use FOB as the sole Fe source in an Fe-deficient medium, while about 12, 10, 2, and > 1% were able to use FC and pseudobactins 7NSK2, St3, and WCS 358, respectively. Of the 165 colonies isolated from plates containing pseudobactins, 64 were able to use the pseudobactin on which they were isolated as the sole Fe source in pure culture. Cross-feeding tests showed that almost all of these 64 strains were also able to use at least one of the other siderophores studied (pseudobactin, FOB, or FC). Pseudomonas putida StS2, Pseudomonas maltophilia 7NM1, and Vibrio fluvialis WS1, which were originally isolated on pseudobactins St3, 7NSK2, and WCS 358, respectively, were selected for their ability to grow with pseudobactin St3 as the sole Fe source. They incorporated 55Fe3+ mediated by pseudobactin St3 at various rates (71.5, 4, and 23 pmol/min/mg [dry weight] of cells, respectively). Similarly, P. putida St3 was shown to incorporate 55Fe3+ mediated by FOB and FC. We suggest that the ability of bacteria to utilize a large variety of siderophores confers an ecological advantage.  相似文献   

7.
The antioxidant potencies of chondroitin sulfates (CSs) from shark cartilage, salmon cartilage, bovine trachea, and porcine intestinal mucosa were compared by three representative methods for the measurement of the antioxidant activity; DPPH radical scavenging activity, superoxide radical scavenging activity, and hydroxyl radical scavenging activity. CSs from salmon cartilage and bovine trachea showed higher potency in comparison with CSs from shark cartilage and porcine intestinal mucosa. Next, CS from salmon cartilage chelating with Ca2+, Mg2+, Mn2+, or Zn2+ were prepared, and their antioxidant potencies were compared. CS chelating with Ca2+ or Mg2+ ions showed rather decreased DPPH radical scavenging activity in comparison with CS of H+ form. In contrast, CS chelating with Ca2+ or Mg2+ ion showed remarkably enhanced superoxide radical scavenging activity than CS of H+ or Na+ form. Moreover, CS chelating with divalent metal ions, Ca2+, Mg2+, Mn2+, or Zn2+, showed noticeably higher hydroxyl radical scavenging activity than CS of H+ or Na+ form. The present results revealed that the scavenging activities of, at least, superoxide radical and hydroxyl radical were enhanced by the chelation with divalent metal ions.  相似文献   

8.
We studied the effects of Zn2+ on creatine kinase from the Chinese soft-shelled turtle, Pelodiscus sinensis (PSCK). Zn2+ inactivated the activity of PSCK (IC50?=?.079?±?.004?mM) following first-order kinetics consistent with multiple phases. The spectrofluorimetry results showed that Zn2+ induced significant tertiary structural changes of PSCK with exposure to hydrophobic surfaces and that Zn2+ directly induced PSCK aggregation. The addition of osmolytes such as glycine, proline, and liquaemin successfully blocked PSCK aggregation, recovering the conformation and activity of PSCK. We measured the ORF gene sequence of PSCK by rapid amplification of cDNA end and simulated the 3D structure of PSCK. The results of molecular dynamics simulations showed that eight Zn2+ bind to PSCK and one Zn2+ is predicted to bind in a plausible active site of creatine and ATP. The interaction of Zn2+ with the active site could mostly block the activity of PSCK. Our study provides important insight into the action of Zn2+ on PSCK as well as more insights into the PSCK folding and ligand-binding mechanisms, which could provide important insight into the metabolic enzymes of P. sinensis.  相似文献   

9.
The glutathione (GSH) status and heavy metal tolerance were investigated in four Paxillus involutus strains isolated from different heavy-metal-polluted and non-polluted regions of Europe. The heavy metal burden in the habitats did not affect significantly either the heavy metal (Cr2O72−, Cd2+, Hg2+, Pb2+, Zn2+, Cu2+) tolerance and accumulation or the GSH production of the strains tested. Exposures to heavy metals increased the intracellular GSH concentrations in 12 from 24 experimental arrangements (four strains exposed to six heavy metals) independently of the habitats of the strains. The importance of GSH in heavy metal tolerance (high MIC values, ability to accumulate heavy metals and to grow in the presence of heavy metals) was thus demonstrated in this ectomycorrhizal fungus.  相似文献   

10.
Out of nine psychrotrophic bacterial strains isolated from cold environments of the Western Himalayas, SKPB5 was selected for protease purification and characterization because it had the largest zone of clearance on plate assay. On the basis of the phenotypic and biochemical characterization and 16S rRNA gene-sequencing studies, isolate was identified as Exiguobacterium sp. SKPB5. The protease was purified near to homogeneity with a purification fold of 7.1, and its molecular weight was determined to be 36 kDa. The enzyme exhibited maximum stability at 50°C and an optimal pH of 8.0. Metal ions Mg2+, Ca2+, Zn2+, and Mn2+ enhanced the enzyme activity, whereas Cu2+ had no effect. Phenylmethanesulfonyl fluoride and ethylenediaminetetraacetic acid did not show any effect on the activity of the enzyme, whereas a 20% increase in activity was observed when it was incubated in presence of reducing agents such as β-mercaptoethanol and dithiothreitol. This suggests that the protease isolated from psychrotrophic Exiguobacterium sp. SKPB5 belongs to the cysteine family. The results highlight the relevance of unexplored microbes from cold environments of Western Himalayas for the isolation of protease enzymes active at wide range of temperature and pH.  相似文献   

11.
Alcaligenes eutrophus CH34 DNA fragments encoding resistance to Cd2+, Co2+, Zn2+ (czc), or Hg2+ (merA) were cloned and used as probes in colony hybridization procedures with bacteria isolated from polluted environments such as a zinc factory area (desertified because of the toxic effects of zinc contamination) and from sediments from factories of nonferrous metallurgy in Belgium and mine areas in Zaire. From the different soil samples, strains could be isolated and hybridized with the czc probe (resistance to Cd2+, Co2+, and Zn2+ from plasmid pMOL30). Percentages of CFU isolated on nonselective plates which hybridized with the czc and the mercury resistance probes were, respectively, 25 and 0% for the zinc desert, 15 to 20 and 10 to 20% for the two Belgian factories, and 40 and 40% for the Likasi mine area. Most of these strains also carried two large plasmids of about the same size as those of A. eutrophus CH34 and shared many phenotypic traits with this strain. These findings indicated a certain correlation between the heavy-metal content in contaminated soils and the presence of heavy-metal-resistant megaplasmid-bearing A. eutrophus strains.  相似文献   

12.
Pseudomonas aeruginosa phosphorylcholine phosphatase (PchP) catalyzes the hydrolysis of phosphorylcholine, which is produced by the action of hemolytic phospholipase C on phosphatidylcholine or sphyngomielin, to generate choline and inorganic phosphate. Among divalent cations, its activity is dependent on Mg2+ or Zn2+. Mg2+ produced identical activation at pH 5.0 and 7.4, but Zn2+ was an activator at pH 5.0 and became an inhibitor at pH 7.4. At this higher pH, very low concentrations of Zn2+ inhibited enzymatic activity even in the presence of saturating Mg2+ concentrations. Considering experimental and theoretical physicochemical calculations performed by different authors, we conclude that at pH 5.0, Mg2+ and Zn2+ are hexacoordinated in an octahedral arrangement in the PchP active site. At pH 7.4, Mg2+ conserves the octahedral coordination maintaining enzymatic activity. The inhibition produced by Zn2+ at 7.4 is interpreted as a change from octahedral to tetrahedral coordination geometry which is produced by hydrolysis of the [ \textZn 2+ \textL 2 - 1 \textL 20 ( \textH 2 \textO ) 2 ] \left[ {{\text{Zn}}^{ 2+ } {\text{L}}_{ 2}^{ - 1} {\text{L}}_{ 2}^{0} \left( {{\text{H}}_{ 2} {\text{O}}} \right)_{ 2} } \right] complex.  相似文献   

13.
Aim: To assess esterase profiling of members of Geodermatophilaceae isolated from desert stones and monuments in Tunisia and Egypt. Methods and Results: Members of Geodermatophilaceae family isolated from desert stones and monuments in Tunisia and Egypt were characterized by partial 16S rRNA sequences. Twenty‐five strains were clustered in three dissimilar groups of the genera Geodermatophilus (12 strains), Blastococcus (5 strains) and Modestobacter (3 strains). Isolates were also screened and typed based on major groups of esterase hydrolytic activity. Their esterase patterns were determined and compared to those of ten reference strains belonging to Geodermatophilaceae family. Strains exhibited a diverse and complex pattern of electrophoretic esterase bands, and 31 haplotypes were obtained for the 35 investigated strains. Esterases produced by members of Geodermatophilaceae family have an optimal activity around 40°C and at pH 8. Esterases from Geodermatophilus strains display a high resistance to thermal inactivation and alkaline pH and retaining 30 and 20% of activity after heating for 20 min at 120°C and at pH 12, respectively, and were completely inactivated after 30 min at 120°C. Enzyme activity has been strongly activated in the presence of Ca2+and Mg2+ ions and moderately by Zn2+ and was markedly inhibited by Cu2+ and Co2+ ions. Conclusions: Geodermatophilaceae isolates share a rich and particular pool of esterase activities that could be directly linked to harsh conditions characterizing their ecological habitat including high level of aridity, temperature, ionic strength and low nutrient availability. Significance and Impact of the Study: Esterase could be considered as enzymatic signature that outlines adaptability of Geodermatophilaceae in arid area.  相似文献   

14.
Phytase activity in rabbit cecal bacteria   总被引:1,自引:0,他引:1  
The presence of phytase activity was demonstrated in 26 strains of rabbit cecal bacteria. In 25 strains a low phytase activity, 0.10–0.62 μmol phosphate released per min per mg protein, was found. High activity (2.61 μmol/min per mg protein) was found in the strain PP2 identified as Enterococcus hirae. Phytase activity was cell-associated, being higher in the cell extract than in the cell walls. Extracellular phytase activity and cell-associated phosphatase activity were not detected. Phytase activity was optimal around pH 5.0, which is below the physiological cecal pH range. The K m determined using the Lineweaver-Burk plot was 0.19 μmol/mL. Cations Fe3+, Cu2+ and Zn2+ at 0.5 mmol/L decreased phytase activity in sonicated cells of E. hirae by 99.4, 90.7 and 96.5 %, respectively. In contrast, Mg2+ increased activity by 11.0 %. Characteristics of E. hirae phytase (pH optimum, K m, cation sensitivity) were similar to those of other bacterial phytases reported in the literature. Other bacteria with a high phytase activity may be present in the rabbit cecum but remain to be identified.  相似文献   

15.
We present the first evidence that electrophoretically and immunologically homogeneous sIgAs purified from milk of healthy human mothers by chromatography on Protein A‐Sepharose and FPLC gel filtration contain intrinsically bound metal ions (Ca > Mg ≥ Al > Fe ≈ Zn ≥ Ni ≥ Cu ≥ Mn), the removal of which by a dialysis against ethylenediamine tetraacetic acid (EDTA) leads to a significant decrease in the β‐casein‐hydrolyzing activity of these antibodies (Abs). An affinity chromatography of total sIgAs on benzamidine‐Sepharose interacting with canonical serine proteases separates a small metalloprotease sIgA fraction (6.8 ± 2.4%) from the main part of these Abs with a serine protease‐like β‐casein‐hydrolyzing activity. The relative activity of this metalloprotease sIgA fraction containing intrinsically bound metal ions increases ~1.2–1.9‐fold after addition of external metal ions (Mg2+ > Fe2+ > Cu2+ ≥ Ca2+ ≥ Mn2+) but decreases by 85 ± 7% after the removal of the intrinsically bound metals. The metalloprotease sIgA fraction free of intrinsic metal ions demonstrates a high β‐casein‐hydrolyzing activity in the presence of individual external metal ions (Fe2+ > Ca2+ > Co2+ ≥ Ni2+) and especially several combinations of metals: Co2+ + Ca2+ < Mg2+ + Ca2+ < Ca2+ + Zn2+ < Fe2+ + Zn2+ < Fe2+ + Co2+ < Fe2+ + Ca2+. The patterns of hydrolysis of a 22‐mer oligopeptide corresponding to one of sIgA‐dependent specific cleavage sites in β‐casein depend significantly on the metal used. Metal‐dependent sIgAs demonstrate an extreme diversity in their affinity for casein‐Sepharose and chelating Sepharose, and interact with Sepharoses bearing immobilized monoclonal mouse IgGs against λ‐ and κ‐type light chains of human Abs. Possible ways of the production of metalloprotease abzymes (Abz) by human immune system are discussed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
Plasmids were discovered for the first time in strains belonging to different species of the genus Sulfobacillus: S. thermosulfidooxidans, S. sibiricus, S. thermotolerans, “S. olympiadicus”, and S. acidophilus. The plasmids were detected in the cells of four out of eight strains grown on a medium with ferrous iron. Adaptation to elementary sulfur was accompanied by changes in the plasmid profiles in two out of seven strains. Plasmids were detected in all the studied strains of sulfobacilli after adaptation to the pyrite-arsenopyrite ore concentrate from the Nezhdaninskoe deposit containing gold, silver, zinc, copper, and lead. No plasmids were found in S. thermotolerans Kr1T after four transfers on a medium containing iron and 0.018 mM Ag+. After adaptation of the same strain to 765 mM Zn2+, only one plasmid was found in the cells, the largest among those detected earlier in this culture adapted to the Nezhdaninskoe ore concentrate. The strain S. thermotolerans Kr1T, after four transfers on media with either 78 mM Cu2+ or 2 mM Pb2+, did not contain plasmids. The presence of plasmids in the cells of sulfobacilli did not influence their resistance to the ions of the studied metals.  相似文献   

17.
Transient receptor potential melastatin 2 (TRPM2) channel activation by reactive oxygen species (ROS) plays a critical role in delayed neuronal cell death, responsible for postischemia brain damage via altering intracellular Zn2+ homeostasis, but a mechanistic understanding is still lacking. Here, we showed that H2O2 induced neuroblastoma SH-SY5Y cell death with a significant delay, dependently of the TRPM2 channel and increased [Zn2+]i, and therefore used this cell model to investigate the mechanisms underlying ROS-induced TRPM2-mediated delayed cell death. H2O2 increased concentration-dependently the [Zn2+]i and caused lysosomal dysfunction and Zn2+ loss and, furthermore, mitochondrial Zn2+ accumulation, fragmentation, and ROS generation. Such effects were suppressed by preventing poly(adenosine diphosphate ribose, ADPR) polymerase-1-dependent TRPM2 channel activation with PJ34 and 3,3′,5,5′-tetra-tert-butyldiphenoquinone, inhibiting the TRPM2 channel with 2-aminoethoxydiphenyl borate (2-APB) and N-(p-amylcinnamoyl)anthranilic acid, or chelating Zn2+ with N,N,N,N-tetrakis(2-pyridylmethyl)-ethylenediamine (TPEN). Bafilomycin-induced lysosomal dysfunction also resulted in mitochondrial Zn2+ accumulation, fragmentation, and ROS generation that were inhibited by PJ34 or 2-APB, suggesting that these mitochondrial events are TRPM2 dependent and sequela of lysosomal dysfunction. Mitochondrial TRPM2 expression was detected and exposure to ADPR-induced Zn2+ uptake in isolated mitochondria, which was prevented by TPEN. H2O2-induced delayed cell death was inhibited by apocynin and diphenyleneiodonium, nicotinamide adenine dinucleotide phosphate hydrogen (NADPH) oxidase (NOX) inhibitors, GKT137831, an NOX1/4-specific inhibitor, or Gö6983, a protein kinase C (PKC) inhibitor. Moreover, inhibition of PKC/NOX prevented H2O2-induced ROS generation, lysosomal dysfunction and Zn2+ release, and mitochondrial Zn2+ accumulation, fragmentation and ROS generation. Collectively, these results support a critical role for the TRPM2 channel in coupling PKC/NOX-mediated ROS generation, lysosomal Zn2+ release, and mitochondrial Zn2+ accumulation, and ROS generation to form a vicious positive feedback signaling mechanism for ROS-induced delayed cell death.  相似文献   

18.
A series of naphthaldehyde‐2‐pyridinehydrazone derivatives were discovered to display interesting ‘turn‐on’ fluorescence response to Zn2+ in 99% water/DMSO (v/v) at pH 7.0. Mechanism study indicated that different substituent groups in the naphthaldehyde moiety exhibited significant influence on the detection of Zn2+. The electron rich group resulted in longer fluorescence wavelengths but smaller fluorescence enhancement for Zn2+. Among these compounds, 1 showed the highest fluorescence enhancement of 19‐fold with the lowest detection limit of 0.17 μmol/L toward Zn2+. The corresponding linear range was at least from 0.6 to 6.0 μmol/L. Significantly, 1 showed an excellent selectivity toward Zn2+ over other metal ions including Cd2+.  相似文献   

19.
A collagenolytic enzyme specific for native collagen and gelatin was isolated from Pseudomonas marinoglutinosa by DEAE-cellulose column chromatography, Sephadex G–150 gel filtration and by disc electrophoresis on polyacrylamide gel.

The molecular weight of the enzyme was approximately 74,000 and its isoelectric point was found to be around 4.5. The optimum pH and temperature for Z–GPLGP hydrolysis were around 7.6 and 38°C, respectively. The enzyme was rather stable up to 50°C and in the range between pH 5.0 and 10.0, and was stabilized by Ca2+ to some extent. Some chelating agents and metal ions such as Hg2+, Pb2+, Zn2+, Ni2+ and Fe2+ inactivated the enzyme, but diisopropyl phosphofluoridate, sulfhydryl agents and some trypsin inhibitors did not affect the activity.

The EDTA-inactivated enzyme was restored its activity by added Ca-salt to almost completely and very slightly by Co-, Mn- and Sr-salt.

Metal analysis showed the enzyme contained 1 g atom of zinc and 4 g atoms of calcium per mole.  相似文献   

20.
Thirty bacterial strains were isolated from the rhizosphere of plants collected from Egypt and screened for production of chitinase enzymes. Bacillus thuringiensis NM101-19 and Bacillus licheniformis NM120-17 had the highest chitinolytic activities amongst those investigated. The production of chitinase by B. thuringiensis and B. licheniformis was optimized using colloidal chitin medium amended with 1.5% colloidal chitin, with casein as a nitrogen source, at 30°C after five days of incubation. An enhancement of chitinase production by the two species was observed by addition of sugar substances and dried fungal mats to the colloidal chitin media. The optimal conditions for chitinase activity by B. thuringiensis and B. licheniformis were at 40°C, pH 7.0 and pH 8.0, respectively. Na+, Mg2+, Cu2+, and Ca2+ caused enhancement of enzyme activities whereas they were markedly inhibited by Zn2+, Hg2+, and Ag+. In vitro, B. thuringiensis and B. licheniformis chitinases had potential for cell wall lysis of many phytopathogenic fungi tested. The addition of B. thuringiensis chitinase was more effective than that of B. licheniformis in increasing the germination of soybean seeds infected with various phytopathogenic fungi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号