首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bacterial adhesion to target cells enhanced by shear force   总被引:24,自引:0,他引:24  
Surface adhesion of bacteria generally occurs in the presence of shear stress, and the lifetime of receptor bonds is expected to be shortened in the presence of external force. However, by using Escherichia coli expressing the lectin-like adhesin FimH and guinea pig erythrocytes in flow chamber experiments, we show that bacterial attachment to target cells switches from loose to firm upon a 10-fold increase in shear stress applied. Steered molecular dynamics simulations of tertiary structure of the FimH receptor binding domain and subsequent site-directed mutagenesis studies indicate that shear-enhancement of the FimH-receptor interactions involves extension of the interdomain linker chain under mechanical force. The ability of FimH to function as a force sensor provides a molecular mechanism for discrimination between surface-exposed and soluble receptor molecules.  相似文献   

2.
High shear enhances the adhesion of Escherichia coli bacteria binding to mannose coated surfaces via the adhesin FimH, raising the question as to whether FimH forms catch bonds that are stronger under tensile mechanical force. Here, we study the length of time that E. coli pause on mannosylated surfaces and report a double exponential decay in the duration of the pauses. This double exponential decay is unlike previous single molecule or whole cell data for other catch bonds, and indicates the existence of two distinct conformational states. We present a mathematical model, derived from the common notion of chemical allostery, which describes the lifetime of a catch bond in which mechanical force regulates the transitions between two conformational states that have different unbinding rates. The model explains these characteristics of the data: a double exponential decay, an increase in both the likelihood and lifetime of the high-binding state with shear stress, and a biphasic effect of force on detachment rates. The model parameters estimated from the data are consistent with the force-induced structural changes shown earlier in FimH. This strongly suggests that FimH forms allosteric catch bonds. The model advances our understanding of both catch bonds and the role of allostery in regulating protein activity.  相似文献   

3.
Yao J  Nellas RB  Glover MM  Shen T 《Biochemistry》2011,50(19):4097-4104
Lectins are a class of proteins known for their novel binding to saccharides. Understanding this sugar recognition process can be crucial in creating structure-based designs of proteins with various biological roles. We focus on the sugar binding of a particular lectin, ricin, which has two β-trefoil carbohydrate-binding domains (CRDs) found in several plant protein toxins. The binding ability of possible sites of ricin-like CRD has been puzzling. The apo and various (multiple) ligand-bound forms of the sugar-binding domains of ricin were studied by molecular dynamics simulations. By evaluating structural stability, hydrogen bond dynamics, flexibility, and binding energy, we obtained a detailed picture of the sugar recognition of the ricin-like CRD. Unlike what was previously believed, we found that the binding abilities of the two known sites are not independent of each other. The binding ability of one site is positively affected by the other site. While the mean positions of different binding scenarios are not altered significantly, the flexibility of the binding pockets visibly decreases upon multiple ligand binding. This change in flexibility seems to be the origin of the binding cooperativity. All the hydrogen bonds that are strong in the monoligand state are also strong in the double-ligand complex, although the stability is much higher in the latter form due to cooperativity. These strong hydrogen bonds in a monoligand state are deemed to be the essential hydrogen bonds. Furthermore, by examining the structural correlation matrix, the two domains are structurally one entity. Galactose hydroxyl groups, OH4 and OH3, are the most critical parts in both site 1α and site 2γ recognition.  相似文献   

4.
The FimH protein is the adhesive subunit of Escherichia coli type 1 fimbriae. It mediates shear-dependent bacterial binding to monomannose (1M)-coated surfaces manifested by the existence of a shear threshold for binding, below which bacteria do not adhere. The 1M-specific shear-dependent binding of FimH is consistent with so-called catch bond interactions, whose lifetime is increased by tensile force. We show here that the oligosaccharide-specific interaction of FimH with another of its ligands, trimannose (3M), lacks a shear threshold for binding, since the number of bacteria binding under static conditions is higher than under any flow. However, similar to 1M, the binding strength of surface-interacting bacteria is enhanced by shear. Bacteria transition from rolling into firm stationary surface adhesion as the shear increases. The shear-enhanced bacterial binding on 3M is mediated by catch bond properties of the 1M-binding subsite within the extended oligosaccharide-binding pocket of FimH, since structural mutations in the putative force-responsive region and in the binding site affect 1M- and 3M-specific binding in an identical manner. A shear-dependent conversion of the adhesion mode is also exhibited by P-fimbriated E. coli adhering to digalactose surfaces.  相似文献   

5.
Molecular mechanics and molecular dynamics studies are performed to investigate the conformational preference of cell surface disialogangliosides (GD1A, GD1B and GD3) in aqueous environment. The molecular mechanics calculation reveals that water mediated hydrogen bonding network plays a significant role in the structural stabilization of GD1A, GD1B and GD3. These water mediated hydrogen bonds not only exist between neighboring residues but also exist between residues that are separated by 2 to 3 residues in between. The conformational energy difference between different conformational states of gangliosides correlates very well with the number of water mediated and direct hydrogen bonds. The spatial flexibility of NeuNAc of gangliosides at the binding site of cholera toxin is worked out. The NeuNAc has a limited allowed eulerian space at the binding site of Cholera Toxin (2.4%). The molecular modeling, molecular mechanics and molecular dynamics of disialoganglioside-cholera toxin complex reveal that cholera toxin can accommodate the disialoganglioside GD1A in three different modes. A single mode of binding is permissible for GD1B and GD3. Direct and water mediated hydrogen bonding interactions stabilizes these binding modes and play an essential role in defining the order of specificity for different disialogangliosides towards cholera toxin. This study not only provides models for the disialoganglioside-cholera toxin complexes but also identifies the NeuNAc binding site as a site for design of inhibitors that can restrict the pathogenic activity of cholera toxin.  相似文献   

6.
Abstract

Molecular mechanics and molecular dynamics studies are performed to investigate the conformational preference of cell surface disialogangliosides (GD1A, GD1B and GD3) in aqueous environment. The molecular mechanics calculation reveals that water mediated hydrogen bonding network plays a significant role in the structural stabilization of GD1A, GD1B and GD3. These water mediated hydrogen bonds not only exist between neighboring residues but also exist between residues that are separated by 2 to 3 residues in between. The conformational energy difference between different conformational states of gangliosides correlates very well with the number of water mediated and direct hydrogen bonds. The spatial flexibility of NeuNAc of gangliosides at the binding site of cholera toxin is worked out. The NeuNAc has a limited allowed eulerian space at the binding site of Cholera Toxin (2.4%). The molecular modeling, molecular mechanics and molecular dynamics of disialo- ganglioside-cholera toxin complex reveal that cholera toxin can accommodate the disialo- ganglioside GD1A in three different modes. A single mode of binding is permissible for GD1B and GD3. Direct and water mediated hydrogen bonding interactions stabilizes these binding modes and play an essential role in defining the order of specificity for different disialogangliosides towards cholera toxin. This study not only provides models for the disialoganglioside-cholera toxin complexes but also identifies the NeuNAc binding site as a site for design of inhibitors that can restrict the pathogenic activity of cholera toxin.  相似文献   

7.
The bacterial adhesive protein, FimH, is the most common adhesin of Escherichia coli and mediates weak adhesion at low flow but strong adhesion at high flow. There is evidence that this occurs because FimH forms catch bonds, defined as bonds that are strengthened by tensile mechanical force. Here, we applied force to single isolated FimH bonds with an atomic force microscope in order to test this directly. If force was loaded slowly, most of the bonds broke up at low force (<60 piconewtons of rupture force). However, when force was loaded rapidly, all bonds survived until much higher force (140-180 piconewtons of rupture force), behavior that indicates a catch bond. Structural mutations or pretreatment with a monoclonal antibody, both of which allosterically stabilize a high affinity conformation of FimH, cause all bonds to survive until high forces regardless of the rate at which force is applied. Pretreatment of FimH bonds with intermediate force has the same strengthening effect on the bonds. This demonstrates that FimH forms catch bonds and that tensile force induces an allosteric switch to the high affinity, strong binding conformation of the adhesin. The catch bond behavior of FimH, the amount of force needed to regulate FimH, and the allosteric mechanism all provide insight into how bacteria bind and form biofilms in fluid flow. Additionally, these observations may provide a means for designing antiadhesive mechanisms.  相似文献   

8.
ABSTRACT

The structural and dynamical properties of water confined in nanoporous silica with a pore diameter of 2.7?nm were investigated by performing large-scale molecular dynamics simulations using the reactive force field. The radial distribution function and diffusion coefficient of water were calculated, and the values at the centre of the pore agreed well with experimental values for real water. In addition, the pore was divided into thin coaxial layers, and the average number of hydrogen bonds, hydrogen bond lifetime and hydrogen bond strength were calculated as a function of the radial distance from the pore central axis. The analysis showed that hydrogen bonds involving silanol (Si–OH) have a longer lifetime, although the average number of hydrogen bonds per atom does not change from that at the pore centre. The longer lifetime, as well as smaller diffusion coefficient, of these hydrogen bonds is attributed to their greater strength.  相似文献   

9.
With an aim toward glycogenolysis control in Type 2 diabetes, we have investigated via kinetic experiments and computation the potential of indirubin (IC?? > 50 μM), indirubin-3'-oxime (IC?? = 144 nM), KT5720 (K(i) = 18.4 nM) and staurosporine (K(i) = 0.37 nM) as phosphorylase kinase (PhKγtrnc) ATP-binding site inhibitors, with the latter two revealed as potent inhibitors in the low nM range. Because of lack of structural information, we have exploited information from homologous kinase complexes to direct in silico calculations (docking, molecular dynamics, and MMGBSA) to predict the binding characteristics of the four ligands. All inhibitors are predicted to bind in the same active site area as the ATP adenine ring, with binding dominated by hinge region hydrogen bonds to Asp104:O and Met106:O (all four ligands) and also Met106:NH (for the indirubins). The PhKγtrnc-staurosporine complex has the greatest number of receptor-ligand hydrogen bonds, while for the indirubin-3'-oxime and KT5720 complexes there is an important network of interchanging water molecules bridging inhibitor-enzyme contacts. The MM-GBSA results revealed the source of staurosporine's low nM potency to be favorable electrostatic interactions, while KT5720 has strong van der Waals contributions. KT5720 interacts with the greatest number of protein residues either by direct or 1-water bridged hydrogen bond interactions, and the potential for more selective PhK inhibition based on a KT5720 analogue has been established. Including receptor flexibility in Schr?dinger induced-fit docking calculations in most cases correctly predicted the binding modes as compared with the molecular dynamics structures; the algorithm was less effective when there were key structural waters bridging receptor-ligand contacts.  相似文献   

10.
Cysteine bonds are found near the ligand-binding sites of a wide range of microbial adhesive proteins, including the FimH adhesin of Escherichia coli. We show here that removal of the cysteine bond in the mannose-binding domain of FimH did not affect FimH-mannose binding under static or low shear conditions (< or = 0.2 dyne cm(-2)). However, the adhesion level was substantially decreased under increased fluid flow. Under intermediate shear (2 dynes cm(-2)), the ON-rate of bacterial attachment was significantly decreased for disulphide-free mutants. Molecular dynamics simulations demonstrated that the lower ON-rate of cysteine bond-free FimH could be due to destabilization of the mannose-free binding pocket of FimH. In contrast, mutant and wild-type FimH had similar conformation when bound to mannose, explaining their similar binding strength to mannose under intermediate shear. The stabilizing effect of mannose on disulphide-free FimH was also confirmed by protection of the FimH from thermal and chemical inactivation in the presence of mannose. However, this stabilizing effect could not protect the integrity of FimH structure under high shear (> 20 dynes cm(-2)), where lack of the disulphide significantly increased adhesion OFF-rates. Thus, the cysteine bonds in bacterial adhesins could be adapted to enable bacteria to bind target surfaces under increased shear conditions.  相似文献   

11.
The computer molecular modeling program HINT (Hydropathic INTeractions), an empirical hydropathic force field function that includes hydrogen bonding, coulombic and hydrophobic terms, was used to study sequence-selective doxorubicin binding/intercalation in the 64 unique CAxy, CGxy, TAxy, TGxy base pair quartet combinations. The CAAT quartet sequence is shown to have the highest binding score of the 64 combinations. Of the two regularly alternating polynucleotides, d(CGCGCG)2and d(TATATA)2, the HINT calculated binding scores reveal doxorubicin binds preferentially to d(TATATA)2. Although interactions of the chromophore with the DNA base pairs defining the intercalation site [I-1] [I+1] and the neighboring [I+2] base pair are predominant, the results obtained with HINT indicate that the base pair [I+3] contributes significantly to the sequence selectivity of doxorubicin by providing an additional hydrogen bonding opportunity for the N3' ammonium of the daunosamine sugar moiety in approximately 25% of the sequences. This observation, that interactions involving a base pair [I+3] distal to the intercalation site play a significant role in stabilizing/destabilizing the intercalation of doxorubicin into the various DNA sequences, has not been previously reported. In general terms, this work shows that molecular modeling and careful analysis of molecular interactions can have a significant role in designing and evaluating nucleotides and antineoplastic agents.  相似文献   

12.
FimH is a mannose-specific adhesin located on the tip of type 1 fimbriae of Escherichia coli that is capable of mediating shear-enhanced bacterial adhesion. FimH consists of a fimbria-associated pilin domain and a mannose-binding lectin domain, with the binding pocket positioned opposite the interdomain interface. By using the yeast two-hybrid system, purified lectin and pilin domains, and docking simulations, we show here that the FimH domains interact with one another. The affinity for mannose is greatly enhanced (up to 300-fold) in FimH variants in which the interdomain interaction is disrupted by structural mutations in either the pilin or lectin domains. Also, affinity to mannose is dramatically enhanced in isolated lectin domains or in FimH complexed with the chaperone molecule that is wedged between the domains. Furthermore, FimH with native structure mediates weak binding at low shear stress but shifts to strong binding at high shear, whereas FimH with disrupted interdomain contacts (or the isolated lectin domain) mediates strong binding to mannose-coated surfaces even under low shear. We propose that interactions between lectin and pilin domains decrease the affinity of the mannose-binding pocket via an allosteric mechanism. We further suggest that mechanical force at high shear stress separates the two domains, allowing the lectin domain to switch from a low affinity to a high affinity state. This shift provides a mechanism for FimH-mediated shear-enhanced adhesion by enabling the adhesin to form catch bond-like interactions that are longer lived at high tensile force.  相似文献   

13.
研究一种酪氨酸激酶抑制剂(tyrosine kinase inhibitor, TKI)伊马替尼(imatinib, IMA)与人血清清蛋白(HSA)及牛血清清蛋白(BSA)的相互作用,比较分析HSA和BSA与IMA相互作用机制的差异. 模拟生理条件下,计算机模拟技术结合荧光光谱和紫外光谱法,研究IMA与蛋白质的作用机制. 分子模建IMA与血清清蛋白的结合模型,表明伊马替尼与蛋白质的相互作用力为疏水作用力,兼有氢键作用. 光谱结果表明,IMA与HSA和BSA的相互作用表现为静态结合过程,结合强度较强,IMA与HSA和BSA分子的结合距离r值较小,说明发生了能量转移现象. IMA对HSA和BSA的结构域微区构象产生影响,使结合位域的疏水性发生改变. 荧光相图技术解析出IMA与HSA和BSA反应构象型态的变迁为“二态”模型. HSA与IMA相互作用的热力学参数表明,IMA与HSA之间是以疏水作用为主的分子间作用,而IMA与BSA之间的作用力为氢键和范德华力,兼有少量的疏水作用力. 光谱实验与计算机模拟结果基本一致,可为研究IMA与HSA和BSA相互作用本质提供一定参考.  相似文献   

14.
There is increasing evidence that the catch bond mechanism, where binding becomes stronger under tensile force, is a common property among non-covalent interactions between biological molecules that are exposed to mechanical force in vivo. Here, by using the multi-protein tip complex of the mannose-binding type 1 fimbriae of Escherichia coli, we show how the entire quaternary structure of the adhesive organella is adapted to facilitate binding under mechanically dynamic conditions induced by flow. The fimbrial tip mediates shear-dependent adhesion of bacteria to uroepithelial cells and demonstrates force-enhanced interaction with mannose in single molecule force spectroscopy experiments. The mannose-binding, lectin domain of the apex-positioned adhesive protein FimH is docked to the anchoring pilin domain in a distinct hooked manner. The hooked conformation is highly stable in molecular dynamics simulations under no force conditions but permits an easy separation of the domains upon application of an external tensile force, allowing the lectin domain to switch from a low- to a high-affinity state. The conformation between the FimH pilin domain and the following FimG subunit of the tip is open and stable even when tensile force is applied, providing an extended lever arm for the hook unhinging under shear. Finally, the conformation between FimG and FimF subunits is highly flexible even in the absence of tensile force, conferring to the FimH adhesin an exploratory function and high binding rates. The fimbrial tip of type 1 Escherichia coli is optimized to have a dual functionality: flexible exploration and force sensing. Comparison to other structures suggests that this property is common in unrelated bacterial and eukaryotic adhesive complexes that must function in dynamic conditions.  相似文献   

15.
The FimH protein of Escherichia coli is a model two-domain adhesin that is able to mediate an allosteric catch bond mechanism of bacterial cell attachment, where the mannose-binding lectin domain switches from an ‘inactive’ conformation with fast binding to mannose to an ‘active’ conformation with slow detachment from mannose. Because mechanical tensile force favors separation of the domains and, thus, FimH activation, it has been thought that the catch bonds can only be manifested in a fluidic shear-dependent mode of adhesion. Here, we used recombinant FimH variants with a weakened inter-domain interaction and show that a fast and sustained allosteric activation of FimH can also occur under static, non-shear conditions. Moreover, it appears that lectin domain conformational activation happens intrinsically at a constant rate, independently from its ability to interact with the pilin domain or mannose. However, the latter two factors control the rate of FimH deactivation. Thus, the allosteric catch bond mechanism can be a much broader phenomenon involved in both fast and strong cell-pathogen attachments under a broad range of hydrodynamic conditions. This concept that allostery can enable more effective receptor-ligand interactions is fundamentally different from the conventional wisdom that allostery provides a mechanism to turn binding off under specific conditions.  相似文献   

16.
Proteins are held together in the native state by hydrophobic interactions, hydrogen bonds and interactions with the surrounding water, whose strength as well as spatial and temporal distribution affects protein flexibility and hence function. We study these effects using 10 ns molecular dynamics simulations of pure water and of two proteins, the glutamate receptor ligand binding domain and barnase. We find that most of the noncovalent interactions flicker on and off over typically nanoseconds, and so we can obtain good statistics from the molecular dynamics simulations. Based on this information, a topological network of rigid bonds corresponding to a protein structure with covalent and noncovalent bonds is constructed, with account being taken of the influence of the flickering hydrogen bonds. We define the duty cycle for the noncovalent interactions as the percentage of time a given interaction is present, which we use as an input to investigate flexibility/rigidity patterns, in the algorithm FIRST which constructs and analyses topological networks.  相似文献   

17.
The crystal structure of meso-tetrasulfonatophenylporphyrin complexed with concanavalin A (ConA) was determined at 1.9 A resolution. Comparison of this structure with that of ConA bound to methyl alpha-d-mannopyranoside provided direct structural evidence of molecular mimicry in the context of ligand receptor binding. The sulfonatophenyl group of meso-tetrasulfonatophenylporphyrin occupies the same binding site on ConA as that of methyl alpha-d-mannopyranoside, a natural ligand. A pair of stacked porphyrin molecules stabilizes the crystal structure by end-to-end cross-linking with ConA resulting in a network similar to that observed upon agglutination of cells by lectins. The porphyrin binds to ConA predominantly through hydrogen bonds and water-mediated interactions. The sandwiched water molecules in the complex play a cementing role, facilitating favorable binding of porphyrin. Seven of the eight hydrogen bonds observed between methyl alpha-d-mannopyranoside and ConA are mimicked by the sulfonatophenyl group of porphyrin after incorporating two water molecules. Thus, the similarity in chemical interactions was manifested in terms of functional mimicry despite the obvious structural dissimilarity between the sugar and the porphyrin.  相似文献   

18.
The dynamics of HIV-1 protease (HIV-pr), a drug target for HIV infection, has been studied extensively by both computational and experimental methods. The flap dynamics of HIV-pr is considered to be more important for better ligand binding and enzymatic actions. Moreover, it has been demonstrated that the drug-induced mutations can change the flap dynamics of HIV-pr affecting the binding affinity of the ligands. Therefore, detailed understanding of flap dynamics is essential for designing better inhibitors. Previous computational investigations observed significant variation in the flap opening in nanosecond time scale indicating that the dynamics is highly sensitive to the simulation protocols. To understand the sensitivity of the flap dynamics on the force field and simulation protocol, molecular dynamics simulations of HIV-pr have been performed with two different AMBER force fields, ff99 and ff02. Two different trajectories (20?ns each) were obtained using the ff99 and ff02 force field. The results showed polarizable force field (ff02) make the flap tighter than the nonpolarizable force field (ff99). Some polar interactions and hydrogen bonds involving flap residues were found to be stronger with ff02 force field. The formation of interchain hydrophobic cluster (between flap tip of one chain and active site wall of another chain) was found to be dominant in the semi-open structures obtained from the simulations irrespective of the force field. It is proposed that an inhibitor, which will promote this interchain hydrophobic clustering, may make the flaps more rigid, and presumably the effect of mutation would be small on ligand binding.  相似文献   

19.
Fluorescence spectroscopy and molecular simulation were explored to study the interaction between caffeic acid and human serum albumin (HSA). The experimental results indicated that the fluorescence quenching mechanism between caffeic acid and HSA is a static quenching, which was proved again by the analysis of fluorescence lifetime by time‐correlated single photon counting. The binding process is spontaneous and the hydrophobic force is the main force between caffeic acid and HSA. In addition, the binding of caffeic acid to HSA was modeled by molecular dynamics simulations. The root mean square deviations, root mean square fluctuations, radius of gyration and the number of hydrogen bonds of the molecular dynamic (MD) simulation process were analyzed. Both experimental and modeling results demonstrated strong binding between HSA and caffeic acid. HSA had a slight conformational change when it binds with caffeic acid. The obtained information is useful for HSA drug design. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
Chicken liver bile acid binding protein (cL-BABP) crystallizes with water molecules in its binding site. To obtain insights on the role of internal water, we performed two 100 ns molecular dynamics (MD) simulations in explicit solvent for cL-BABP, as apo form and as a complex with two molecules of cholic acid, and analyzed in detail the dynamics properties of all water molecules. The diffusion coefficients of the more persistent internal water molecules are significantly different from the bulk, but similar between the two protein forms. A different number of molecules and a different organization are observed for apo- and holo-cL-BABP. Most water molecules identified in the binding site of the apo-crystal diffuse to the bulk during the simulation. In contrast, almost all the internal waters of the holo-crystal maintain the same interactions with internal sidechains and ligands, which suggests they have a relevant role in protein-ligand molecular recognition. Only in the presence of these water molecules we were able to reproduce, by a classical molecular docking approach, the structure of the complex cL-BABP::cholic acid with a low ligand root mean square deviation (RMSD) with respect to its reference positioning. Literature data reported a conserved pattern of hydrogen bonds between a single water molecule and three amino acid residues of the binding site in a series of crystallized FABP. In cL-BABP, the interactions between this conserved water molecule and the three residues are present in the crystal of both apo- and holo-cL-BABP but are lost immediately after the start of molecular dynamics. Copyright (c) 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号