首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yang YT  Whiteman M  Gieseg SP 《Life sciences》2012,90(17-18):682-688
AimsMacrophages must function in an inflammatory environment of high oxidative stress due to the production of various oxidants. Hypochlorous acid (HOCl) is a potent cytotoxic agent generated by neutrophils and macrophages within inflammatory sites. This study determines whether glutathione is the key factors governing macrophage resistance to HOCl.Main methodsHuman monocyte derived macrophages (HMDM) were differentiated from human monocytes prepared from human blood. The HMDM cells were exposed to micromolar concentrations of HOCl and the timing of the cell viability loss was measured. Cellular oxidative damage was measured by loss of glutathione, cellular ATP, tyrosine oxidation, and inactivation of glyceraldehyde 3-phosphate dehydrogenase (GAPDH).Key findingsHOCl causes a rapid loss in HMDM cell viability above threshold concentrations. The cell death occurred within 10 min of treatment with the morphological characteristics of necrosis. The HOCl caused the extensive cellular protein oxidation with the loss of tyrosine residue and inactivation of GAPDH, which was accompanied with the loss of cellular ATP. This cellular damage was only observed after the loss of intracellular GSH from the cell. Removal of intracellular GSH with diethyl maleate (DEM) increased the cells' sensitivity to HOCl damage while protecting the intracellular GSH pool with the antioxidant 7,8-dihydroneopterin prevented the HOCl mediated viability loss. Variations in the HOCl LD50 for inducing cell death were strongly correlated with initial intracellular GSH levels.SignificanceIn HMDM cells scavenging of HOCl by intracellular glutathione is sufficient to protect against oxidative loss of key metabolic functions within the cells.  相似文献   

2.
GSH is rapidly oxidized by HOCl (hypochlorous acid), which is produced physiologically by the neutrophil enzyme myeloperoxidase. It is converted into, mainly, oxidized glutathione. Glutathione sulfonamide is an additional product that is proposed to be covalently bonded between the cysteinyl thiol and amino group of the gamma-glutamyl residue of GSH. We have developed a sensitive liquid chromatography-tandem MS assay for the detection and quantification of glutathione sulfonamide as well as GSH and GSSG. The assay was used to determine whether glutathione sulfonamide is a major product of the reaction between GSH and HOCl, and whether it is formed by other two-electron oxidants. At sub-stoichiometric ratios of HOCl to GSH, glutathione sulfonamide accounted for up to 32% of the GSH that was oxidized. It was also formed when HOCl was generated by myeloperoxidase and its yield increased with the flux of oxidant. Of the other oxidants tested, only hypobromous acid and peroxynitrite produced substantial amounts of glutathione sulfonamide, but much less than with HOCl. Chloramines were able to generate detectable levels only when at a stoichiometric excess over GSH. We conclude that glutathione sulfonamide is sufficiently selective for HOCl to be useful as a biomarker for myeloperoxidase activity in biological systems. We have also identified a novel oxidation product of GSH with a molecular weight two mass units less than GSH, which we have consequently named dehydroglutathione. Dehydroglutathione represented a few percent of the total products and was formed with all of the oxidants except H2O2.  相似文献   

3.
We investigated the role of the glutathione redox cycle in endothelial cell injury induced by 15(S)-hydroperoxyeicosatetraenoic acid (15-HPETE), an arachidonate lipoxygenase product. Pretreatment of endothelial monolayers with reduced glutathione (GSH) markedly suppressed 15-HPETE-induced cellular injury, which was determined by the 51Cr-release assay. 15-HPETE-induced cytotoxicity was modified by several GSH-modulating agents such as buthionine sulfoximine and 2-oxothiazolidine-4-carboxylate, indicating that this cyto-protective action of GSH was correlated with the intracellular GSH level. These GSH-modulating agents also modified the conversion of 15-HPETE to 15(S)-hydroxyeicosatetraenoic acid by endothelial cells. On the other hand, the exposure of endothelial cell monolayers to 15-HPETE did not deplete intracellular GSH levels but decreased GSH peroxidase activity. In addition, sodium selenite and ebselen, a stimulator and mimic of GSH peroxidase activity, respectively, displayed remarkable protective effects against 15-HPETE-induced cytotoxicity. These results suggest that intracellular GSH plays a pivotal role in the protection against 15-HPETE-induced endothelial cell injury, and that the decreased activity of GSH peroxidase activity is involved in 15-HPETE-induced cytotoxicity.  相似文献   

4.
It was found that the hypochlorous acid (HOCl) inhibits the active efflux of glutathione S-conjugates, 2,4-dinitrophenyl-S-glutathione (DNP-SG, c(50%)=258+/-24 microM HOCl) and bimane-S-glutathione (B-SG, c(50%)=125+/-16 microM HOCl) from human erythrocytes, oxidises intracellular reduced glutathione (the ratio [HOCl]/[GSH](oxidized)=4) and inhibits basal as well as 2,4-dinitrophenol- (DNP) and 2,4-dinitrophenyl-S-glutathione (DNP-SG)-stimulated Mg(2+)-ATPase activities of erythrocyte membranes. Multidrug resistance-associated protein (MRP1) mediates the active export of glutathione S-conjugates in mammalian cells, including human erythrocytes. A direct impairment of erythrocyte membrane MRP by hypochlorous acid was shown by electrophoresis and immunoblotting (c(50%)=478+/-36 microM HOCl). The stoichiometry of the MRP/HOCl reaction was 1:1. These results demonstrate that MRP can be one of the cellular targets for the inflammatory mediator hypochlorous acid.  相似文献   

5.
In chronic inflammatory diseases of the airways, such as cystic fibrosis, hypochlorous acid (HOCl) generated by neutrophils is involved in airway injury. We examined the effects of HOCl on 16HBE14o- bronchial epithelial cells by bolus addition or by generation with glucose oxidase plus myeloperoxidase. HOCl produced both carbonyl formation of a discreet number of proteins and modification of surface targets that were recognized by an antibody raised against HOCl-modified protein. Bolus or enzymatically generated HOCl decreased transepithelial resistance, but surprisingly bolus HOCl also increased short-circuit current. Glutathione in lung epithelial lining fluid is an excellent scavenger of HOCl; however, glutathione content is lower in cystic fibrosis epithelial lining fluid due to deficient glutathione transport to the apical side of bronchial-tracheal epithelial cells (Gao L, Kim KJ, Yankaskas JR, and Forman HJ. Am J Physiol Lung Cell Mol Physiol 277: L113-L118, 1999). We found that alteration of the GSH content of apical fluid above 16HBE14o- cells was protective because all HOCl-induced changes were delayed or eliminated by exogenous glutathione within the physiological range. Extrapolating this to cystic fibrosis suggests that HOCl can alter cell function without destruction but that elevating glutathione could be protective.  相似文献   

6.

Background

Cystic fibrosis is a debilitating lung disease due to mutations in the cystic fibrosis transmembrane conductance regulator protein (CFTR) and is associated with chronic infections resulting in elevated myeloperoxidase activity and generation of hypochlorous acid (HOCl). CFTR mutations lead to decreased levels of glutathione (GSH) and thiocyanate (SCN) in the epithelial lining fluid (ELF). Hypertonic saline is used to improve lung function however the mechanism is uncertain.

Methods

In the present study, the effect of GSH and SCN on HOCl-mediated cell injury and their changes in the ELF after hypertonic saline nebulization in wild type (WT) and CFTR KO mice was examined. CFTR sufficient and deficient lung cells were assessed for GSH, SCN and corresponding sensitivity towards HOCl-mediated injury, in vitro.

Results

CFTR (-) cells had lower extracellular levels of both GSH and SCN and were more sensitive to HOCl-mediated injury. In vivo, hypertonic saline increased ELF GSH in the WT and to a lesser extent in the CFTR KO mice but only SCN in the WT ELF. Finally, potential protective effects of GSH and SCN at concentrations found in the ELF against HOCl toxicity were examined in vitro.

Conclusions

While the concentrations of GSH and SCN associated with the WT ELF protect against HOCl toxicity, those found in the CFTR KO mice were less sufficient to inhibit cell injury. These data suggests that CFTR has important roles in exporting GSH and SCN which are protective against oxidants and that hypertonic saline treatment may have beneficial effects by increasing their levels in the lung.  相似文献   

7.
Histamine is stored in granules of mast cells and basophils and released by inflammatory mediators. It has the potential to intercept some of the HOCl generated by the neutrophil enzyme, myeloperoxidase, to produce histamine chloramine. We have measured rate constants for reactions of histamine chloramine with methionine, ascorbate, and GSH at pH 7.4, of 91 M(-1)s(-1), 195 M(-1)s(-1), and 721 M(-1)s(-1), respectively. With low molecular weight thiols, the reaction was with the thiolate and rates increased exponentially with decreasing thiol group pK(a). Comparing rate constants for different chloramines reacting with ascorbate or a particular thiol anion, these were higher when there was less negative charge in the vicinity of the chloramine group. Histamine chloramine was the most reactive among biologically relevant chloramines. Consumption of histamine chloramine and oxidation of intracellular GSH were examined for human fibroblasts. At nontoxic doses, GSH loss over 10 min was slightly greater than that with HOCl, but the cellular uptake of histamine chloramine was 5-10-fold less. With histamine chloramine, GSSG was a minor product and most of the GSH was converted to mixed disulfides with proteins. HOCl gave a different profile of GSH oxidation products, with significantly less GSSG and mixed disulfide formation. There was irreversible oxidation and losses to the medium, as observed with HOCl and other cell types. Thus, histamine chloramine shows high preference for thiols both in isolation and in cells, and in this respect is more selective than HOCl.  相似文献   

8.
Glutathione (GSH) constitutes the single most important antioxidant in neurons, whereas iron causes oxidative stress that leads to cell damage and death. Although GSH and iron produce opposite effects on redox cell status, no mechanistic relationships between iron and GSH metabolism are known. In this work, we evaluated in SH-SY5Y neuroblastoma cells the effects of iron accumulation on intracellular GSH metabolism. After 2 d exposure to increasing concentrations of iron, cells underwent concentration-dependent iron accumulation and a biphasic change in intracellular GSH levels. Increasing iron from 1 to 5 microM resulted in a marked increase in intracellular oxidative stress and increased GSH levels. Increased GSH levels were due to increased synthesis. Further increases in iron concentration led to significant reduction in both reduced (GSH) and total (GSH + (2 x GSSG)) glutathione. Cell exposure to high iron concentrations (20-80 microM) was associated with a marked decrease in the GSH/GSSG molar ratio and the GSH half-cell reduction potential. Moreover, increasing iron from 40 to 80 microM resulted in loss of cell viability. Iron loading did not change GSH reductase activity but induced significant increases in GSH peroxidase and GSH transferase activities. The changes in GSH homeostasis reported here recapitulate several of those observed in Parkinson's disease substantia nigra. These results support a model by which progressive iron accumulation leads to a progressive decrease in GSH content and cell reduction potential, which finally results in impaired cell integrity.  相似文献   

9.
Intracellular-reduced glutathione (GSH) was removed by thiol-oxidation with diamide during in vitro perfusion of the corneal endothelium. By 15 min the normal mosaic-like pattern of the endothelial cells was disrupted by serpentine-like lines of cell separation at the cell juntions. After 45 min of perfusion, infividual clusters of cells formed cup-shaped islands. The resultant exposure of Descemet's membrane to the perfusion solution resulted in corneal swelling. Transmission electron microscopy revealed that the endothelial cells separated at the apical junctions and that the microfilaments in the apical cytoplasm of cells formed dense bands, whereas the other subcellular organelles were normal in appearance. The change in cellular shape may be due to loss of cellular adhesion which results in the condensation of the microfilaments or contraction of the microfilaments. The addition of glucose to the perfusate prevented the diamide effect, and the diamide effect could be reversed upon removal and perfusion of a glutathione bicarbonate Ringer's solution. These results suggest that the ratio of reduced to oxidized glutathione in the endothelial cells plays a role in the maintenance of the endothelial cell barrier function.  相似文献   

10.
5-(Pentafluorobenzoylamino)fluorescein (PFB-F), a new thiol-reactive molecule was synthesized to improve the detection limits and specificity of the assays for glutathione S-transferase (GST) activity and glutathione (GSH). A rapid assay method to measure GSH concentration or GST activity and the simultaneous analysis of multiple samples is possible because the glutathione adduct, GS-TFB-F, is separated from PFB-F by thin-layer chromatography (TLC) and can be quantitated by a fluorescence scanner. The detection limits for GSH and for GST activity using TLC were found to be as low as 10 pmol/microl and 1 ng/microl using equine liver GST, respectively. Determination of GSH concentration or GST activity in bovine pulmonary artery endothelial (BPAE) cell lysates gave a linear response for samples corresponding to 500-2500 cells. PFB-F could also measure GST activities of GST fusion proteins and prove to be a suitable substrate for determining the activities of human GST isozymes and other sources of mammalian GST. The selectivity of PFB-F with GSH was proven by comparing trace amount of the adducts that formed with cysteine and beta-galactosidase to that formed with GSH. The HPLC profile of a reaction mixture where cell lysate was used in place of purified GST, also shows only two main peaks, corresponding to GS-TFB-F and unreacted PFB-F. The selectivity of PFB-F for GSH was further confirmed by exposing BPAE cells to dl-buthionine-[S,R]-sulfoximine (BSO). Our results of GS-TFB-F determination indicate that 12-, 24-, or 36-h incubations with BSO caused 2-, 6-, or 7.6-fold reductions in GSH levels, respectively.  相似文献   

11.
The production of hypochlorous acid (HOCl) by the myeloperoxidase-H2O2-Cl- system of phagocytes plays a vital role in the ability of these cells to kill a wide range of pathogens. However, the generation of a potent oxidant is not without risk to the host, and there is evidence that HOCl contributes to the tissue injury associated with inflammation. In this review, we discuss the biological reactivity of HOCl, and detail what is known of how it interacts with mammalian cells. The outcome of exposure is dependent on the dose of oxidant, with higher doses causing necrosis, and apoptosis or growth arrest occurring with lower amounts. Glutathione (GSH) and protein thiols are easily oxidized, and are preferred targets with low, sublethal amounts of HOCl. Thiol enzymes vary in their sensitivity to HOCl, with glyceraldehyde-3-phosphate dehydrogenase being most susceptible. Indeed, loss of activity occurred before GSH oxidation. The products of these reactions and the ability of cells to regenerate oxidized thiols are discussed. Recent reports have indicated that HOCl can activate cell signaling pathways, and these studies may provide important information on the role of this oxidant in inflammation.  相似文献   

12.
It was found that the hypochlorous acid (HOCl) inhibits the active efflux of glutathione S-conjugates, 2,4-dinitrophenyl-S-glutathione (DNP-SG, c50%=258±24 μM HOCl) and bimane-S-glutathione (B-SG, c50%=125±16 μM HOCl) from human erythrocytes, oxidises intracellular reduced glutathione (the ratio [HOCl]/[GSH]oxidized=4) and inhibits basal as well as 2,4-dinitrophenol- (DNP) and 2,4-dinitrophenyl-S-glutathione (DNP-SG)-stimulated Mg2+-ATPase activities of erythrocyte membranes. Multidrug resistance-associated protein (MRP1) mediates the active export of glutathione S-conjugates in mammalian cells, including human erythrocytes. A direct impairment of erythrocyte membrane MRP by hypochlorous acid was shown by electrophoresis and immunoblotting (c50%=478±36 μM HOCl). The stoichiometry of the MRP/HOCl reaction was 1:1. These results demonstrate that MRP can be one of the cellular targets for the inflammatory mediator hypochlorous acid.  相似文献   

13.
Naphthalene is metabolized in the lung and liver to reactive intermediates by cytochrome P450 enzymes. These reactive species deplete glutathione, covalently bind to proteins, and cause necrosis in Clara cells of the lung. The importance of glutathione loss in naphthalene toxicity was investigated by using the glutathione prodrugs (glutathione monoethylester or cysteine-glutathione mixed disulfide) to maintain glutathione pools during naphthalene exposure. Mice given a single intraperitoneal injection of naphthalene (1.5 mmol/kg) were treated with either prodrug (2.5 mmol/kg) 30 min later. Both compounds effectively maintained glutathione levels and decreased naphthalene-protein adducts in the lung and liver. However, cysteine-glutathione mixed disulfide was more effective at preventing Clara cell injury. To study the prodrugs in Clara cells without the influence of hepatic naphthalene metabolism and circulating glutathione, dose-response and time-course studies were conducted with intrapulmonary airway explant cultures. Only the ester of glutathione raised GSH in vitro; however, both compounds limited protein adducts and cell necrosis. In vitro protection was not associated with decreased naphthalene metabolism. We conclude that (1) glutathione prodrugs can prevent naphthalene toxicity in Clara cells, (2) the prodrugs effectively prevent glutathione loss in vivo, and (3) cysteine-glutathione mixed disulfide prevents naphthalene injury in vitro without raising glutathione levels.  相似文献   

14.
The acquisition of resistance to anticancer agents used in chemotherapy is the main cause of treatment failure in malignant disorders, provoking tumours to become resistant during treatment, although they initially respond to it. The main multidrug resistance (MDR) mechanism in tumour cells is the expression of P-gly-coprotein (P-gly), that acts as an ATP-dependent active efflux pump of chemotherapeutic agents. Furthermore, an increased detoxification of compounds mediated by high levels of glutathione (GSH) and glutathione S-transferase (GST), has been found in resistant cells. We developed a study aiming to evaluate the evolution of the main drug resistance markers in tumour cells: P-gly, GSH and GST, during the acquisition of resistance to colchicine, for the purpose of studying the adaptation process and its contribution to the MDR phenomenon. A human colon adenocarcinoma cell line was exposed to colchicine during 82 days, being P-gly, GSH levels and GST activity evaluated by flow cytometry, spectrofluorimetry and spectrophotometry, during exposure time. P-gly and GSH levels increased gradually during the exposure to colchicine, reaching 2.35 and 3.21 fold each. On day 82, GST activity increased 1.84 fold at the end of the exposure period. Moreover, an increment in drug cross-resistance was obtained that ranges from 2.62 to 5.22 fold for colchicine, vinblastine, vincristine and mitomycin C. The increments obtained in P-gly, GSH and GST could probably contribute to the MDR phenomenon in this human colon adenocarcinoma cell line.  相似文献   

15.
Nutritional biochemistry of cellular glutathione   总被引:12,自引:0,他引:12  
Glutathione (GSH) has emerged to be one of the most fascinating endogenous molecules virtually present in all animal cells often in quite high (mM) concentrations. In addition to the detoxicant, antioxidant, and cysteine-reservoir functions of cellular glutathione, the potential of this ubiquitous thiol to modulate cellular signal transduction processes has been recently evident. Lowered tissue GSH levels have been observed in several disease conditions. Restoration of cell GSH levels in a number of these conditions have proven to be beneficial. Thus, strategies to boost cell glutathione level are of marked therapeutic significance. Availability of cysteine, a precursor for glutathione synthesis, inside the cell is a critical determinant of cellular glutathione level. N-acetylcysteine and -lipoic acid are two pro-glutathione agents that have remarkable clinical potential. The ability of these two clinical drugs to enhance cellular glutathione level, coupled with their favorable effect on the molecular biology of HIV infection may make them useful tools for AIDS treatment.  相似文献   

16.
Confluent human umbilical vein endothelial (HUVE) cells were readily (within 1 h) depleted of their glutathione (GSH) by diethylmaleate (0.1-1.0 mM), but dose-dependent cell detachment was noted. Buthionine sulfoximine (BSO, 25 microM) depleted cell GSH with sigmoidal kinetics, showing an initial half-life of depletion of 4-6 h and greater than 95% depletion by 48 h without morphological changes to the cells. However, BSO-dependent depletion of cell GSH was only partially reversible by cell washing and reincubation with complete medium. Likewise, incubation of the cells in sulfur-free medium depleted cell GSH again without morphological changes to the cells. However, unlike with BSO, these cells readily resynthesized GSH when resupplied with complete medium, fresh plasma, or whole blood, with a characteristic overloading of cell GSH (up to 200%) by 12 h. By use of the sulfur-free medium, it was shown that both cystine and cysteine are effective precursors to GSH synthesis in HUVE cells in culture and that cystine is the most likely precursor in vivo. During cystine-supported resynthesis of GSH, high levels of cysteine accumulated in the cells (up to 10% of total soluble free thiol). Physiologically relevant concentrations of extracellular GSH were not as effective as cystine or cysteine in stimulating GSH biosynthesis, whereas nonphysiologically high (mM) concentrations resulted in substantial elevation of GSH levels above those of control cells in a BSO-insensitive manner. These findings provide a simple methodology for the manipulation of HUVE cell GSH in studies of endothelial-specific oxidant toxicity and the sulfur dependence of the biochemistry and turnover of GSH in these human cells.  相似文献   

17.
Different cell types exhibit huge differences towards the cytotoxic action of NO. In search for an explanation, we used subtoxic concentrations of the NO-donors S-nitrosocysteine (SNOC) for short-term challenge and of (Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1- ium-1,2-diolate (DETA/NO) for longer periods of exposure, respectively, and subtoxic concentrations of the oxidant H2O2 to determine the impact on intracellular reduced glutathione (GSH) concentrations. We find that GSH concentrations are always decreased, but that different cell types show different responses. Incubation of the relatively NO-sensitive murine lymphocytes with both NO-donors, but not with H2O2, resulted in a nearly complete loss of intracellular GSH. Short-term NO-treatment of P815 mastocytoma cells, also sensitive to NO-mediated cell death, decreased GSH to a similar extent only if either glutathione reductase (GSHR) activity or y-glutamylcysteine synthetase (gammaGCS) activity were inhibited concomitantly by specific inhibitors. Long-term NO-treatment of P815 cells, however, resulted in a significant decrease of GSH that could be further enhanced by inhibiting gammaGCS activity. In contrast, neither short-term nor long-term NO-exposure nor H2O2-treatment affected intracellular GSH levels of L929 fibroblasts, which were previously shown to be extremely resistant towards NO, whereas concomitant gammaGCS inhibition, but not GSHR inhibition, completely decreased GSH concentrations. These results show that different cell types use different pathways trying to maintain glutathione concentrations to cope with nitrosative stress, and the overall capability to maintain a critical amount of GSH correlates with susceptibility to NO-induced cell death.  相似文献   

18.
We studied the role of glutathione in the endothelial cell defense against H2O2 damage. Treatment of endothelial cells with buthionine sulfoximine, an irreversible inhibitor of gamma-glutamylcysteine synthetase, depleted the cells of GSH, while L-2-oxothiazolidine-4-carboxylate, an effective intracellular cysteine delivery agent, markedly enhanced endothelial cell GSH concentration. Depletion of intracellular GSH sensitized the endothelial cells to injury by H2O2 either preformed or generated by the glucose-glucose oxidase system. In contrast, an increase of intracellular GSH protected the cells from H2O2 damage. There was an inverse, linear relationship between the intracellular GSH concentrations and killing of endothelial cells by H2O2. Our results suggest that enhancement of endothelial cell GSH may be an alternative approach toward the prevention of oxidant-induced endothelial damage such as adult respiratory distress syndrome.  相似文献   

19.
Induction of detoxifying phase II genes by chemopreventive agents represents a coordinated protective response against oxidative stress and neoplastic effects of carcinogens. We have earlier shown that a novel antioxidant from the bamboo leaves constituent 3-O-caffeoyl-1-methylquinic acid (MCGA3) induces heme oxygenase-1 (HO-1) and protects endothelial cells from ROS-induced endothelial injury. The purpose of this study was to elucidate the induction mechanism of HO-1 and other phase II genes by MCGA3 in human umbilical vascular endothelial cells (HUVECs). Using Northern blotting and RT-PCR, we found that treatment of HUVECs with MCGA3 increased, in a dose and time-dependent manner, steady-state mRNA levels of the selected phase II genes including HO-1, ferritin, gamma-glutamylcysteine lygase, glutathione reductase, and glutathione transferase, which were dependent on Nrf2 nuclear translocation. The observed phase II gene induction by MCGA3 was found to be associated with MCGA3-mediated cytoprotective activity, ROS-scavenging potency, and the increase in the cellular levels of both reduced (GSH) and oxidized glutathione (GSSG). Interestingly, exposure to MCGA3 resulted in a decreased ratio of GSH/GSSG, which was negatively related with mRNA level of phase II genes. By employing N-acetylcysteine and GSH biosynthetic enzyme inhibitors as well as prooxidants, hemin and H(2)O(2), we show that a decreased intracellular GSH/GSSG homeostasis, at least in part, may be involved in the MCGA3-mediated phase II gene induction and Nrf2 translocation, although the attenuation of HO-1 expression with SP 600125 supports a partial involvement of JNK signaling.  相似文献   

20.
We examined the role of intracellular glutathione (GSH) in the defense of endothelial cells against oxidized low density lipoprotein (OX-LDL). Incubation of cultured bovine endothelial cells with OX-LDL produced a loss of intracellular GSH, followed by lysis. A decrease in the cellular stores of GSH by treating the endothelial cells with buthionine sulfoximine, an irreversible inhibitor of gamma-glutamylcysteine synthetase, increased the susceptibility of endothelial cells to lysis by OX-LDL. In contrast, an increase in cellular GSH level by treatment with L-2-oxothiazolidine-4-caboxylate, an effective intracellular cysteine delivery agent, reduced the toxicity of OX-LDL. These findings suggest that intracellular GSH plays an important role in the defense of endothelial cells against OX-LDL, and that the mechanism of OX-LDL toxicity is related to the depletion of intracellular GSH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号