首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Taori VP  Lu H  Reineke TM 《Biomacromolecules》2011,12(6):2055-2063
In this study we synthesized a new series of polymers known as poly(glycoamidoguanidine)s (PGAGs). These new polymer structures were synthesized by copolymerizing a carbohydrate monomer (diester; galatarate or tartarate) with a diamine incorporating guanidine or methylguanidine as a charge center to create a polyamide backbone. These materials were strategically designed and compared to our previously studied DNA delivery vehicles, poly(glycoamidoamine)s (PGAAs), which contain secondary amines as the charge groups along the polymer backbone to examine the effect of charge center type on the cellular delivery efficiency of plasmid DNA (pDNA). The guanidine moieties within the PGAGs facilitate electrostatic binding with the negatively charged phosphate backbone of plasmid DNA (pDNA). Stable polymer-pDNA complexes (polyplexes) with sizes in the range of 60-200 nm are formed at polymer/pDNA charge ratios (N/P) of 5 and above. When the PGAGs are complexed with Cy5-labeled pDNA (Cy5-pDNA) at N/P ratios of 10 and 25, between 80 and 95% of HeLa cells were positive for Cy5 fluorescence, indicating effective cellular internalization of the polyplexes. The toxicity of both PGAA and PGAG polyplexes was studied via MTT assays, and over 95% cell survival was observed at N/P ratios of 5, 10, 15, 20, 25, and 30 in HeLa cells. Transgene expression was examined via luciferase assays at various N/P ratios in the absence and presence of serum. In the absence of serum, the PGAG polyplexes revealed similar transgene expression when compared to polyplexes formed with their analogous PGAA structures. In the presence of serum, one analog (Gg) consisting of galactarate copolymerized with the guanidine monomer yielded gene expression similar to the positive control, Glycofect Transfection Reagent. This new series of guanidine-containing oligomers are promising as a new design strategy to incorporate an alternative charge center type within the backbone of glycopolymer-based nucleic acid delivery vehicles.  相似文献   

2.
BACKGROUND: The available methods for administration of gene delivery systems to the lungs of small animals via nebulization have several drawbacks. These include lack of control over the delivered dose and a negative impact on the stability of the formulation. This paper describes a new nebulization catheter device for the administration of plasmid-based gene delivery systems (polyplexes) as aerosols to the mouse lung in vivo. METHODS: The physical stability of naked pDNA and polyplexes formulated with chitosan oligomers and PEI was examined following nebulization with the catheter device. We also examined the in vitro transfection efficiency of the polyplexes recovered after nebulization. Lung distribution and gene expression after administration of the selected gene delivery systems to the mouse lung were also investigated. RESULTS: In contrast to previously described nebulization methods, the structural integrity of the unprotected naked pDNA was maintained following nebulization by the catheter device, which indicates relatively mild nebulization conditions. In addition, the nebulization procedure did not affect the physical stability of the formulated polyplexes. Small volumes of the pDNA aerosol (10-20 microl) were delivered in a highly controlled and reproducible manner. The aerosol droplet size varied with the molecular weight of the polycations. Aerosol delivery via this method resulted in improved lung distribution of pDNA polyplexes and a six-fold increase in the efficiency of gene delivery in vivo over that seen with the commonly used intratracheal instillation method. CONCLUSION: The use of the nebulization catheter device provides a promising alternative for aerosol gene delivery to the mouse lung.  相似文献   

3.
As a cationic non‐viral gene delivery vector, poly(agmatine/ N, N′‐cystamine‐bis‐acrylamide) (AGM‐CBA) showed significantly higher plasmid DNA (pDNA) transfection ability than polyethylenimine (PEI) in NIH/3T3 cells. The transfection expression of AGM‐CBA/pDNA polyplexes was found to have a non‐linear relationship with AGM‐CBA/pDNA weight ratios. To further investigate the mechanism involved in the transfection process of poly(AGM‐CBA), we used pGL3‐control luciferase reporter gene (pLUC) as a reporter pDNA in this study. The distribution of pLUC in NIH/3T3 cells and nuclei after AGM‐CBA/pLUC and PEI/pLUC transfection were determined by quantitative polymerase chain reaction (qPCR) analysis. The intracellular trafficking of the polyplexes was evaluated by cellular uptake and nuclei delivery of pLUC, and the intracellular availability was evaluated by the ratio of transfection expression to the numbers of pLUC delivered in nuclei. It was found that pLUC intracellular trafficking did not have any correlation with the transfection expression, while an excellent correlation was found between the nuclei pLUC availability and transfection expression. These results suggested that the intracellular availability of pLUC in nuclei was the rate‐limiting step for pLUC transfection expression. Further optimization of the non‐viral gene delivery system can be focused on the improvement of gene intracellular availability.  相似文献   

4.
Polyethylenimine (PEI) is a potential gene transfer agent, but is limited by its poor transfection efficiency in vivo due to poor solubility and stability, pronounced toxicity and non-specific interaction with target cells. To improve its pulmonary gene transfection property, galactose (whose binding lectins are abundantly expressed in the lung) was selected as a ligand to improve the binding and uptake of the modified PEI/pDNA (plasmid DNA) polyplexes into lung cells. A novel protocol was developed to synthesize galactose-polyethylenglycol (PEG)-PEI copolymers. The resulting galactose-PEG-PEI/pDNA polyplexes showed improved solubility, stability, and reduced toxicity. Compared with that obtained by PEI/pDNA at a N/P ratio of 6, the transfection efficiency of 1% galactose-PEG-PEI/pDNA polyplexes at the N/P ratio of 36 was 4.5- and 11.6-fold in the A549 cell line and in mice lung, respectively. These data taken suggest that galactose-PEG-PEI may be a promising pulmonary gene delivery system.  相似文献   

5.
Herein, two new series of poly(glycoamidoamine)s (branched and linear) have been synthesized by polycondensation. The polymer repeat units have been designed to contain D-glucaramide, meso-galactaramide, D-mannaramide, or L-tartaramide structures and five or six ethyleneamine units to investigate the amine density effects on the bioactivity as compared to a similar series of poly(glycoamidoamine)s previously described that contain four ethyleneamines. These delivery vehicles were created to examine the effects that the number of secondary amines in the polymer repeat unit and the polymer structure (branched and linear) have on plasmid DNA (pDNA) binding affinity, polyplex formation, cell viability, and gene expression in the absence and presence of serum in the culture medium. The results reveal that the new polymers with higher amine density in the repeat unit do not significantly enhance the transfection efficiency compared to that of previous models containing four ethyleneamines, but an increase in cytotoxicity is noticed. Linear polymers reveal higher pDNA neutralization efficacy, gene expression, and toxicity than the branched versions containing a similar chemical structure, which may be caused by a higher protonation of the amine groups. With these new vectors, some interesting trends emerged. The galactaramide and tartaramide analogues revealed higher delivery efficiency than the glucaramide and mannaramide structures. In addition, the branched and linear structures containing five ethyleneamines in the repeat unit formed polyplexes at higher N/P ratios, which had lower zeta potential and lower delivery efficacy than the analogues with six ethyleneamines, and also the linear structures generally revealed higher delivery efficiency and toxicity when compared to those of their branched analogues.  相似文献   

6.
The effect of DNA vector topology when complexed to poly-l-lysine (PLL) and its quantification in transfection efficiency has not been fully addressed even though it is thought to be of importance from both production and regulatory viewpoints. This study investigates and quantifies cell uptake followed by transfection efficiency of PLL:DNA complexes (polyplexes) in Chinese hamster ovary (CHO) cells and their dependence on DNA topology. PLL is known for its ability to condense DNA and serve as an effective gene delivery vehicle. Characterization of PLL conjugated to a 6.9 kb plasmid was carried out. Dual labeling of both the plasmid DNA (pDNA) and PLL enabled quantitative tracking of the complexed as well as dissociated elements, within the cell, and their dependence on DNA topology. Polyplex uptake was quantified by confocal microscopy and image analysis. Supercoiled (SC) pDNA when complexed with PLL, forms a polyplex with a mean diameter of 139.06 nm (±0.84% relative standard error [RSE]), whereas open circular (OC) and linear-pDNA counterparts displayed mean diameters of 305.54 (±3.2% RSE) and 841.5 nm (±7.2% RSE) respectively. Complexes containing SC-pDNA were also more resistant to nuclease attack than its topological counterparts. Confocal microscope images reveal how the PLL and DNA remain bound post transfection. Quantification studies revealed that by 1 h post transfection 61% of SC-pDNA polyplexes were identified to be associated with the nucleus, in comparison to OC- (24.3%) and linear-pDNA polyplexes (3.5%) respectively. SC-pDNA polyplexes displayed the greatest transfection efficiency of 41% which dwarfed that of linear-pDNA polyplexes of 18.6%. Collectively these findings emphasize the importance of pDNA topology when complexed with PLL for gene delivery with the SC-form being a key pre-requisite.  相似文献   

7.
目的:建立基于聚(乳酸-羟基乙酸)纳米粒(PLGA)载DNA的基因转染体系,比较用空白聚(乳酸-羟基乙酸)纳米粒(PLG-A-E)吸附质粒DNA和用分枝PEI修饰后的PLGA纳米粒(PLGA-BPEI)吸附质粒DNA优缺点。方法:用乳化蒸发法制备纳米粒,对纳米粒进行表征研究,包括包封率、Zeta电位、粒径大小、稳定性,用荧光显微镜观察它们对NIH3T3和HEK293细胞的转染效率,用MTT检测对它们细胞的毒性。结果:制备了两种基于PLGA的纳米粒,PLGA-E和PLGA-BPEI粒径大小为200-270nm,zeta电位为0-30mV,在血清和不同的pH值时两者均较稳定,转染效率PLGA-BPEI较PLGA-E高,且释放时间早,但前者较后者对细胞毒性大。结论:这两种基于PLGA纳米粒均能有效转染质粒DNA,它们存在不同的优缺点,应根据不同需要进行选择。  相似文献   

8.
Novel, multifunctional polymers remain an attractive objective for drug delivery, especially for hydrophilic macromolecular drugs candidates such as peptides, proteins, RNA, and DNA. To facilitate intracellular delivery of DNA, new amine-modified poly(vinyl alcohol)s (PVAs) were synthesized by a two-step process using carbonyl diimidazole activated diamines to produce PVAs with different degrees of amine substitution. The resulting polymers were characterized using NMR, thermogravimetric analysis (TGA), and gelpermation chromatography (GPC). Atomic force microscopy (AFM), dynamic light scattering photon correlation spectroscopy (PCS), and zeta-potential were used to investigate polyplexes of DNA with PVA copolymers. These studies suggest an influence of the polycation structure on the morphology of condensed DNA in polyplexes. Significant differences were observed by changing both the degrees of amine substitution and the structure of the PVA backbone, demonstrating that both electrostatic and hydrophobic interactions affect DNA condensation. DNA condensation measured by an ethidium bromide intercalation assay showed a higher degree of condensation with pDNA with increasing degrees of amine substitution and more hydrophobic functional groups. These findings are in line with transfection experiments, in which a good uptake of these polymer DNA complexes was noted, unfortunately, with little endosomal escape. Co-administration of chloroquine resulted in increased endosomal escape and higher transfection efficiencies, due to disruption of the endosomal membrane. In this study, the structural requirements for DNA complexation and condensation were characterized to provide a basis for rational design of nonviral gene delivery systems.  相似文献   

9.
Two new types of stable ternary complexes were formed by mixing chitosan with DOTAP/pDNA lipoplex and DOTAP with chitosan/pDNA polyplex via non-covalent conjugation for the efficient delivery of plasmid DNA. They were characterized by atomic force microscopy, gel retarding, and dynamic light scattering. The DOTAP/CTS/pDNA complexes were in compacted spheroids and irregular lump of larger aggregates in structure, while the short rod- and toroid-like and donut shapes were found in CTS/DOTAP/pDNA complexes. The transfection efficiency of the lipopolyplexes showed higher GFP gene expression than DOTAP/pDNA and CTS/pDNA controls in Hep-2 and Hela cells, and luciferase gene expression 2–3-fold than DOTAP/pDNA control and 70–120-fold than CTS/pDNA control in Hep-2 cells. The intracellular trafficking was examined by confocal laser scanning microscopy. Rapid pDNA delivery to the nucleus enchanced by chitosan was achieved after 4 h transfection.  相似文献   

10.
Polyplexes of high stability resulting from the condensation of a plasmid DNA by a cationic polymer are widely used to develop polymer-based gene delivery systems. However, the plasmid must be released from its vector once inside the cells for an efficient expression of the exogenous gene in the cell nucleus. We have designed a disulfide-containing cationic polymer termed poly[Lys-(AEDTP)] which allowed for the formation of polyplexes and the release of the plasmid in a reductive medium. The amino groups of polylysine were substituted with 3-(2-aminoethyldithio)propionyl residues in order to have each amino group of poly[Lys-(AEDTP)] interacting with a phosphate DNA linked to the polymer backbone via a disulfide bond. As evidenced by agarose gel electrophoresis and ethidium bromide/pDNA fluorescence restoration, poly[Lys-(AEDTP)] polyplexes were decondensed and the plasmid released upon treatment with either dithiothreitol, glutathione in the presence of glutathione reductase, or the thioredoxin reductase. Electron microscopy showed that polyplexes exhibiting spherical particles of a mean size at about 100 nm were decondensed in the presence of glutathione and exhibited filamentous aggregates. Finally, we found that the transfection of 293T7 and HepG2 cells was 10- and 50-fold more efficient with poly[Lys-(AEDTP)] polyplexes, respectively, than with poly[Lys] polyplexes. These results indicate that disulfide-containing cationic polymers must be borne in mind for developing polymer-base gene delivery systems.  相似文献   

11.
In this study, we have synthesized six analogs of a trehalose-pentaethylenehexamine glycopolymer (Tr4) that contain (1A) adamantane, (1B) carboxy, (1C) alkynyl-oligoethyleneamine, (1D) azido trehalose, (1E) octyl, or (1F) oligoethyleneamine end groups and evaluated the effects of polymer end group chemistry on the ability of these systems to bind, compact, and deliver pDNA to cultured HeLa cells. The polymers were synthesized in one-pot azide-alkyne cycloaddition reactions with an adaptation of the Carothers equation for step-growth polymerization to produce a series of polymers with similar degrees of polymerization. An excess of end-capping monomer was added at the end of the polymerizations to maximize functionalization efficiency, which was evaluated with GPC, NMR, and MALDI-TOF. The polymers were all found to bind and compact pDNA at similarly low N/P ratios and form polyplexes with plasmid DNA. The effects of the different end group structures were most evident in the polyplex internalization and transfection assays in the presence of serum as determined by flow cytometry and luciferase gene expression, respectively. The Tr4 polymers end-capped with carboxyl groups (1B) (N/P = 7), octyne (1E) (N/P = 7), and oligoethyleneamine (1F) (N/P = 7), were taken into cells as polyplex and exhibited the highest levels of fluorescence, resulting from labeled plasmid. Similarly, the polymers end-functionalized with carboxyl groups (1E at N/P = 7), octyl groups (1E at N/P = 15), and in particular oligoethyleneamine groups (1F at N/P = 15) yielded dramatically higher reporter gene expression in the presence of serum. This study yields insight into how very subtle structural changes in polymer chemistry, such as end groups can yield very significant differences in the biological delivery efficiency and transgene expression of polymers used for pDNA delivery.  相似文献   

12.
Based on the knowledge that cationic polymers with different topographical structures behave differently in gene transfection process, herein, we synthesized three biodegradable poly(amido amine)s (PAAs) with the same repeating units and molecular weights except for degree of branching: linear PAA (LPAA), low‐branched PAA (LBPAA), and high‐branched PAA (HBPAA). We found that LBPAA could more effectively compact pDNA into positively charged nanoparticles than both HBPAA and LPAA. LBPAA polyplexes had the highest transfection efficiency among the three PAA polyplexes, and the difference in transfection efficiency is mainly attributed to the endocytosis rate. The cytotoxicity of PAAs was negligible at the transfection doses, probably due to the degradable disulfide bonds. Therefore, we could use branching as a parameter to simply tune a polymer's cellular uptake behavior and transfection efficiency. Biotechnol. Bioeng. 2013; 110: 990–998. © 2012 Wiley Periodicals, Inc.  相似文献   

13.

Background

Glycosylated polylysines and histidylated polylysines complexed with plasmid DNA (pDNA) were proposed to develop polymer‐based gene delivery systems. The present work has been undertaken in two steps to study the uptake and the intracellular processing of pDNA, which are still poorly understood in the polyfection pathway.

Methods and results

The kinetics of the uptake and the intracellular processing of pDNA complexed with lactosylated polylysine, histidylated polylysine or histidylated polylysine bearing lactosyl residues (polyplexes) into a CF human airway epithelial cell line were assessed by flow cytometry and confocal microscopy. Complexes formed from histidylated polylysine, even though they were less taken up by cells, show better transfection efficiency with compared with lactosylated complexes. Lactosylated polymers segregated more rapidly when compared with non‐lactosylated polymers into compartments different from those containing pDNA on internalization. Intracellular location and pH measurements indicated that polymers ended up in compartments of pH ~6.2 while pDNA reached less acidic compartments of pH ~6.6. These compartments did not contain the LAMP‐1 lysosomal marker.

Conclusions

The present study exhibits that, upon internalization, pDNA and polylysine conjugates underwent segregation with a rate depending on the polylysine substitution and polymer degradation. The better transfection efficiency of polyplexes with histidylated polylysine can be ascribed to their prolonged stability inside the endocytic vesicles that likely favored the pDNA escape in the cytosol. Copyright © 2002 John Wiley & Sons, Ltd.
  相似文献   

14.
Viral-mediated gene delivery has been explored for the treatment and protection of cardiomyocytes, but so far there is only one report using cationic polymer for gene delivery to cardiomyocytes in spite of many advantages of polymer-mediated gene delivery. In this study, a cationic poly(beta-amino ester) (PDMA) with a degradable backbone and cleavable side chains was synthesized by Michael addition reaction. The toxicity of PDMA to neonatal mouse cardiomyocytes (NMCMs) was significantly lower than that of polyethyleneimine (PEI). PDMA formed stable polyplexes with pEGFP. The dissociation of the polyplexes could be triggered by PDMA degradation, and the dissociation time was tunable via the polymer/pEGFP ratio. In vitro transfection showed that PDMA was an effective and low toxic gene delivery carrier for NMCMs. The PDMA/pEGFP polyplexes transfected EGFP gene to NMCMs with about 28% efficiency and caused little death. In contrast, a significant portion of cardiomyocytes cultured with PEI/pEGFP died.  相似文献   

15.
目的:优化构建交联聚乙烯亚胺(Polyethylenemine,PEI)衍生物PEI-Bu,研究其对非洲绿猴肾成纤维细胞系(COS-7)的转染活性和细胞毒性。方法:以PEI 800Da为骨架,1,4-丁二醇二氯甲酸酯为连接剂制备聚合物PEI-Bu,琼脂糖凝胶电泳考察其复合质粒DNA的能力,MTT法检测PEI-Bu对COS-7的毒性,以荧光素酶质粒作为报告基因,测定PEI-Bu/DNA复合物在COS-7细胞的转染活性。结果:凝胶电泳表明PEI-Bu/DNA在质量比大于1时即具有复合DNA的能力,PEI-Bu的细胞毒性随浓度增大而增大,在同一浓度下PEI-Bu的细胞毒性小于PEI 25kDa,(P<0.05),PEI-Bu/DNA在质量比为5时达到最高转染活性,高于PEI 25kDa(P<0.01),并与Lipofectamine2000相当(P>0.05)。结论:PEI-Bu在COS-7细胞中是一种低细胞毒性、高转染活性的非病毒基因载体(与商业化的PEI 25kDa比较),其在基因治疗领域中具有潜在的应用前景。  相似文献   

16.
We have reported that polylysine substituted with histidyl residues (His) was suited to make complexes with plasmid DNA (pDNA) and to transfect cells in vitro in the presence of serum. The present study was performed to determine whether the acetylation of the alpha-amino group of histidyl residues (AcHis) had an influence on the size and the charge of polyplexes and on their transfection efficiency. We found that the presence of free alpha-amino groups allowed the formation of smaller polyplexes but did not modify the zeta potential of +17 mV. At a physiological salt concentration, the adsorption of many serum proteins on His- and AcHis-polyplexes reduced their size below 100 nm, inhibited their aggregation, and reversed their zeta potential to -25 mV. The acetylation of the alpha-amino groups reduced slightly the adsorption of serum proteins. The presence of the alpha-amino groups increased the pK of the imidazole protonation of histidine bound to polylysine from pH 5.8 to 6.9; in addition, the protonation was further elevated in the presence of pDNA. Serum stabilized negative histidylated polyplexes were less taken up by cells but their transfection efficiency did not decrease; depending on the cell line, His-polyplexes were more efficient than AcHis-polyplexes. The results indicate that (i) the alpha-amino groups of histidyl residues bound to polylysine favorably influence the size and the transfection efficiency of polyplexes, (ii) the alpha-amino groups also elevate the imidazole protonation of His-polyplexes, which is suited to destabilize the membrane of early endocytic vesicles in order to favor pDNA delivery in the cytosol, and (iii) the absorption of selective serum proteins on His-polyplexes could be a way for in vivo gene targeting.  相似文献   

17.
A new polyethylenimine (PEI)-derived biodegradable polymer was synthesized as a nonviral gene carrier. Branches of PEI were ketalized, and capabilities of nucleic acid condensation and delivery efficiency of the modified polymers were compared with ones of unketalized PEI. Ketalized PEI was able to efficiently compact both plasmid DNA and siRNA into nucleic acids/ketalized PEI polyplexes with a range of 80-200 nm in diameter. Nucleic acids were efficiently dissociated from the polyplexes made of ketalized PEI upon hydrolysis. In vitro study also demonstrated that ketalization enhanced transfection efficiency of the polyplexes while reducing cytotoxicity, even at high N/ P ratios. Interestingly, transfection efficiency was found to be inversely proportional to molecular weights of ketalized PEI, while RNA interference was observed in the opposite way. This study implies that selective delivery of plasmid DNA and siRNA to the nucleus and the cytoplasm can be achieved by tailoring the structures of polymeric gene carriers.  相似文献   

18.
A series of glycopolymers composed of 2-deoxy-2-methacrylamido glucopyranose (MAG) and the primary amine-containing N-(2-aminoethyl) methacrylamide (AEMA) were synthesized via aqueous reversible addition-fragmentation chain transfer (RAFT) polymerization. The colloidal stability of the polyplexes formed with three diblock glycopolymers and pDNA was assessed using dynamic light scattering, and the polyplexes were found to be stable against aggregation in the presence of salt and serum over the 4 h time period studied. Delivery experiments were performed in vitro to examine the cellular uptake, transfection efficiency, and cytotoxicity of the glycopolymer/pDNA polyplexes in cultured HeLa cells and the diblock copolymer with the shortest AEMA block was found to be the most effective. Additionally, the ability of the diblock glycopolymers to deliver siRNA to U-87 (glioblastoma) cells was screened, and the diblock copolymer with the longest AEMA block was found to have gene knockdown efficacy similar to Lipofectamine 2000.  相似文献   

19.
Various polymers were used as transfection factors for small interfering RNA (siRNA) to effectively suppress human cytotoxic T-lymphocyte antigen 4-immunoglobulin (hCTLA4Ig) gene in transgenic rice cells. Five kinds of polymers (PEI, PVA, PVP, and 8 and 20 kDa PEGs) were applied for delivery of siRNA with lipofectamine used as a control. In the cytotoxicity test, all polymers except 8 kDa PEG showed nontoxicity in relation to cell viability. For transfection efficiency, polyplexes composed of siRNA and PEG (20 kDa) did not significantly reduce production of intracellular hCTLA4Ig. On the other hand, siRNA + PEI polyplexes showed the most effective suppression efficiency with regards to production of intracellular hCTLA4Ig among all other polyplexes (PVA, PVP, and PEG (8 kDa)). Effects of molecular weight ratios of siRNA:PEI were investigated to obtain optimal transfection efficiency and avoid excessive damage to cells. PEI-based polyplexes with a 1:10 ratio of siRNA:PEI reduced production of intracellular hCTLA4Ig up to 70.6% without alteration of cell viability. These results demonstrate that PEI-based polyplexes are easy to prepare, inexpensive, non-toxic, and effective to deliver siRNA to transgenic plant cell cultures.  相似文献   

20.
Wang Y  Zhang R  Xu N  Du FS  Wang YL  Tan YX  Ji SP  Liang DH  Li ZC 《Biomacromolecules》2011,12(1):66-74
Linear reduction-degradable cationic polymers with different secondary amine densities (S2 and S3) and their nonreducible counterparts (C2 and C3) were synthesized by Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) step-growth polymerization of the dialkyne-oligoamine monomers and the diazide monomers. These polymers were studied with a goal of developing a set of new gene carriers. The buffering capacity and DNA binding ability of these polymers were evaluated by acid-base titration, gel retardation, and ethidium bromide (EB) exclusion assay. The polymers with lower amine density exhibit a weaker DNA-binding ability but a stronger buffering capacity in the range of pH 5.1 and 7.4. Particle size and zeta-potential measurements demonstrate that the polymers with higher amine density condense pDNA to form polyplexes with smaller sizes, while the disulfide bond in the backbone shows a negative effect on the condensing capability of the polymers, resulting in the formation of polyplexes with large size and nearly neutral surface. The reduction-sensitive polyplexes formed by polymer S2 or S3 can be disrupted by dithiothreitol (DTT) to release free DNA, which has been proven by the combination of gel retardation, EB exclusion assay, particles sizing, and zeta potential measurements. Cell viability measurements by MTT assay demonstrate that the reduction-degradable polymers (S2 and S3) have little cytotoxicity while the nonreducible polymers (C2 and C3) show obvious cytotoxicity, in particular, at high N/P ratios. In vitro transfection efficiencies of these polymers were evaluated using EGFP and luciferase plasmids as the reporter genes. Polymers S3 and S2 show much higher efficiencies than the nonreducible polymers C3 and C2 in the absence of 10% serum; unexpectedly, the lowest transfection efficiency has been observed for polymer S3 in the presence of serum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号