共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The fluorescence response of a positively charged cyanine dye: 3,3'-dimethylindodicarbocyanine iodide can be specifically related to the generation in Escherichia coli cells and E. coli membrane vesicles of an electrical membrane potential induced either by substrate oxidation or by an artificially imposed potassium diffusion gradient. The energy-dependent quenching of the dye fluorescence correlates well with the known effect on delta phi of: oxidation of various energy sources, external pH and solute accumulation. Thus, in the vesicles, the fluorescence quenching of the dye increases from succinate to D-lactate, to ascorbate/phenazine methosulfate and parallels the increasing ability of these electron donors to generate a delta phi. In the vesicles, delta phi is only weakly dependent on external pH, whereas in the cells, delta phi increases with increasing external pH. Lactose accumulation in the vesicles results in the partial utilization of delta phi. A calibration of the dye fluorescence in terms of delta phi has been determined using valinomycin-induced potassium diffusion potential. 相似文献
3.
H Zhang H M Huang R C Carson J Mahmood H M Thomas G E Gibson 《Analytical biochemistry》2001,298(2):170-180
Mitochondrial membrane potentials (MMP) reflect the functional status of mitochondria within cells. Fluorescent probes to estimate these potentials within cells have been available for some time, but measurements of populations of mitochondria are not possible by existing methods. Therefore, comparisons between different cell types (e.g., fibroblasts and neuroblastoma), fibroblast cell lines from different patients, or even the same cell following various experimental paradigms are not feasible. The current approach estimates populations of MMP within living cells at 37 degrees C using the combination of conventional fluorescence microscopy and three-dimensional deconvolution by exhaustive photon reassignment. With this method, raw images are acquired rapidly with low-intensity (nonlaser) light with minimal concentrations of fluorescent dye. The method uses the fluorescent dye tetramethylrhodamine methyl ester, which equilibrates in cells according to the Nernst equation and provides a numerical, replicable estimate of MMP for populations of cellular mitochondria. This method can detect either increases or decreases in MMP as small as 5%. Furthermore, MMP in different cell types appear distinct. Values in fibroblasts (-105 +/- 0.9 mV) and N2a cells (-81 +/- 0.7 mV) were very different by this method. This approach bridges investigations of individual mitochondria to those that assess MMP by examining global fluorescence from cells. 相似文献
4.
Channel currents during spontaneous action potentials in embryonic chick heart cells. The action potential patch clamp. 总被引:1,自引:1,他引:1
下载免费PDF全文

Single-channel currents were recorded with the cell-attached patch-clamp technique from small clusters (2-20 cells) of spontaneously beating 7-d embryo ventricle cells. Because the preparation was rhythmically active, the trans-patch potential varied with the action potential (AP). The total current through the patch membrane was the patch action current (AC). ACs and APs could be recorded simultaneously, with two electrodes, or sequentially with one electrode. Channel activity, which varied depending on the number and type of channels in the patch, was present during normal cell firing. This method can reveal the kinetics and magnitudes of the specific currents that contributed to the AP, under conditions that reflect not only the time and voltage dependence of the channels, but also environmental factors that may influence channel behavior during the AP. 相似文献
5.
B Dufy J Barker 《Comptes rendus des séances de la Société de biologie et de ses filiales》1983,177(2):166-174
Membrane ionic currents of the GH3 pituitary cell line have been studied using voltage clamp techniques. The inward current is completely blocked by cobalt (Co2+) ions and appeared to be carried by calcium ions. Three outward currents can be differentiated on the ground of kinetics and pharmacological studies: a transient current blocked by 4-aminopyridine (4 AP) and two delayed outward current which are voltage dependent. One is blocked by tetraethylammonium (TEA); the second is blocked by Co2+ and represents a calcium-activated potassium conductance. 相似文献
6.
7.
The course of the total transmembrane ionic current (Ii) during a natural action potential (AP) was reconstructed from a family of current traces recorded for single voltage clamp depolarization steps to various levels. The experiments were performed on 9 papillary cat muscles driven at 0.5 per second in oxygenated 31 degrees C Tyrode. Under varying experimental conditions very good agreement was found between the resulting Ii curve and another indicator of Ii, the first time derivative of the AP (dV/dt). Furthermore, the coefficient needed to adjust dV/dt to reconstructed Ii may serve as an indicator of the membrane capacity. The results suggest the validity of the employed approximation and, in general, the adequacy of the sucrose gap technique applied to cardiac muscle. 相似文献
8.
Etherton B 《Plant physiology》1972,49(6):1019-1020
The electrical potentials across the cell membranes of the lower parts of Zea mays coleoptile cells are about 2 millivolts more negative than across the upper parts. This electrical polarization with respect to gravity occurs when coleoptiles are oriented with their apical ends either up or down and seems independent of the magnitude of the potential when the potential is modified by other treatments. 相似文献
9.
V A Tverdislov 《Biofizika》1971,16(5):936-938
10.
Y Kasamaki A C Guo L M Shuba T Ogura T F McDonald 《Canadian journal of physiology and pharmacology》1999,77(5):339-349
When guinea-pig papillary muscles were depolarized to ca. -30 mV by superfusion with K+-free Tyrode's solution supplemented with Ba2+, Ni2+, and D600, addition of Cs+ transiently hyperpolarized the membrane in a reproducible manner. The size of the hyperpolarization (pump potential) depended on the duration of the preceding K+-free exposure; peak amplitudes (Epmax) elicited by 10 mM Cs+ after 5-, 10-, and 15-min K+-free exposures were 12.9, 17.7, and 23.2 mV, respectively. Pump potentials were unaffected by external Cl- but suppressed by cardiac glycosides, hyperosmotic conditions, and low-Na+ solution. Using Epmax as an indicator of Na+ pump activation, the half-maximal concentration for activation by Cs+ was 12-16.3 mM. At 6 mM, Cs+ was three times less potent than Rb+ or K+ and five times more potent than Li+. From these findings, and correlative voltage-clamp data from myocytes, we calculate that (i) a pump current of 7.8 nA/cm2 generates an Epmax of 1 mV and (ii) resting pump current in normally polarized muscle (approximately 0.16 microA/cm2) is five times smaller than previously estimated. 相似文献
11.
12.
Previous experiments on cholinergic synapses in chick cochlear hair cells have shown that calcium entering through acetylcholine-activated synaptic channels in turn activates calcium-dependent potassium currents, resulting in synaptic inhibition. In voltage-clamp experiments such currents would be expected to increase with depolarization (as the driving force for potassium entry is increased) and then decrease towards zero as the membrane approaches the calcium equilibrium potential (when calcium entry is suppressed). In the hair cells, however, such currents approached zero at about +20 mV, more than 170 mV negative to the calcium equilibrium potential. Another feature of the synapse is its post-junctional morphology: a uniform 20 nm cleft is formed between the postsynaptic membrane and the outermost membrane of an underlying cisterna. Here we present a model in which synaptic activation results in calcium influx into the subsynaptic cleft and thence into the bulk of the cytoplasm. The model suggests that the voltage dependence of the calcium-activated potassium current can be accounted for by only two basic assumptions: (i) entry of calcium through the activated synaptic channels by simple diffusion; and (ii) activation of the potassium channels by the cooperative action of four calcium ions. In addition, the model suggests that during activation the calcium concentration in the restricted subsynaptic space can reach levels adequate to activate the potassium channels, without requiring additional, more complicated, considerations (for example, secondary calcium release from the cisterna). 相似文献
13.
At the neuromuscular junction, the end-plate potential is generated by a conductance increase in the end-plate membrane. The end-plate depolarization brings the membrane potential toward the reversal potential, which diminishes the driving force for inward current flow. A. R. Martin (1955, J. Physiol. [Lond.]. 130:114-122) devised a simple formula to correct end-plate potential amplitudes for a diminished driving force based on a purely resistive model of the end-plate membrane. The model ignores the membrane capacity, the complexity of the equivalent circuit for a muscle fiber, the variation in channel lifetimes with changes in membrane potential, and the extension of the end plate along a length of the cable. We have developed a model that incorporates all of these features. The calculations show that Martin's correction is, in theory, quite satisfactory for a cable that has the characteristics of a muscle fiber unless the recording is made at a distance from the site of inward current flow. However, there is a discrepancy between models of the frog neuromuscular junction and the available experimental data, which suggests that the end-plate depolarization produced by a given current is greater than expected from their model. 相似文献
14.
C A Mannella 《Biophysical journal》1993,65(6):2269-2270
15.
A Izumo K Tanabe M Kato 《Comparative biochemistry and physiology. B, Comparative biochemistry》1988,91(4):735-739
1. The plasma membrane potential and the mitochondrial membrane potential of P. yoellii was examined by fluorescence microscopy using rhodamine 123 and by transmembrane distribution of tetraphenylphosphonium. 2. The mitochondrion of P. yoelii, free of gametocyte stage, maintained a high negative inside membrane potential. 3. Deprivation of glucose in incubation medium largely abolished the plasma membrane potential but not the mitochondrial membrane potential. 4. Studies with metabolic inhibitors showed that the mitochondrial membrane potential constituted a marginal portion as compared with the plasma membrane potential in intact infected erythrocytes. 相似文献
16.
17.
V S Lebedev L A Volodina Iu I Fedorov 《Izvestiia Akademii nauk SSSR. Seriia biologicheskaia》1989,(3):435-441
Cu2+-induced accumulation of Mg2+ ions by E. coli cells has been studied. The accumulation was demonstrated to take place only when the cell had endogenous energy resources. The data obtained and their correlation with the data on Cu2+ binding by bacterial cells and Cu2+-dependent streptomycin accumulation allowed to conclude that copper induced nonspecific potential-dependent influx of cations into cell. 相似文献
18.
Harada KH Ishii TM Takatsuka K Koizumi A Ohmori H 《Biochemical and biophysical research communications》2006,351(1):240-245
Recently, PFOS was reported to be ubiquitously detected in the environment, as well as in human serum, raising concerns regarding its health risks. We investigated the effects of PFOS on action potentials and currents in cultured rat cerebellar Purkinje cells using whole-cell patch-clamp recording. In current-clamp experiments, PFOS significantly decreased the action potential frequency during current injection, the maximum rate of fall and the threshold of action potential, and negatively shifted the resting membrane potential at doses over 30microM. In voltage-clamp experiments, PFOS shifted the half-activation and inactivation voltages of I(Ca), I(Na), and I(K) toward hyperpolarization at 30microM. I(HCN1) expressed in Xenopus oocytes was similarly affected. Incorporation of PFOS into the cell membrane probably increased the surface negative charge density, thereby reducing the transmembrane potential gradient and resulting in hyperpolarizing shifts of both the activation and inactivation of ionic channels. These findings indicate that PFOS may exhibit neurotoxicity. 相似文献
19.
Y M Bae K S Kim J K Park E Ko S Y Ryu H J Baek S H Lee W K Ho Y E Earm 《Life sciences》2001,69(21):2451-2466
The membrane potential in vascular smooth muscle cells contributes to the regulation of cytosolic [Ca2+], which in turn regulates membrane potential by means of Ca2+i-dependent ionic currents. We investigated the characteristics of Ca2+i-dependent currents in rabbit coronary and pulmonary arterial smooth muscle cells. Ca2+i-dependent currents were recorded using the whole-cell patch-clamp technique while cytosolic [Ca2+] was increased by caffeine. The reversal potentials of caffeine-induced currents were between -80 and -10 mV under normal ionic conditions, whereas they were about 0 mV when K+-free NaCl solutions were used both in pipette and bath. The total substitution of extracellular Na+ with membrane-impermeable cation N-Methyl-D-glucamine did not affect caffeine-induced currents, implying no significant contribution of Na+ as a permeant ion to the currents. The substitution of extracellular NaCl with sucrose reduced outward component of the currents and shifted the reversal potentials according to the change in Cl- equilibrium potential. Upon application of the niflumic acid under K+-free conditions, most of the current induced by caffeine was inhibited. Taken together, the results of the present study indicate that K+ and Cl- currents are major components of Ca2+i-dependent currents in vascular smooth muscles isolated from coronary and pulmonary arteries of the rabbit, and the relative contribution of each type of current to total currents are not different between the two arteries. 相似文献
20.
Extracellular currents and potentials of the active myelinated nerve fiber. 总被引:1,自引:0,他引:1
下载免费PDF全文

This paper is concerned with the accurate and rapid calculation of extracellular potentials and currents from an active myelinated nerve fiber in a volume conductor, under conditions of normal and abnormal conduction. The neuroelectric source for the problem is characterized mathematically by using a modified version of the distributed parameter model of L. Goldman and J. S. Albus (1968, Biophys. J., 8:596-607) for the myelinated nerve fiber. Solution of the partial differential equation associated with the model provides a waveform for the spatial distribution of the transmembrane potential V(z). This model-generated waveform is then used as input to a second model that is based on the principles of electromagnetic field theory, and allows one to calculate easily the spatial distribution for the potential everywhere in the surrounding volume conductor for the nerve fiber. In addition, the field theoretic model may be used to calculate the total longitudinal current in the extracellular medium (I0L(z)) and the transmembrane current per unit length (im(z)); both of these quantities are defined in connection with the well-known core conductor model and associated cable equations in electrophysiology. These potential and current quantities may also be calculated as functions of time and as such, are useful in interpreting measured I0L(t) and im(t) data waveforms. An analysis of the accuracy of conventionally used measurement techniques to determine I0L(t) and im(t) is performed, particularly with regard to the effect of electrode separation distance and size of the volume conductor on these measurements. Also, a simulation of paranodal demyelination at a single node of Ranvier is made and its effects on potential and current waveforms as well as on the conduction process are determined. In particular, our field theoretic model is used to predict the temporal waveshape of the field potentials from the active, non-uniformly conducting nerve fiber in a finite volume conductor. 相似文献