首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Unlike conifers, the gymnosperm Ginkgo biloba is dependent on light for chlorophyll (Chl) synthesis and initiation of chloroplast development. Dark-grown seedlings show complete etiolation, including no detectable Chl accumulation, no leaf expansion, and increased hypocotyl elongation. When dark-grown seedlings are placed in white light, Chl synthesis and leaf expansion are initiated, but unlike angiosperms, which initiate rapid photomorphogenesis, Ginkgo takes at least 1 week to change to a normal light-regulated pattern of growth. A cDNA clone (pLhcb*Gb1) encoding a Chl a/b-binding protein of light-harvesting complex II from Ginkgo mRNA has been used as a probe for the expression of this family of mRNAs. We have found that, in common with angiosperms but in marked contrast to pines, Lhcb mRNA is expressed in a highly light-dependent manner. In addition to being expressed in light-grown leaves, this sequence is also expressed in the green tissues of immature seeds. The Lhcb mRNA appears during greening in parallel with the onset of Chl synthesis. The complete sequence of pLhcb*Gb1 has been determined and the deduced amino acid sequence was found to be of type I based on comparison with signature sequences of angiosperm and gymnosperm sequences.  相似文献   

2.
Chlorophyll (Chl) synthesis in Arabidopsis is controlled by two light-dependent NADPH-protochlorophyllide (PChlide) oxidoreductases (PORs), one (POR A) that is active transiently in etiolated seedlings at the beginning of illumination and another (POR B) that also operates in green plants. The function of these two enzymes during the light-induced greening of dark-grown seedlings has been studied in the wild type and a deetiolated (det340) mutant of Arabidopsis. One of the consequences of the det mutation is that POR A is constitutively down-regulated, and therefore, synthesis of the POR A enzyme is shut off. When grown in the dark, the det340 mutant lacks POR A and the photoactive PChlide-F655 species but maintains the second PChlide reductase, POR B. Previously, photoactive PChlide-F655 has often been considered to be the only PChlide form that leads to Chl formation. Despite its deficiency in POR A and photoactive PChlide-F655, the det340 mutant is able to green when placed in the light. Chl accumulation, however, proceeds abnormally. At the beginning of illumination, seedlings of det340 mutants are extremely susceptible to photooxidative damage and accumulate Chl only at extremely low light intensities. They form core complexes of photosystems I and II but are almost completely devoid of light-harvesting structures. The results of this study demonstrate that in addition to the route of Chl synthesis that has been studied extensively in illuminated dark-grown wild-type plants, a second branch of Chl synthesis exists that is driven by POR B and does not require POR A.  相似文献   

3.
In cotyledons of 6-day-old amaranth seedlings, the large subunit (LSU) and the small subunit (SSU) polypeptides of ribulose-1,5-bisphosphate carboxylase are not synthesized in the absence of light. When dark-grown seedlings were transferred into light, synthesis of both polypeptides was induced within the first 3 to 5 hr of illumination without any significant changes in levels of their mRNAs. In cotyledons of light-grown seedlings and of dark-grown seedlings transferred into light for 5 hr (where ribulose-1,5-bisphosphate carboxylase synthesis was readily detected in vivo), the LSU and SSU mRNAs were associated with polysomes. In cotyledons of dark-grown seedlings, these two mRNAs were not found on polysomes. In contrast to the SSU message, mRNAs encoding the nonlight-regulated, nuclear-encoded proteins actin and ubiquitin were associated with polysomes regardless of the light conditions. Similarly, mRNA from at least one chloroplast-encoded gene (rpl2) was found on polysomes in the dark as well as in the light. These results indicate an absence of translational initiation in cotyledons of dark-grown seedlings which is specific to a subset of nuclear- and chloroplast-encoded genes including the SSU and LSU, respectively. Upon illumination, synthesis of both polypeptides, and possibly other proteins involved in light-mediated chloroplast development, was induced at the level of translational initiation.  相似文献   

4.
5.
6.
A brief pulse of red light accelerates chlorophyll accumulation upon subsequent transfer of dark-grown tomato (Lycopersicon esculentum) seedlings to continuous white light. Such potentiation of greening was compared in wild type and an aurea mutant W616. This mutant has been the subject of recent studies of phytochrome phototransduction; its dark-grown seedlings are deficient in phytochrome, and light-grown plants have yellow-green leaves. The rate of greening was slower in the mutant, but the extent (relative to the dark control) of potentiation by the red pulse was similar to that in the wild type. In the wild type, the fluence-response curve for potentiation of greening indicates substantial components in the VLF (very low fluence) and LF (low fluence) ranges. Far-red light could only partially reverse the effect of red. In the aurea mutant, only red light in the LF range was effective, and the effect of red was completely reversed by far-red light. When grown in total darkness, aurea seedlings are also deficient in photoconvertible PChl(ide). Upon transfer to white light, the aurea mutant was defective in both the abundance and light regulation of the light-harvesting chlorophyll a/b binding polypeptide(s) [LHC(II)]. The results are consistent with the VLF response in greening being mediated by phytochrome. Furthermore, the data support the hypothesis that light modulates LHC(II) levels through its control of the synthesis of both chlorophyll and its LHC(II) apoproteins. Some, but not all, aspects of the aurea phenotype can be accounted for by the deficiency in photoreception by phytochrome.  相似文献   

7.
A brief pulse of red light eliminates or reduces the lag in chlorophyll accumulation that occurs when dark-grown pea seedlings are transferred to continuous white light. The red light pulse also induces the accumulation of specific mRNAs. We compared time courses, escape from reversal by far-red light, and fluence-response behavior for induction of mRNA for the light-harvesting chlorophyll a/b binding proteins (Cab mRNA) with those for induction of rapid chlorophyll accumulation in seedlings of Pisum sativum cv Alaska. In both cases the time courses of low fluence and very low fluence responses diverged from each other in a similar fashion: the low fluence responses continued to increase for at least 24 hours, while the very low fluence responses reached saturation by 8 to 16 hours. Both responses escaped from reversibility by far-red slowly, approaching the red control level after 16 hours. The fluence-response curve for the Cab mRNA increase, on the other hand, showed threshold and saturation at fluences 10-fold lower than threshold and saturation values for the greening response. Therefore, the level of Cab mRNA, as measured by the presence of sequences hybridizing to a cDNA probe, does not limit the rate of chlorophyll accumulation after transfer of pea seedlings to white light. The Cab mRNA level in the buds of seedlings grown under continuous red light remained high even when the red fluence rate was too low to allow significant greening. In this case also, abundance of Cab mRNA cannot be what limits chlorophyll accumulation.  相似文献   

8.
Hauke Holtorf  Klaus Apel 《Planta》1996,199(2):289-295
In etiolated barley (Hordeum vulgare L.) seedlings the light-induced accumulation of chlorophyll is controlled by two light-dependent NADPH-proto-chlorophyllide oxidoreductase (POR; EC 1.6.99.1) enzymes. While the concentration of one of these enzymes (POR A) and its mRNA rapidly decline during illumination, the second POR protein (POR B) and its mRNA remain at an approximately constant level during the transition from dark growth to the light. These results may suggest that only one of the enzymes, POR B, operates throughout the greening process and in light-adapted mature plants while the second enzyme, POR A, is active only in etiolated seedlings at the beginning of illumination. The fate of the two POR proteins and their mRNAs in fully green plants, however, has not been studied yet. In the present work we determined changes in the level of POR A and POR B proteins and mRNAs in green barley plants kept under a diurnal 12 h light/12 h dark cycle. In green barley plants, not only POR B is present but also trace amounts of POR A continue to reappear transiently at the end of a night period and seem to be involved in the synthesis and accumulation of chlorophyll at the beginning of each day.Abbreviations Chl chlorophyll - Chlide chlorophyllide - Lhcb light-harvesting chlorophyll a/b protein - Pchlide protochlorophyllide - POR NADPH-protochlorophyllide oxidoreductase Dedicated to Horst Senger on the occasion of his 65th birthday.We thank Dr. Dieter Rubli for photography and Renate Langjahr for typing. This work was supported by the Swiss National Science Foundation and the ETH-Zürich.  相似文献   

9.
Etiolated pea (Pisum sativum [L.] cv Progress 9) and barley (Hordeum vulgare [L.] cv Boone) seedlings greened under either low (40 microeinsteins per square meter per second) or high (550 microeinsteins per square meter per second) intensity light were analyzed for chlorophyll (Chl) content and the levels of mRNA and protein for the major light-harvesting chlorophyll (Chl)-protein of photosystem II (LHC-II). Low intensity plants accumulated Chl more rapidly than high intensity plants. Both single radial immunodiffusion analysis and mild sodium dodecyl sulfate-polyacrylamide gel electrophoresis green gels showed that low intensity plants also accumulated LHC-II protein more rapidly than high intensity plants, following a kinetic pattern similar to the total Chl data. In contrast, LHC-II mRNA levels appeared to be independent of LHC-II protein levels although pea and barley LHC-II mRNA exhibited different light intensity responses. The absence of coordination between LHC-II mRNA and protein levels suggested that the biosynthesis of LHC-II in greening seedlings is not limited by mRNA. A correlation (better than the 0.01 significance level) between LHC-II protein accumulation and Chl accumulation was found for both pea and barley. The accumulation of LHC-II protein was not linked to the development of photosynthetic electron transport. These results and the similar effect of light intensity on Chl content and LHC-II protein levels suggested that the availability of Chl may limit LHC-II protein accumulation in greening seedlings.  相似文献   

10.
11.
Etiolated seedlings of wild type and the chlorina f2 mutant of barley (Hordeum vulgare) were exposed to greening at either 5°C or 20°C and continuous illumination varying from 50 to 800 μmol m−2 s−1. Exposure to either moderate temperature and high light or low temperature and moderate light inhibited chlorophyll a and b accumulation in the wild type and in the f2 mutant. Continuous illumination under these greening conditions resulted in transient accumulations of zeaxanthin, concomitant transient decreases in violaxanthin, and fluctuations in the epoxidation state of the xanthophyll pool. Photoinhibition-induced xanthophyll-cycle activity was detectable after only 3 h of greening at 20°C and 250 μmol m−2 s−1. Immunoblot analyses of the accumulation of the 14-kD early light-inducible protein but not the major (Lhcb2) or minor (Lhcb5) light-harvesting polypeptides demonstrated transient kinetics similar to those observed for zeaxanthin accumulation during greening at either 5°C or 20°C for both the wild type and the f2 mutant. Furthermore, greening of the f2 mutant at either 5°C or 20°C indicated that Lhcb2 is not essential for the regulation of the xanthophyll cycle in barley. These results are consistent with the thesis that early light-inducible proteins may bind zeaxanthin as well as other xanthophylls and dissipate excess light energy to protect the developing photosynthetic apparatus from excess excitation. We discuss the role of energy balance and photosystem II excitation pressure in the regulation of the xanthophyll cycle during chloroplast biogenesis in wild-type barley and the f2 mutant.  相似文献   

12.
13.
In this article we report the characterization of the energy transfer process in the reconstituted isoforms of the plant light-harvesting complex II. Homotrimers of recombinant Lhcb1 and Lhcb2 and monomers of Lhcb3 were compared to native trimeric complexes. We used low-intensity femtosecond transient absorption (TA) and time-resolved fluorescence measurements at 77 K and at room temperature, respectively, to excite the complexes selectively in the chlorophyll b absorption band at 650 nm with 80 fs pulses and on the high-energy side of the chlorophyll a absorption band at 662 nm with 180 fs pulses. The subsequent kinetics was probed at 30–35 different wavelengths in the region from 635 to 700 nm. The rate constants for energy transfer were very similar, indicating that structurally the three isoforms are highly homologous and that probably none of them play a more significant role in light-harvesting and energy transfer. No signature has been found in the transient absorption measurements at 77 K for Lhcb3 which might suggest that this protein acts as a relative energy sink of the excitations in heterotrimers of Lhcb1/Lhcb2/Lhcb3. Minor differences in the amplitudes of some of the rate constants and in the absorption and fluorescence properties of some pigments were observed, which are ascribed to slight variations in the environment surrounding some of the chromophores depending on the isoform. The decay of the fluorescence was also similar for the three isoforms and multi-exponential, characterized by two major components in the ns regime and a minor one in the ps regime. In agreement with previous transient absorption measurements on native LHC II complexes, Chl b → Chl a energy transfer exhibited very fast channels but at the same time a slow component (ps). The Chls absorbing at around 660 nm exhibited both fast energy transfer which we ascribe to transfer from ‘red’ Chl b towards ‘red’ Chl a and slow transfer from ‘blue’ Chl a towards ‘red’ Chl a. The results are discussed in the context of the new available atomic models for LHC II.  相似文献   

14.
A study of the kinetics of chlorophyll (Chl) synthesis in cotyledons of etiolated cucumber seedlings ( Cucumis sativus L . cv. Delilah) treated with 5×10-5 M -ben-zyladenine (BA) showed that cytokinin, like a red light pulse, could inhibit as well as promote pigment accumulation depending on the length of the dark period following induction. Spraying intact, dark-grown seedlings with BA, 24 h prior to white light exposure, eliminated the lag phase in Chl synthesis, while treatment with hormone 72 h before greening not only delayed the onset of synthesis, but it also reduced the amount of Chl accumulated after 24 h continuous white light. Impairment of Chl formation was correlated with inhibited regeneration of protochlorophyll and delayed appearance of the light harvesting Chl alb polypeptide. Application of σ-aminolevulinic acid (15 m M ) 2 h before white light exposure shortened the lag phase in Chl synthesis in control as well as in inhibited cotyledons, but the adverse effect of the red light and BA treatments on long-term Chl accumulation (24 h) was not reversed. Application of glutamate did not stimulate Chl production. Simultaneous treatment with hormone and red light 72 h before greening enhanced their separate inhibitory effects on Chl synthesis, but when given together 24 h prior to white light, their promotive effects on pigment accumulation were not additive.  相似文献   

15.
16.
17.
Yajie Zhang  Cheng Liu  Shuang Liu  Tingyun Kuang 《BBA》2008,1777(6):479-487
Three isoforms of the major light-harvesting chlorophyll (Chl) a/b complexs of photosystem II (LHCIIb) in the pea, namely, Lhcb1, Lhcb2, and Lhcb3, were obtained by overexpression of apoprotein in Escherichia coli and by successfully refolding these isoforms with thylakoid pigments in vitro. The sequences of the protein, pigment stoichiometries, spectroscopic characteristics, thermo- and photostabilities of different isoforms were analysed. Comparison of their spectroscopic properties and structural stabilities revealed that Lhcb3 differed strongly from Lhcb1 and Lhcb2 in both respects. It showed the lowest Qy transition energy, with its reddest absorption about 2 nm red-shifted, and the highest photostability under strong illuminations. Among the three isoforms, Lhcb 2 showed lowest thermal stability regarding energy transfer from Chl b to Chl a in the complexes, which implies that the main function of Lhcb 2 under high temperature stress is not the energy transfer.  相似文献   

18.
Both chlorophyll a and b and polypeptides of the photosynthetic apparatus are found in gymnosperm seedlings. germinated and grown in absolute darkness. The photosystem II (PSII) activity is, however, limited, probably due to an inactive oxygen evolving system. In the present study dark-grown seedlings of Scots pine ( Pinus sylvestris L.) were transferred to light and changes in antenna size and the activation process of PSII were investigated using fluorescence measurements and quantitative western blotting. It was found that the activation process is rapid, requires very little light and that strong light inhibits the process. It takes place without any changes in the primary reactions of PSII. Furthermore, all polypeptides except the major light-harvesting chlorophyll a/b -binding protein complex of PSII (LHCII) were present in dark-grown seedlings in amounts comparable to the light treated control. The dark-grown seedlings had the same LHCII polypeptide composition as light treated seedlings, and the LHCII present seemed to be fully connected to the reaction centre. The results indicate that activation of PSII in dark-grown conifer seedlings resembles the photoactivation process of angiosperms. This implies that the fundamental processes in the assembly of the photosystem II complex is the same in all plants, but that the regulation differs between different taxa.  相似文献   

19.
Monospecific polyclonal antibodies have been raised against synthetic peptides derived from the primary sequences from different plant light-harvesting Chl a/b-binding (LHC) proteins. Together with other monospecific antibodies, these were used to quantify the levels of the 10 different LHC proteins in wild-type and chlorina f2 barley (Hordeum vulgare L.), grown under normal and intermittent light (ImL). Chlorina f2, grown under normal light, lacked Lhcb1 (type I LHC II) and Lhcb6 (CP24) and had reduced amounts of Lhcb2, Lhcb3 (types II and III LHC II), and Lhcb4 (CP 29). Chlorina f2 grown under ImL lacked all LHC proteins, whereas wild-type ImL plants contained Lhcb5 (CP 26) and a small amount of Lhcb2. The chlorina f2 ImL thylakoids were organized in large parallel arrays, but wild-type ImL thylakoids had appressed regions, indicating a possible role for Lhcb5 in grana stacking. Chlorina f2 grown under ImL contained considerable amounts of violaxanthin (2-3/reaction center), representing a pool of phototransformable xanthophyll cycle pigments not associated with LHC proteins. Chlorina f2 and the plants grown under ImL also contained early light-induced proteins (ELIPs) as monitored by western blotting. The levels of both ELIPs and xanthophyll cycle pigments increased during a 1 h of high light treatment, without accumulation of LHC proteins. These data are consistent with the hypothesis that ELIPs are pigment-binding proteins, and we suggest that ELIPs bind photoconvertible xanthophylls and replace "normal" LHC proteins under conditions of light stress.  相似文献   

20.
The levels of Lhcb mRNA in higher plants are regulated by phytochrome, cryptochrome, and an endogenous circadian oscillator. To determine whether similar regulatory mechanisms operate in the ancient gymnosperm Ginkgo biloba, we measured Lhcb mRNA levels in seedlings in response to different light conditions. Removal of a diurnally oscillating light stimulus caused dampening of maximal Lhcb mRNA accumulation levels, with little change in periodicity. Although low fluence pulses of both red and blue light given to etiolated seedlings caused maximal accumulation of Lhcb mRNAs characteristic of the phasic/circadian response seen in flowering plants, the additional initial acute response seen in flowering plants was absent. The induction of Lhcb gene expression in both cases was at least partially reversible by far-red light, and appeared biphasic over a range of red fluences. Together, these data indicate that Lhcb genes in G. biloba appear to be regulated in a manner similar to that of flowering plants, whereas signaling and attenuation of mRNA levels through the photoreceptor systems and circadian clock show features distinct from those characterized to date. The implications for these findings are discussed in light of the evolution of circadian clock input signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号