首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vesicular traffic is essential for sporulation in Saccharomyces cerevisiae. The Golgi-associated retrograde protein (GARP) tethering complex is required for retrograde traffic from both the early and late endosomes to the Golgi. Analyses of GARP complex mutants in sporulation reveal defects in meiotic progression and spore formation. In contrast, inactivation of the retromer complex, which mediates vesicle budding and cargo selection from the late endosome, or Snx4p, which is involved in retrieval of proteins from the early endosome, has little effect on sporulation. A retromer GARP double mutant is defective in the formation of the prospore membrane (PSM) that surrounds the haploid nuclei. In the retromer GARP double mutant, PSM precursor vesicles carrying the cargo, Dtr1p, are transported to the spindle pole body (SPB), where PSM formation is initiated. However, the v-SNARE Snc1p is not transported to the SPB in the double mutant, suggesting that the defect in PSM formation is because of the failure to retrieve Snc1p, and perhaps other proteins, from the endosomal pathway. Taken together, these results indicate that retrograde trafficking from the endosome is essential for sporulation by retrieving molecules important for PSM and spore wall formation.  相似文献   

2.
Many endocytosed proteins in yeast travel to the vacuole, but some are recycled to the plasma membrane. We have investigated the recycling of chimeras containing green fluorescent protein (GFP) and the exocytic SNARE Snc1p. GFP-Snc1p moves from the cell surface to internal structures when Golgi function or exocytosis is blocked, suggesting continuous recycling via the Golgi. Internalization is mediated by a conserved cytoplasmic signal, whereas diversion from the vacuolar pathway requires sequences within and adjacent to the transmembrane domain. Delivery from the Golgi to the surface is also influenced by the transmembrane domain, but the requirements are much less specific. Recycling requires the syntaxins Tlg1p and Tlg2p but not Pep12p or proteins such as Vps4p and Vps5p that have been implicated in late endosome-Golgi traffic. Subtle changes to the recycling signal cause GFP-Snc1p to accumulate preferentially in punctate internal structures, although it continues to recycle to the surface. The internal GFP-Snc1p colocalizes with Tlg1p, and immunofluorescence and immunoelectron microscopy reveal structures that contain Tlg1p, Tlg2p, and Kex2p but lack Pep12p and Sec7p. We propose that these represent early endosomes in which sorting of Snc1p and late Golgi proteins occurs, and that transport can occur directly from them to the Golgi apparatus.  相似文献   

3.
Protein recycling is an important cellular process required for cell homeostasis. Results from prior studies have shown that vacuolar sorting protein‐1 (Vps1), a dynamin homolog in yeast, is implicated in protein recycling from the endosome to the trans‐Golgi Network (TGN). However, the function of Vps1 in relation to Ypt6, a master GTPase in the recycling pathway, remains unknown. The present study reveals that Vps1 physically interacts with Ypt6 if at least one of them is full‐length. We found that overexpression of full‐length Vps1, but not GTP hydrolysis‐defective Vps1 mutants, is sufficient to rescue abnormal phenotypes of Snc1 distribution provoked by the loss of Ypt6, and vice versa. This suggests that Vps1 and Ypt6 function in parallel pathways instead of in a sequential pathway and that GTP binding/hydrolysis of Vps1 is required for proper traffic of Snc1 toward the TGN. Additionally, we identified two novel Vps1‐binding partners, Vti1 and Snc2, which function for the endosome‐derived vesicle fusion at the TGN. Taken together, the present study demonstrates that Vps1 plays a role in later stages of the endosome‐to‐TGN traffic.  相似文献   

4.
The Saccharomyces cerevisiae Wbp1 protein is an endoplasmic reticulum (ER), type I transmembrane protein which contains a cytoplasmic dilysine (KKXX) motif. This motif has previously been shown to direct Golgi-to-ER retrieval of type I membrane proteins in mammalian cells (Jackson, M. R., T. Nilsson, and P. A. Peterson. 1993. J. Cell Biol. 121: 317-333). To analyze the role of this motif in yeast, we constructed a SUC2-WBP1 chimera consisting of the coding sequence for the normally secreted glycoprotein invertase fused to the coding sequence of the COOH terminus (including the transmembrane domain and 16-amino acid cytoplasmic tail) of Wbplp. Carbohydrate analysis of the invertase-Wbp1 fusion protein using mannose linkage-specific antiserum demonstrated that the fusion protein was efficiently modified by the early Golgi initial alpha 1,6 mannosyltransferase (Och1p). Subcellular fractionation revealed that > 90% of the alpha 1,6 mannose-modified fusion protein colocalized with the ER (Wbp1p) and not with the Golgi Och1p-containing compartment or other membrane fractions. Amino acid changes within the dily sine motif (KK-->QK, KQ, or QQ) did not change the kinetics of initial alpha 1,6 mannose modification of the fusion protein but did dramatically increase the rate of modification by more distal Golgi (elongating alpha 1,6 and alpha 1,3) mannosyltransferases. These mutant fusion proteins were then delivered directly from a late Golgi compartment to the vacuole, where they were proteolytically cleaved in a PEP4-dependent manner. While amino acids surrounding the dilysine motif played only a minor role in retention ability, mutations that altered the position of the lysines relative to the COOH terminus of the fusion protein also yielded a dramatic defect in ER retention. Collectively, our results indicate that the KKXX motif does not simply retain proteins in the ER but rather directs their rapid retrieval from a novel, Och1p-containing early Golgi compartment. Similar to observations in mammalian cells, it is the presence of two lysine residues at the appropriate COOH-terminal position which represents the most important features of this sorting determinant.  相似文献   

5.
CalDAGs are a family of Ras guanyl exchange factors that contain calcium and DAG-binding domains. Among the four identified members of CalDAG family, CalDAGIII has been shown to play important role in B lymphocyte and endocrine cell functions. However, the mechanism underlining these functions remain to be determined. Here in the present study, we determined the subcellular localization of CalDAGIII and roles of calcium-binding and DAG-binding domains in its localization. We found that C1 domain but not EF hands is important for both CalDAGIII localization to the Golgi and p38 activation in B cells, indicating that CalDAGIII may be regulated by DAG but not Calcium.  相似文献   

6.
We have used an in vitro assay that reconstitutes transport from the ER to the Golgi complex in yeast to identify a functional vesicular intermediate in transit to the Golgi apparatus. Permeabilized yeast cells, which serve as the donor in this assay, release a homogeneous population of vesicles that are biochemically distinct from the donor ER fraction. The isolated vesicles, containing a post-ER/pre-Golgi form of the marker protein pro-alpha-factor, were able to bind to and fuse with exogenously added Golgi membranes. The ability to isolate fusion competent vesicles provides direct evidence that ER to Golgi membrane transport is mediated by a discrete population of vesicular carriers.  相似文献   

7.
Studies on the ERGIC-53 KKAA signal have revealed a new mechanism for static retention of mammalian proteins in the endoplasmic reticulum (Andersson, H., Kappeler, F., Hauri, H. P. (1999): Protein targeting to endoplasmic reticulum by dilysine signals involves direct retention in addition to retrieval. J. Biol. Chem. 274,15080 - 15084). To test if this mechanism was conserved in yeast, the ERGIC-53 KKAA signal was transferred on two different yeast reporter proteins. Making use of a genetic assay, we demonstrate that this signal induces COPI-dependent ER retrieval. ER retention of KKAA-tagged proteins was impaired in yeast mutants affected in COPI subunits. Furthermore, biochemical analysis of post-ER carbohydrate modifications detected on reporter proteins indicated that KKAA-tagged proteins recycle continuously within early compartments of the secretory pathway. Therefore in yeast, the KKAA signal might only function as a classical dilysine ER retrieval signal.  相似文献   

8.
Drs2p, the catalytic subunit of the Cdc50p-Drs2p putative aminophospholipid translocase, has been implicated in conjunction with the Arf1 signaling pathway in the formation of clathrin-coated vesicles (CCVs) from the TGN. Herein, we searched for Arf regulator genes whose mutations were synthetically lethal with cdc50Delta, and identified the Arf GAP gene GCS1. Most of the examined transport pathways in the Cdc50p-depleted gcs1Delta mutant were nearly normal, including endocytic transport to vacuoles, carboxypeptidase Y sorting, and the processing and secretion of invertase. In contrast, this mutant exhibited severe defects in the early endosome-to-TGN transport pathway; proteins that are transported via this pathway, such as the v-SNARE Snc1p, the t-SNARE Tlg1p, and the chitin synthase III subunit Chs3p, accumulated in TGN-independent aberrant membrane structures. We extended our analyses to clathrin adaptors, and found that Gga1p/Gga2p and AP-1 were also involved in this pathway. The Cdc50p-depleted gga1Delta gga2Delta mutant and the gcs1Delta apl2Delta (the beta1 subunit of AP-1) mutant exhibited growth defects and intracellular Snc1p-containing membranes accumulated in these cells. These results suggest that Cdc50p-Drs2p plays an important role in the Arf1p-mediated formation of CCVs for the retrieval pathway from early endosomes to the TGN.  相似文献   

9.
Yeast Ypt6p, the homologue of the mammalian Rab6 GTPase, is not essential for cell viability. Based on previous studies with ypt6 deletion mutants, a regulatory role of the GTPase either in protein retrieval to the trans-Golgi network or in forward transport between the endoplasmic reticulum (ER) and early Golgi compartments was proposed. To assess better the primary role(s) of Ypt6p, temperature-sensitive ypt6 mutants were generated and analyzed biochemically and genetically. Defects in N-glycosylation of proteins passing the Golgi and of Golgi-resident glycosyltransferases as well as protein sorting defects in the trans-Golgi were recorded shortly after functional loss of Ypt6p. ER-to-Golgi transport and protein secretion were delayed but not interrupted. Mis-sorting of the vesicular SNARE Sec22p to the late Golgi was also observed. Combination of the ypt6-2 mutant allele with a number of mutants in forward and retrograde transport between ER, Golgi, and endosomes led to synthetic negative growth defects. The results obtained indicate that Ypt6p acts in endosome-to-Golgi, in intra-Golgi retrograde transport, and possibly also in Golgi-to-ER trafficking.  相似文献   

10.
Many intracellular vesicle transport pathways involve GTP hydrolysis by the ADP-ribosylation factor (ARF) type of monomeric G proteins, under the control of ArfGAP proteins. Here we show that the structurally related yeast proteins Gcs1 and Age2 form an essential ArfGAP pair that provides overlapping function for TGN transport. Mutant cells lacking the Age2 and Gcs1 proteins cease proliferation, accumulate membranous structures resembling Berkeley bodies, and are unable to properly process and localize the vacuolar hydrolase carboxypeptidase (CPY) and the vacuolar membrane protein alkaline phosphatase (ALP), which are transported from the TGN to the vacuole by distinct transport routes. Immunofluorescence studies localizing the proteins ALP, Kex2 (a TGN resident protein), and Vps10 (the CPY receptor for transport from the TGN to the vacuole) suggest that inadequate function of this ArfGAP pair leads to a fragmentation of TGN, with effects on secretion and endosomal transport. Our results demonstrate that the Gcs1 + Age2 ArfGAP pair provides overlapping function for transport from the TGN, and also indicate that multiple activities at the TGN can be maintained with the aid of a single ArfGAP.  相似文献   

11.
《The Journal of cell biology》1989,109(6):2939-2950
The budding mode of Saccharomyces cerevisiae cell growth demands that a high degree of secretory polarity be established and directed toward the emerging bud. We report here our demonstration that mutations in SAC1, a gene identified by virtue of its allele-specific genetic interactions with yeast actin defects, were also capable of suppressing sec14 lethalities associated with yeast Golgi defects. Moreover, these sac1 suppressor properties also extended to sec6 and sec9 secretory vesicle defects. The genetic data are consistent with the notion that SAC1p modulates both secretory pathway and actin cytoskeleton function. On this basis, we suggest that SAC1p may represent one aspect of the mechanism whereby secretory and cytoskeletal activities are coordinated, so that proper spatial regulation of secretion might be achieved.  相似文献   

12.
We report the identification and characterization of ERS-24 (Endoplasmic Reticulum SNARE of 24 kD), a new mammalian v-SNARE implicated in vesicular transport between the ER and the Golgi. ERS24 is incorporated into 20S docking and fusion particles and disassembles from this complex in an ATP-dependent manner. ERS-24 has significant sequence homology to Sec22p, a v-SNARE in Saccharomyces cerevisiae required for transport between the ER and the Golgi. ERS-24 is localized to the ER and to the Golgi, and it is enriched in transport vesicles associated with these organelles.Newly formed transport vesicles have to be selectively targeted to their correct destinations, implying the existence of a set of compartment-specific proteins acting as unique receptor–ligand pairs. Such proteins have now been identified (Söllner et al., 1993a ; Rothman, 1994): one partner efficiently packaged into vesicles, termed a v-SNARE,1 and the other mainly localized to the target compartment, a t-SNARE. Cognate pairs of v- and t-SNAREs, capable of binding each other specifically, have been identified for the ER–Golgi transport step (Lian and Ferro-Novick, 1993; Søgaard et al., 1994), the Golgi–plasma membrane transport step (Aalto et al., 1993; Protopopov et al., 1993; Brennwald et al., 1994) in Saccharomyces cerevisiae, and regulated exocytosis in neuronal synapses (Söllner et al., 1993a ; for reviews see Scheller, 1995; Südhof, 1995). Additional components, like p115, rab proteins, and sec1 proteins, appear to regulate vesicle docking by controlling the assembly of SNARE complexes (Søgaard et al., 1994; Lian et al., 1994; Sapperstein et al., 1996; Hata et al., 1993; Pevsner et al., 1994).In contrast with vesicle docking, which requires compartment-specific components, the fusion of the two lipid bilayers uses a more general machinery derived, at least in part, from the cytosol (Rothman, 1994), which includes an ATPase, the N-ethylmaleimide–sensitive fusion protein (NSF) (Block et al., 1988; Malhotra et al., 1988), and soluble NSF attachment proteins (SNAPs) (Clary et al., 1990; Clary and Rothman, 1990; Whiteheart et al., 1993). Only the assembled v–t-SNARE complex provides high affinity sites for the consecutive binding of three SNAPs (Söllner et al., 1993b ; Hayashi et al., 1995) and NSF. When NSF is inactivated in vivo, v–t-SNARE complexes accumulate, confirming that NSF is needed for fusion after stable docking (Søgaard et al., 1994).The complex of SNAREs, SNAPs, and NSF can be isolated from detergent extracts of cellular membranes in the presence of ATPγS, or in the presence of ATP but in the absence of Mg2+, and sediments at ∼20 Svedberg (20S particle) (Wilson et al., 1992). In the presence of MgATP, the ATPase of NSF disassembles the v–t-SNARE complex and also releases SNAPs. It seems likely that this step somehow initiates fusion.To better understand vesicle flow patterns within cells, it is clearly of interest to identify new SNARE proteins. Presently, the most complete inventory is in yeast, but immunolocalization is difficult in yeast compared with animal cells, and many steps in protein transport have been reconstituted in animal extracts (Rothman, 1992) that have not yet been developed in yeast. Therefore, it is important to create an inventory of SNARE proteins in animal cells. The most unambiguous and direct method for isolating new SNAREs is to exploit their ability to assemble together with SNAPs and NSF into 20S particles and to disassemble into subunits when NSF hydrolyzes ATP. Similar approaches have already been successfully used to isolate new SNAREs implicated in ER to Golgi (Søgaard et al., 1994) and intra-Golgi transport (Nagahama et al., 1996), in addition to the original discovery of SNAREs in the context of neurotransmission (Söllner et al., 1993a ).Using this method, we now report the isolation and detailed characterization of ERS-24 (Endoplasmic Reticulum SNARE of 24 kD), a new mammalian v-SNARE that is localized to the ER and Golgi. ERS-24 is found in transport vesicles associated with the transitional areas of the ER and with the rims of Golgi cisternae, suggesting a role for ERS-24 in vesicular transport between these two compartments.  相似文献   

13.
14.
The Golgi ion homeostasis is tightly regulated to ensure essential cellular processes such as glycosylation, yet our understanding of this regulation remains incomplete. Gdt1p is a member of the conserved Uncharacterized Protein Family (UPF0016). Our previous work suggested that Gdt1p may function in the Golgi by regulating Golgi Ca2 +/Mn2 + homeostasis. NMR structural analysis of the polymannan chains isolated from yeasts showed that the gdt1Δ mutant cultured in presence of high Ca2 + concentration, as well as the pmr1Δ and gdt1Δ/pmr1Δ strains presented strong late Golgi glycosylation defects with a lack of α-1,2 mannoses substitution and α-1,3 mannoses termination. The addition of Mn2 + confirmed the rescue of these defects. Interestingly, our structural data confirmed that the glycosylation defect in pmr1Δ could also completely be suppressed by the addition of Ca2 +. The use of Pmr1p mutants either defective for Ca2 + or Mn2 + transport or both revealed that the suppression of the observed glycosylation defect in pmr1Δ strains by the intraluminal Golgi Ca2 + requires the activity of Gdt1p. These data support the hypothesis that Gdt1p, in order to sustain the Golgi glycosylation process, imports Mn2 + inside the Golgi lumen when Pmr1p exclusively transports Ca2 +. Our results also reinforce the functional link between Gdt1p and Pmr1p as we highlighted that Gdt1p was a Mn2 + sensitive protein whose abundance was directly dependent on the nature of the ion transported by Pmr1p. Finally, this study demonstrated that the aspartic residues of the two conserved motifs E-x-G-D-[KR], likely constituting the cation binding sites of Gdt1p, play a crucial role in Golgi glycosylation and hence in Mn2 +/Ca2 + transport.  相似文献   

15.
Maarten J. Chrispeels 《Planta》1983,158(2):140-151
When developing cotyledons of Phaseolus vulgaris L. were labeled with [3H]fucose, fucose-labeled phytohemagglutinin (PHA) was found in organelles with average densities of 1.13 g cm-3 and 1.22 g cm-3. The position of these organelles on isopycnic sucrose gradients was independent of the presence of MgCl2 and ethylenediaminetetraacetate in the media, indicating that the fucose-labeled PHA was not associated with the rough endoplasmic reticulum (ER). The organelles with a density of 1.13 g cm-3 were identified as membranes of the Golgi apparatus on the basis of the similarity of their sedimentation properties and those of the Golgi marker enzyme, inosine diphosphatase, in both isopycnic and rate-zonal sucrose gradients. The organelles with a density of 1.22 g cm-3 were identified as small (0.1–0.4 μm), electron-dense vesicles with a protein content similar to that of the protein bodies. Pulsechase experiments with [3H]fucose indicated that fucose-labeled PHA first appeared in the Golgi-apparatus-derived membranes and later in the dense vesicles. Fucose-labeled PHA chased out of the Golgi apparatus first, then out of the dense vesicles, and accumulated in the soluble portion of the homogenate which contained the contents of the broken protein bodies. Fucose-labeled PHA chased out of the two types of organelles with a t 1/2 of 20–30 min, a rate three to four times faster than newly synthesized PHA chases out of the bulk of the ER (Chrispeels, M.J., Bollini, R., 1982, Plant Physiol. 70, 1425–1428). This result indicates that the Golgi apparatus is a much smaller compartment than the ER in the storage parenchyma cells. The sodium ionophore, monensin, which interferes with the function of the Golgi apparatus of animal cells, blocks the biosynthesis and—or transport of fucose- and galactose-labeled macromolecules to the cotyledon cell walls. Monensin also blocks the transport of labeled PHA out of the Golgi apparatus and into the protein bodies. These results provide the first biochemical evidence that a specific storage protein which accumulates in seeds is modified in, and passes through, the Golgi apparatus on its way to the protein bodies.  相似文献   

16.
Skp1p-cullin-F-box protein (SCF) complexes are ubiquitin-ligases composed of a core complex including Skp1p, Cdc53p, Hrt1p, the E2 enzyme Cdc34p, and one of multiple F-box proteins which are thought to provide substrate specificity to the complex. Here we show that the F-box protein Rcy1p is required for recycling of the v-SNARE Snc1p in Saccharomyces cerevisiae. Rcy1p localized to areas of polarized growth, and this polarized localization required its CAAX box and an intact actin cytoskeleton. Rcy1p interacted with Skp1p in vivo in an F-box-dependent manner, and both deletion of its F box and loss of Skp1p function impaired recycling. In contrast, cells deficient in Cdc53p, Hrt1p, or Cdc34p did not exhibit recycling defects. Unlike the case for F-box proteins that are known to participate in SCF complexes, degradation of Rcy1p required neither its F box nor functional 26S proteasomes or other SCF core subunits. Importantly, Skp1p was the only major partner that copurified with Rcy1p. Our results thus suggest that a complex composed of Rcy1p and Skp1p but not other SCF components may play a direct role in recycling of internalized proteins.  相似文献   

17.
The mammalian Golgi ribbon disassembles during mitosis and reforms in both daughter cells after division. Mitotic Golgi membranes concentrate around the spindle poles, suggesting that the spindle may control Golgi partitioning. To test this, cells were induced to divide asymmetrically with the entire spindle segregated into only one daughter cell. A ribbon reforms in the nucleated karyoplasts, whereas the Golgi stacks in the cytoplasts are scattered. However, the scattered Golgi stacks are polarized and transport cargo. Microinjection of Golgi extract together with tubulin or incorporation of spindle materials rescues Golgi ribbon formation. Therefore, the factors required for postmitotic Golgi ribbon assembly are transferred by the spindle, but the constituents of functional stacks are partitioned independently, suggesting that Golgi inheritance is regulated by two distinct mechanisms.  相似文献   

18.
19.
Recycling of proteins from the Golgi compartment to the ER in yeast   总被引:32,自引:12,他引:20       下载免费PDF全文
In the yeast Saccharomyces cerevisiae, the carboxyl terminal sequence His-Asp-Glu-Leu (HDEL) has been shown to function as an ER retention sequence (Pelham, H. R. B., K. G. Hardwick, and M. J. Lewis. 1988. EMBO (Eur. Mol. Biol. Organ.) J. 7:1757-1762). To examine the mechanism of retention of soluble ER proteins in yeast, we have analyzed the expression of a preproalpha factor fusion protein, tagged at the carboxyl terminus with the HDEL sequence. We demonstrate that this fusion protein, expressed in vivo, accumulates intracellularly as a precursor containing both ER and Golgi-specific oligosaccharide modifications. The Golgi-specific carbohydrate modification, which occurs in a SEC18-dependent manner, consists of alpha 1-6 mannose linkages, with no detectable alpha 1-3 mannose additions, indicating that the transit of the HDEL-tagged fusion protein is confined to an early Golgi compartment. Results obtained from the fractionation of subcellular organelles from yeast expressing HDEL-tagged fusion proteins suggest that the Golgi-modified species are present in the ER. Overexpression of HDEL-tagged preproalpha factor results in the secretion of an endogenous HDEL-containing protein, demonstrating that the HDEL recognition system can be saturated. These results support the model in which the retention of these proteins in the ER is dependent on their receptor-mediated recycling from the Golgi complex back to the ER.  相似文献   

20.
Mammalian cells endocytose a variety of proteins and lipids without utilising clathrin-coated pits. Detailed molecular mechanisms for clathrin-independent endocytosis are unclear. Several markers for this process, including glycosphingolipid-binding bacterial toxin subunits such as cholera toxin B subunit (CTxB), and glycosyl-phosphatidyl-inositol (GPI)-anchored proteins, are found in detergent-resistant membrane fractions (DRMs), or 'lipid rafts'. The Golgi complex constitutes one principal intracellular destination for these markers. Uptake of both CTxB and GPI-anchored proteins may involve caveolae, small invaginations in the plasma membrane (PM). However, the identity of intermediate organelles involved in PM to Golgi trafficking, as well as the function of caveolins, defining protein components of caveolae, are unclear. This paper shows that molecules which partition into DRMs and are endocytosed in a clathrin-independent fashion, accumulate in a discrete population of endosomes en route to the Golgi complex. These endosomes are devoid of markers for classical early and recycling endosomes, but do contain caveolin-1. Caveolin-1-positive endosomes are sites for the sorting of caveolin-1 away from Golgi-bound cargoes, although caveolin-1 itself is unlikely to have a direct function in PM to Golgi transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号