首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Meiotic maturation was induced in Xenopus laevis oocytes when the external Ca++ or Mg++ ion concentration was raised above 5 mM in the presence of the ionophore. Ionophore-divalent cation-induced maturation appears to be due to the stimulation of the oocyte itself. Cytoplasm of responding oocytes induced maturation when microinjected into ovarian oocytes. Cycloheximid, an inhibitor of progesterone-induced maturation, inhibited the maturational response induced by the ionophore and divalent cations. Ethidium bromide, an inhibitor of the follicular response to human chorionic gonadotropin, had no effect. The possible roles that Ca++ and Mg++ may play in the initiation of maturation are discussed.  相似文献   

2.
Porcine follicular oocytes from medium-sized follicles (3-5 mm in diameter) were cultured in modified Hank's balanced salts solution (MHBS) to which pyruvate, lactate, and glucose were added as an energy source. Bovine serum albumin (0.4%) was added as a protein source and the oocytes were cultured for 42 h at 37 degrees C in 5% CO2 in air. In this medium porcine oocytes underwent 80-90% nuclear maturation after 42 h. Oocytes were cultured in MHBS with various amounts of CaCl2 as well as in the presence of verapamil, a Ca2+ channel blocker, and the divalent cationophore A23187. It was found that the lowest concentration of Ca2+ required for oocyte maturation was around 0.0265-0.053 mM. Such a requirement for Ca2+ in the culture medium extended through metaphase II. If Ca2+ was omitted during the final 4 h of culture, the metaphase II chromosomes appeared extremely condensed or degenerated. Verapamil at a level of 0.2 mM inhibited germinal vesicle breakdown or resulted in degeneration, whereas lower concentrations did not affect oocyte maturation. In the presence of 0.02 mM verapamil, the maturation of cumulus-enclosed oocytes was not affected, whereas at the same dose of verapamil the maturation of denuded oocytes was inhibited. Less than 3.8 X 10(-7) M divalent cationophore did not inhibit oocyte maturation. Maturation was inhibited by 3.8 X 10(-7) and 3.8 X 10(-6) M divalent cationophore. In conclusion, maintenance of oocytes in a nondegenerated state also requires the constant presence of Ca2+ in the culture medium.  相似文献   

3.
Ovulated mouse oocytes are activated by exposure to culture medium containing Sr2+ or Ba2+ or by intracytoplasmic injection of the divalent cations. It is known that in vitro matured pig oocytes are activated by the intracytoplasmic injection of Ca2+. In this study, we examined the effect of exposure and of intracytoplasmic injection of Sr2+ or Ba2+ on in vitro matured pig oocytes (MII-oocytes). When MII-oocytes were exposed to the medium containing divalent cations, no oocytes were activated. However, in the case of oocytes that were injected with Sr2+, Ba2+ and Ca2+, at 6 h after injection, 64%, 71% and 86% of the oocytes had been released from MII-arrest, and 51%, 67% and 84% formed female pronuclei, respectively. The initial transient in intracellular Ca2+ concentration ([Ca2+]i) was measured by the Ca2+ indicator dye fluo-4 dextran. Microinjection of Sr2+, Ba2+ or Ca2+ induced a rapid elevation of [Ca2+]i. The exocytosis of cortical granules was examined by staining with fluorescein isothiocyanate (FITC)-labelled peanut agglutinin. After an injection of divalent cations, a release of cortical granules was observed in the oocytes. Maturation promoting factor (MPF) activity declined to a low level after 6 h in all the oocytes injected with divalent cations. To test their developmental ability, injected oocytes were treated with cytochalasin B and then cultured for 168 h in NCSU23 medium. After 168 h, 29% (Sr2+), 29% (Ba2+) and 51% (Ca2+) of the oocytes had developed to the blastocyst stage. These results indicate that intracytoplasmic injection of Sr2+ and Ba2+, like that of Ca2+, induces in vitro matured pig oocytes to be released from MII-arrest and leads them into a series of events related to oocyte activation.  相似文献   

4.
At the time of fertilization, release of inositol 1,4,5-trisphosphate (IP3) into the cytoplasm of oocytes is said to be induced by hydrolysis of phosphatidylinositol bis phosphate (PI2) via activation of phospholipase C and is responsible for the Ca2+ oscillation in oocytes immediately after sperm penetration. On the other hand, cumulus cells have been reported to play an important role in cytoplasmic maturation of mammalian oocytes and to affect embryonic development after fertilization. To obtain more information on the role of cumulus cells in cytoplasmic maturation of oocytes, the effects of cumulus cells on the rise in [Ca2+]i and the rates of activation and development of porcine mature oocytes induced by IP3 injection were investigated. Mature porcine oocytes that had been denuded of their cumulus cells in the early stage of the maturation period had a depressed rise in [Ca2+]i (4.0-6.0) and reduced rates of activation (31.4-36.8%) and development (10.0-24.4%) induced by IP3 injection compared with those of their cumulus-enclosed counterparts (7.3, 69.1% and 43.8%; P < 0.05). The [Ca2+]i rise and the rates of activation and development depressed by the removal of cumulus cells were restored by adding pyruvate to the maturation medium. Furthermore, the IP3 injection-induced depression of [Ca2+]i rise in mature oocytes derived from cumulus-denuded oocytes (DOs) was restored when they were cultured in a medium with pyruvate (3.9-6.3, P < 0.05). Also, mature oocytes from cumulus-oocyte complexes (COCs) cultured in a medium without glucose had a lower rise in [Ca2+]i than that in mature oocytes from COCs cultured with glucose (7.4-6.0, P < 0.05). Cumulus cells supported porcine oocytes during maturation in the rise in [Ca2+]i induced by IP3 and the following activation and development of porcine oocytes after injection of IP3. Moreover, we inferred that a function of cumulus cells is to produce pyruvate by metabolizing glucose and to provide oocytes with pyruvate during maturation, thereby promoting oocyte sensitivity to IP3.  相似文献   

5.
Chen N  Liow SL  Yip WY  Tan LG  Ng SC 《Theriogenology》2005,63(8):2300-2310
The need to transport oocytes and embryos between two laboratories have prompted us to evaluate the effects of in vitro maturation of immature mouse oocytes in a CO2-deficient dry heat portable incubator and subsequent in vitro development of these fertilized mouse oocytes in a standard CO2 incubator. In addition, the effects of cysteamine supplementation on maturation rate and embryonic development during in vitro maturation (IVM) and culture of embryos in the portable incubator were also investigated. Germinal vesicle stage mouse oocytes, recovered at 40-h post-FSH from 6- to 8-week-old C57BL/6xCBA F1 healthy female mice, were matured in vitro in a modified TCM-199 supplemented with or without 100 microM cysteamine in a standard incubator (5% CO2; 37 degrees C) or cultured in a CO2-deficient dry heat portable incubator for 5 h at 37 degrees C and thereafter transferred to a standard incubator for further culture. The addition of cysteamine in the IVM medium significantly improved maturation rates of the GV mouse oocytes to metaphase II stage. However, cysteamine supplementation in the culture medium did not significantly improve fertilization and blastocyst formation rates of IVM and ovulated oocytes, and in vivo-derived zygotes. Culture conditions in a CO2-deficient dry heat portable incubator did not adversely affect the developmental competence of in vivo-derived zygotes and in vitro matured mouse oocytes after IVF or parthenogenetic activation. Cysteamine supplement in the IVM medium could enhance nuclear maturation of these immature oocytes during shipment.  相似文献   

6.
Depolarizing response of rat parathyroid cells to divalent cations   总被引:2,自引:0,他引:2       下载免费PDF全文
Membrane potentials were recorded from rat parathyroid glands continuously perfused in vitro. At 1.5 mM external Ca++, the resting potential averages -73 +/- 5 mV (mean +/- SD, n = 66). On exposure to 2.5 mM Ca++, the cells depolarize reversibly to a potential of -34 +/- 8 mV (mean +/- SD). Depolarization to this value is complete in approximately 2-4 min, and repolarization on return to 1.5 mM Ca++ takes about the same time. The depolarizing action of high Ca++ is mimicked by all divalent cations tested, with the following order of effectiveness: Ca++ greater than Sr++ greater than Mg++ greater than Ba++ for alkali-earth metals, and Ca++ greater than Cd++ greater than Mn++ greater than Co++ greater than Zn++ for transition metals. Input resistance in 1.5 mM Ca++ was 24.35 +/- 14 M omega (mean +/- SD) and increased by an average factor of 2.43 +/- 0.8 after switching to 2.5 mM Ca++. The low value of input resistance suggests that cells are coupled by low-resistance junctions. The resting potential in low Ca++ is quite insensitive to removal of external Na+ or Cl-, but very sensitive to changes in external K+. Cells depolarize by 61 mV for a 10- fold increase in external K+. In high Ca++, membrane potential is less sensitive to an increase in external K+ and is unchanged by increasing K+ from 5 to 25 mM. Depolarization evoked by high Ca++ may be slowed, but is unchanged in amplitude by removal of external Na+ or Cl-. Organic (D600) and inorganic (Co++, Cd++, and Mn++) blockers of the Ca++ channels do not interfere with the electrical response to Ca++ changes. Our results show remarkable parallels to previous observations on the control of parathormone (PTH) release by Ca++. They suggest an association between membrane voltage and secretion that is very unusual: parathyroid cells secrete when fully polarized, and secrete less when depolarized. The extraordinary sensitivity of parathyroid cells to divalent cations leads us to hypothesize the existence in their membranes of a divalent cation receptor that controls membrane permeability (possibly to K+) and PTH secretion.  相似文献   

7.
The role of calcium (Ca++) and magnesium (Mg++) in the ovulation process was studied using in vitro perfused rabbit ovaries. Ovaries were perfused with or without human chorionic gonadotropin (hCG) in Ca++/Mg++-free medium (M199) alone or combined with standard M199 to yield varying concentrations of Ca++ and/or Mg++. In all ovaries perfused with hCG, ovulatory efficiency was similar regardless of the concentration of Ca++ and/or Mg++. In ovaries perfused in Ca++/Mg++-free medium without hCG, ovulatory efficiency was similar to that in ovaries perfused with hCG. As Ca++/Mg++ levels were increased without hCG, ovulatory efficiency declined. Ovulation time was significantly accelerated in ovaries perfused in Ca++/Mg++-free medium with or without hCG. Most ovulated ova from ovaries perfused without hCG were immature. With hCG, degree of ovum maturity was directly related to ovulation time. Ovarian smooth muscle contractions were undetectable in 3 ovaries perfused in Ca++/Mg++-free M199 despite occurrence of ovulation. Smooth muscle contractions were recorded in 2 of 3 ovaries perfused in standard M199 with hCG. These results indicate: 1) Ca++/Mg++ exclusion results in rapid follicle rupture and immature ova; 2) oocyte maturation appears to be gonadotropin-dependent; 3) ovulation occurs in the absence of ovarian smooth muscle contractions during perfusion with Ca++/Mg++-free medium.  相似文献   

8.
Experiments using a Ca2+/Mg2+, serum free media were carried out aimed at clarifying proposed effects of these divalent cations on in vitro meiotic maturation of mouse and cow oocytes. Agents known to perturb intracellular Ca2+ or calmodulin were also studied. Total absence of both cations restricts both oocyte species from completing meiosis I. Media containing Mg2+ and no Ca2+ permitted some maturation in both species. Absence or small amounts of Mg2+ in the media containing control amounts of Ca2+ was much more inhibitory for the cow than the mouse oocyte. Studies of mouse oocyte maturation with Verapamil, Epinephrine and A23187 demonstrated an inhibition of maturation perhaps by the intracellular Ca2+ changes these agents are alleged to induce. A dependency of mouse oocyte maturation on active Ca-Calmodulin complexes was suggested by the calmodulin inhibitor studies.  相似文献   

9.
Maturation of rotavirus occurs in the ER. The virus transiently acquires an ER-derived membrane surrounding the virus particle before the eventual formation of double-shelled particles. The maturation process includes the retention and selective loss of specific viral protein(s) as well as the ER-derived membrane during formation of the outer capsid of the mature virus. When infected cells were depleted of Ca++ by use of the ionophore A23187 in calcium-free medium, membrane-enveloped intermediates were seen to accumulate. When Mn++, an efficient Ca++ competitor, was used to replace Ca++ in the medium, the accumulation of the enveloped intermediate was again observed, pointing to an absolute requirement of Ca++ in the maturation process. It was previously demonstrated in this laboratory that a hetero-oligomeric complex of NS28, VP7, and VP4 exists which may participate in the budding of the single-shelled particle into the ER (Maass, D. R., and P. H. Atkinson, 1990. J. Virol. 64:2632-2641). The present study demonstrates that either in the absence of Ca++ or in the presence of tunicamycin, a glycosylation inhibitor, VP7 is excluded from these hetero-oligomers. In the presence of Mn++, VP4 was blocked in forming a hetero-oligomeric complex with NS28 and VP7. The electrophoretic mobility of the viral glycoproteins synthesized in the presence of the ionophore were found to be altered. This size difference was attributed to altered N-linked glycosylation and carbohydrate processing of the viral glycoproteins. These results imply a major role for calcium and the state of glycosylation of NS28 in the assembly and acquisition of specific viral protein conformations necessary for the correct association of proteins during virus maturation in the ER.  相似文献   

10.
In contrast to earlier reports (J. L. Maller and E. G. Krebs, 1980, Curr. Top. Cell. Regul. 16, 271-311; M. Moreau, J. P. Vilian, and P. Guerrier, 1980, Dev. Biol. 78, 201-214; W. J. Wasserman and L. D. Smith, 1981, J. Cell Biol. 89, 389-394; D. Huchon, R. Ozon, E. H. Fischer, and J. G. Demaille, 1981, Mol. Cell. Endocrinol. 22, 211-222) calmodulin preparations isolated from Xenopus laevis ovaries or obtained commercially rarely induced maturation upon microinjection into individual oocytes. Calmodulin injections did result in significant cases of maturation when oocytes were first pretreated (primed) with calcium-free (EGTA) OR-2 and then injected in regular OR-2 medium. However, under these conditions the injected buffer solution alone was sometimes found to induce maturation. Under more optimal priming conditions, cases were found where as high as 100% of the oocytes matured simply by returning them to regular OR-2 medium. To determine which divalent cations could be involved in the priming effects of EGTA pretreatment we repeated the earlier ionophore work of W. J. Wasserman and Y. Masui (1975, J. Exp. Zool. 193, 369-375), looking not just at calcium and magnesium but other divalent cations as well. Several divalent cations (10 mM) were found to induce germinal vesicle breakdown with the following tentative order of efficacy, Co2+ greater than or equal to Zn2+ greater than or equal to Mn2+ greater than Ca2+ greater than Mg2+ greater than Ba2+, regardless of whether or not ionophore A23187 was present. These results, along with other reports in the literature, are discussed with respect to the theory that a rise in free calcium and calmodulin is involved in triggering oocyte maturation; we conclude that neither is involved.  相似文献   

11.
The effects of various divalent cations in the external solution upon the Ca spike of the barnacle muscle fiber membrane were studied using intracellular recording and polarizing techniques. Analysis of the maximum rate of rise of the spike potential indicates that different species of divalent cations bind the same membrane sites competitively with different dissociation constants. The overshoot of the spike potential is determined by the density of Ca (Sr) ions in the membrane sites while the threshold membrane potential for spike initiation depends on the total density of divalent cations. The order of binding among different divalent and trivalent cations is the following: La+++, UO2++ > Zn++, Co++, Fe++ > Mn++ > Ni++ > Ca++ > Mg++, Sr++.  相似文献   

12.
Bovine cumulus-oocyte complexes (COCs) and mural granulosa cells express the mRNA coding for the micro-opioid receptor. The addition of beta-endorphin (beta-end) to oocytes cultured in hormonally-supplemented in vitro maturation (IVM) medium had no effect on the rates of oocytes reaching the metaphase II (MII) stage, but significantly decreased the maturation rate (P < 0.05) and arrested oocytes at metaphase I (MI) after culture in hormone-free medium (P < 0.001). Naloxone (Nx) reverted this inhibitory effect of beta-end. Moreover, Nx "per se" showed a dose-dependent dual effect. When added at high concentration (10 x (-3) M), it significantly reduced the rate of oocytes in MII (P < 0.001), thus increasing the rate of oocytes arrested in MI. However, Nx added at low concentration (10 x (-8) M) significantly increased oocyte maturation (P < 0.001). High concentration of Nx induced an increase in both intracellular calcium concentration ([Ca(2+)](i)) and in the activity of the mitogen-activated protein kinase (MAPK) also called extracellular-regulated kinase (ERK) in cumulus cells of bovine COCs. Blocking the rise in [Ca(2+)](i) with the calcium chelator acetoxymethylester-derived form of bis (o-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid (BAPTA-AM) reversed the Nx-dependent inhibition of meiotic maturation observed at high Nx concentrations. Whereas blocking ERK with the MAPK/ERK kinase (MEK) inhibitor, PD98059, had no effect on this process. Therefore, we concluded that the mocro-opioid receptor, by inducing [Ca(2+)](i) increase, participates in the cumulus-oocyte coupled signaling associated with oocyte maturation.  相似文献   

13.
The cryopreservation of female gametes is still an open problem because of their structural sensitivity to the cooling-and-freezing process and to the exposure to cryoprotectants. The present work was aimed to study the effect of vitrification on immature bovine oocytes freed of cumulus cell investment before freezing. To verify the feasibility and efficiency of denuded oocyte (DO) cryopreservation, the cytoplasmic alterations eventually induced either by cell removal or by the vitrification process were analyzed. In particular, the migration of cortical granules and Ca++ localization were studied. In addition, the localization and distribution of microtubules and microfilaments in immature fresh and vitrified DOs were evaluated. Finally, to establish whether the removal of cumulus cells influenced developmental competence, DOs were thawed after vitrification, matured in vitro and fertilized; then presumptive zygotes were cultured to reach the blastocyst stage. The results indicate that mechanical removal of cumulus cells from immature bovine oocytes does not affect their maturation competence but reduces the blastocyst rate when compared with intact cumulus oocyte complexes (COCs). The findings indicate further that the vitrification process induces changes of cytoplasmic components. However, the composition of the manipulation medium used to remove cumulus cells plays a crucial role in reducing the injuries caused by cryopreservation in both cytoplasmic and nuclear compartments. In fact, the presence of serum exerts a sort of protection, significantly improving both oocyte maturation and blastocyst rates. In conclusion, we demonstrate that denuded immature oocytes can be vitrified after cumulus cells removal and successfully develop up, after thawing, to the blastocyst stage, following in vitro maturation and fertilization.  相似文献   

14.
In Bufo arenarum, progesterone is the physiological maturation inducer. However, in this species, oocytes reinitiate meiosis with no need of an exogenous hormonal stimulus when deprived of their enveloping cell, a phenomenon called spontaneous maturation. We demonstrated that in Bufo arenarum spontaneous maturation occurs only in oocytes obtained during the reproductive period, which can be considered competent to mature spontaneously, in contrast to those in the non-reproductive period, which are incompetent. Interestingly, full-grown Bufo arenarum oocytes always respond to progesterone regardless of the season in which they are obtained. There is a general consensus that both a transient increase in intracellular calcium and a decrease in cAMP-dependent protein kinase activity are the first steps in the mechanisms by which progesterone induces maturation in amphibians. In the present work we analysed the role of calcium in the spontaneous and progesterone-induced maturation of Bufo arenarum oocytes. Results demonstrated that the absence of calcium in the incubation medium or the prevention of Ca(2+) influx by channel blockers such as CdCl2 or NiCl2 did not prevent meiosis reinitiation in either type of maturation. The inhibition of the Ca(2+)-calmodulin complex in no case affected the maturation of the treated oocytes. However, when the oocytes were deprived of calcium by incubation in Ca(2+)-free AR + A23187, meiosis resumption was inhibited. In brief, we demonstrated that in Bufo arenarum the reinitiation of meiosis is a process independent of extracellular calcium at any period of the year and that oocytes require adequate levels of intracellular calcium for germinal vesicle breakdown to occur.  相似文献   

15.
Full-grown ovarian oocytes removed from non-hormone-treated Rana pipiens females exhibit a low level of protein synthesis, the rate of which is dependent upon the ionic environment. The highest rates of protein synthesis in these oocytes are obtained in media containing either a divalent cation (Ca++ or Mg++) or high levels of K+. The dependence of protein synthesis on ionic environment persists through about the first 18-24 hours of maturation (at 18°C). Normal maturation of oocytes in vitro also has specific ionic requirements for the first 24 hours. In this case, the process requires high ionic strength (T/2 = 1.0-1.2) and divalent cations. The kinetics of K+ exchange suggest that K+ exists in the ovarian oocyte in two compartments; one in equilibrium with the exogenous medium and freely exchangeable; the other in equilibrium with the exogenous medium and freely exchangeable; the other in equilibrium with the first internal compartment and only very slowly exchangeable. The slowly exchangeable (bound) compartment contains about 95% of all endogenous K+. In hormone stimulated oocytes, the kinetics of K+ exchange are essentially the same. Oocyte adaptation to ionic environment is discussed as a possible regulatory mechanism during maturation.  相似文献   

16.
We conducted this study to examine whether or not co-culture with theca cells improves the maturation rate of horse oocytes with compact cumuli and to evaluate the cytoplasmic competence of oocytes after maturation by assessing fusion, activation and cleavage rates after nuclear transfer. We collected oocytes by scraping follicles from slaughterhouse-derived ovaries and classified them as having an expanded or a compact cumulus. Expanded oocytes were matured in M199 supplemented with 10% FBS and 5 microU/ml FSH for 24 h: compact oocytes were cultured in the same medium, or they were co-cultured in the same medium with theca interna explants, for 24 or 42 h. Oocytes were held with or without 10 microg/ml cytochalasin B, before washing and micromanipulation. and they were fused with donor fibroblasts by electrical pulse. Fused oocytes were activated with Ca ionophore/cycloheximide, cultured for 5 days, and stained with Hoechst to assess nuclear development. We considered oocytes with an enlarged nucleus, or having cleavage with multiple nuclei, to be activated. There was no significant difference in overall maturation rate between compact oocytes cultured with theca and compact controls. When these two groups were combined, there was a significant increase in the proportion of oocytes in MII between 24 and 42 h (P < 0.05). Expanded oocytes had a significantly higher rate of maturation than did compact oocytes (64% versus 25-30%; P < 0.001). There were no significant differences in rates of successful enucleation, fusion, activation or cleavage between compact control and compact + theca oocytes, nor between compact and expanded oocytes; however, expanded oocytes treated with cytochalasin B had a significantly higher survival rate after enucleation than did untreated expanded oocytes (P < 0.05). Three embryos developed from recombined oocytes, with maximum cleavage to 10 cells. The results of this study indicate that co-culture with theca cells does not increase either nuclear or cytoplasmic maturation of compact oocytes. Cytochalasin B is helpful in increasing survival of horse oocytes during enucleation. In vitro matured equine oocytes have the potential to develop into embryos after nuclear transfer; this is the first full report of production of cloned embryos in this species.  相似文献   

17.
The plant lectin, concanavalin A (Con-A), and the ionophore, A-23187 (specific for divalent cations), stimulated glucose transport in rat thymocytes. Con-A stimulation developed more slowly and was somewhat less extensive than that of stimulation developed more slowly and was somewhat less extensive than that of A-23187. Both responses showed saturation dose dependencies. The two responses were poorly additive, suggesting that A-23187 may saturate regulatory processes shared by the two stimulatory mechanisms. Doses of methylisobutylxanthine (MIX) and prostaglandin E2 which raised adenosine 3':5'-monophosphate (cAMP) levels in these cells also antagonized the Con-A stimulation of glucose transport but did not inhibit basal glucose transport or the A-23187 stimulation. Dibutyryl-cAMP and 8-bromo-cAMP also natagonized Con-A stimulation without inhibiting basal glucose transport. MIX antagonized high Con-A doses about as strongly as it did low Con-A doses, suggesting that MIX did not compete in the Con-A binding step or other process saturable by Con-A. [3H-A1Con-A binding was not affected by MIX. The stimulatory effects of Con-A and A-23187 were reduced by reduction of Ca++ in the medium. Both Con-A and A-23187 enhanced 45Ca++ influx and cellular Ca++ content. The A-23187 dose, which was saturating for glucose transport stimulation, enhanced Ca++ influx and cellular Ca++ content more than did the Con-A dose which was saturating for glucose transport stimulation. The dose fo MIX which specifically antagonized Con-A stimulation of glucose transport proved also to reduce Ca++ influx and cellular Ca++ in the presence of Con-A but not in the presence of A-23187. Thus, glucose transport correlates rather well with cellular Ca++. These results are compatible with the view that Ca++ in a cellular compartment can promote glucose transport, the Con-A's enhancement of Ca++ entry contributes to its stimulation of glucose transport, and the MIX antagonized Con-A action at least partly by reducing Ca++ entry. The action of MIX is apparently mediated by cAMP.  相似文献   

18.
Nuclear maturation of canine oocytes cultured in protein-free media   总被引:4,自引:0,他引:4  
The objective of this study was to determine the ability of canine oocytes to complete nuclear maturation in a protein-free medium. Oocytes obtained from ovaries of bitches aged 6 months to 2 years were cultured either in TCM199 or CMRL1066 medium without protein supplementation in 5% or 20% O(2). Sixteen of 121 (13%) oocytes cultured in TCM199 reached metaphase II, but only 1 of 135 oocytes cultured in CMRL1066 did so (P < 0.05). Oxygen concentration did not affect nuclear maturation. An additional 103 oocytes were cultured in TCM199 for 48 hr, inseminated with chilled ejaculated spermatozoa, fixed in 1:3 acetic acid-ethanol and then stained with aceto-orcein; 34% of these oocytes were penetrated by spermatozoa. To determine developmental competence of oocytes cultured in a protein-free medium, 85 oocytes were cultured in TCM 199 for 48 hr, inseminated and then cultured; 7 early stage embryos were produced. The effects of growth hormone, beta-mercaptoethanol (betaME), luteinizing hormone (LH) and energy substrates, alone or in combination, on nuclear maturation of oocytes cultured in a protein-free medium were also determined. Growth hormone enhanced cumulus expansion, but did not improve nuclear maturation. beta-mercaptoethanol had no effect on nuclear maturation. However, percentages of MII oocytes significantly decreased when the oocytes were cultured for 48 hr in the medium containing LH or a high concentration of glucose (P < 0.05). In conclusion, canine oocytes are able to complete nuclear maturation in a protein-free medium. The specific type of medium and other supplements significantly influence the meiotic maturation of canine oocytes.  相似文献   

19.
The presence of the capacitative Ca(2+) entry mechanism was investigated in porcine oocytes. In vitro-matured oocytes were treated with thapsigargin in Ca(2+)-free medium for 3 h to deplete intracellular calcium stores. After restoring extracellular calcium, a large calcium influx was measured by using the calcium indicator dye fura-2, indicating capacitative Ca(2+) entry. A similar divalent cation influx could also be detected with the Mn(2+)-quench technique after inositol 1,4,5-triphosphate-induced Ca(2+) release. In both cases, lanthanum, the Ca(2+) permeable channel inhibitor, completely blocked the influx caused by store depletion. Heterologous expression of Drosophila trp in porcine oocytes enhanced the thapsigargin-induced Ca(2+) influx. Polymerase chain reaction cloning using primers that were designed based on mouse and human trp sequences revealed that porcine oocytes contain a trp homologue. As in other cell types, the capacitative Ca(2+) entry mechanism might help in refilling the intracellular stores after the release of Ca(2+) from the stores. Further investigation is needed to determine whether the trp channel serves as the capacitative Ca(2+) entry pathway in porcine oocytes or is simply activated by the endogenous capacitative Ca(2+) entry mechanism and thus contributes to Ca(2+) influx.  相似文献   

20.
Chian RC  Niwa K 《Theriogenology》1994,42(1):55-64
The effects of dimethylsulphoxide (DMSO) on immature oocytes during maturation in culture and following penetration by spermatozoa were examined. Germinal vesicle breakdown (GVBD) was observed in all oocytes cultured in the maturation medium supplemented with 2, 4 and 8% DMSO. When the oocytes were cultured in medium with 8% DMSO, 95% (57 60 ) of them were inhibited at prometaphase-I. Cumulus cells were significantly (P<0.05) beneficial for resumption of oocyte nuclear maturation during further culture in the maturation medium for 4, 8 and 24 h after DMSO treatment. When the oocytes were additionally cultured for 4 and 8 h in the maturation medium after DMSO treatment, the proportions of oocytes reaching metaphase-II were significantly (P<0.05) higher in those cultured with spermatozoa than without (68 vs 49% and 84 vs 56%, respectively). These results indicate that 8% DMSO does not affect GVBD of oocytes, but conversely it inhibits oocytes at prometaphase-I, and that cumulus cells are important for recovery from DMSO inhibition and for the resumption of nuclear maturation of oocytes. Sperm penetration was also found to stimulate the completion of meiotic maturation of oocytes inhibited at metaphase-I with 8% DMSO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号