首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genes for (methyl)phenol degradation in Pseudomonas putida strain H (phl genes) are located on the plasmid pPGH1. Adjacent to the phl catabolic operon we identified a cryptic transposon, Tn5501, of the Tn3 family (class II transposons). The genes encoding the resolvase and the transposase are transcribed in the same direction, as is common for the Tn501 subfamily. The enzymes encoded by Tn5501, however, show only the overall homology characteristic for resolvases/integrases and transposases of Tn3-type transposons. Therefore it is likely that Tn5501 is not a member of one of the previously defined subfamilies. Inactivation of the conditional lethal sacB gene was used to detect transposition of Tn5501. While screening for transposition events we found another transposon integrated into sacB in one of the sucrose-resistant survivors. This element, Tn5502, is a composite transposon consisting of Tn5501 and an additional DNA fragment. It is flanked by inverted repeats identical to those of Tn5501 and the additional fragment is separated from the Tn5501 portion by an internal repeat (identical to the left terminal repeat). Transposition of phenol degradation genes could not be detected. Analysis of sequence data revealed that the phl genes are not located on a Tn5501-like transposon. Received: 21 July 1997 / Accepted: 7 July 1998  相似文献   

2.
The region downstream of the Thiobacillus ferrooxidans ATCC 33020 atp operon was examined, and the genes encoding N-acetylglucosamine-1-uridyltransferase (glmU) and glucosamine synthetase (glmS) were found. This atpEFHAGDC-glmUS gene order is identical to that of Escherichia coli. The T. ferrooxidans glmS gene was shown to complement E. coli glmS mutants for growth on minimal medium lacking glucosamine. A Tn7-like transposon, Tn5468, was found inserted into the region immediately downstream of the glmS gene in a manner similar to the site-specific insertion of transposon Tn7 within the termination region of the E. coli glmS gene. Tn5468 was sequenced, and Tn7-like terminal repeat sequences as well as several open reading frames which are related to the Tn7 transposition genes tnsA, tnsB, tnsC, and tnsD were found. Tn5468 is the closest relative of Tn7 to have been characterized to date. Southern blot hybridization indicated that a similar or identical transposon was present in three T. ferrooxidans strains isolated from different parts of the world but not in two Thiobacillus thiooxidans strains or a Leptospirillum ferrooxidans strain. Since T. ferrooxidans is an obligately acidophilic autotroph and E. coli is a heterotroph, ancestors of the Tn7-like transposons must have been active in a variety of physiologically different bacteria so that their descendants are now found in bacteria that occupy very different ecological niches.  相似文献   

3.
Tn163 is a transposable element identified in Rhizobium leguminosarum bv. viciae by its high insertion rate into positive selection vectors. The 4.6 kb element was found in only one further R. leguminosarum bv. viciae strain out of 70 strains investigated. Both unrelated R. leguminosarum bv. viciae strains contained one copy of the transposable element, which was localized in plasmids native to these strains. DNA sequence analysis revealed three large open reading frames (ORFs) and 38 bp terminal inverted repeats. ORF1 encodes a putative protein of 990 amino acids displaying strong homologies to transposases of class 11 transposons. ORF2, transcribed in the opposite direction, codes for a protein of 213 amino acids which is highly homologous to DNA invertases and resolvases of class II transposons. Homology of ORF1 and ORF2 and the genetic structure of the element indicate that Tn163 can be classified as a class II transposon. It is the first example of a native transposon in the genus Rhizobium. ORF3, which was found not to be involved in the transposition process, encodes a putative protein (256 amino acids) of unknown function. During transposition Tn163 produced direct repeats of 5 bp, which is typical for transposons of the Tn3 family. However, one out of the ten insertion sites sequenced showed a 6 by duplication of the target DNA; all duplicated sequences were A/T rich. Insertion of Tn163 into the sacB gene revealed two hot spots. Chromosomes of different R. leguminosarum bv. viciae strains were found to be highly refractory to the insertion of Tn163.  相似文献   

4.
The transposons Tn5, Tn10, Tn611, and Tn5096 were characterized regarding transposition in Gordonia polyisoprenivorans strain VH2. No insertional mutants were obtained employing Tn5 or Tn10. The thermosensitive plasmid pCG79 harboring Tn611 integrated into the chromosome of G. polyisoprenivorans; however, the insertional mutants were fairly unstable und reverted frequently to the wild-type phenotype. In contrast, various stable mutants were obtained employing Tn5096-mediated transposon mutagenesis. Auxotrophic mutants, mutants defective or deregulated in carotenoid biosynthesis, and mutants defective in utilization of rubber and/or highly branched isoprenoid hydrocarbons were obtained by integration of plasmid pMA5096 harboring Tn5096 as a whole into the genome. From about 25,000 isolated mutants, the insertion loci of pMA5096 were subsequently mapped in 20 independent mutants in genes which could be related to the above-mentioned metabolic pathways or to putative regulation proteins. Analyses of the genotypes of pMA5096-mediated mutants defective in biodegradation of poly(cis-1,4-isoprene) did not reveal homologues to recently identified genes coding for enzymes catalyzing the initial cleavage of poly(cis-1,4-isoprene). One rubber-negative mutant was disrupted in mcr, encoding an α-methylacyl-coenzyme A racemase. This mutant was defective in degradation of poly(cis-1,4-isoprene) and also of highly branched isoprenoid hydrocarbons.  相似文献   

5.
Summary The prokaryotic mercury-resistance transposon Tn501 contains a sequence, 80 nucleotides from one end, which is identical with an inverted terminal repeat (IR) of Tn21. This Tn21 IR sequence is used when Tn21 complements a TnpA- derivative of Tn501, but not when Tn501 is used for the complementation. Complementation by Tn1721 shows a preference for the normal Tn501 IRs. The element (Tn820) transposed when Tn21 is used to complement a Hg- TnpR- TnpA- Res- deletion mutant of Tn501 contains the Tn21 IR sequence at one terminus and a Tn501 IR at the other. Transposition of Tn820 can be complemented by Tn501 and Tn1721, but at a much lower frequency than transposition of the parental element (Tn819) which has two Tn501 IRs. The relationship between the transposition functions of Tn501, Tn21 and Tn1721, and available nucleotide sequence data suggest that Tn501 evolved by the transposition of a Tn21-like element into another transposable element (similar to that found within Tn1721) followed by deletion of the Tn21-like transposition functions.Abbreviations used (IR) Inverted repeat - (Cb) carbenicillin - (Cm) chloramphenicol - (Sm) streptomycin - (Su) sulphonamide - (Tc) tetracycline - (Tp) trimethoprim  相似文献   

6.
Tn5385 is a ca. 65-kb element integrated into the chromosomes of clinical Enterococcus faecalis strains CH19 and CH116. It confers resistance to erythromycin, gentamicin, mercuric chloride, streptomycin, tetracycline-minocycline, and penicillin via β-lactamase production. Tn5385 is a composite structure containing regions previously found in staphylococcal and enterococcal plasmids. Several transposons and transposon-like elements within Tn5385 have been identified, including conjugative transposon Tn5381, composite transposon Tn5384, and elements indistinguishable from staphylococcal transposons Tn4001 and Tn552. The divergent regions of Tn5385 are linked by a series of insertion sequence (IS) elements (IS256, IS257, and IS1216) of staphylococcal and enterococcal origin. The ends of Tn5385 consist of directly repeated copies of enterococcal IS1216. Within the chromosomes of strains CH19 and CH116, Tn5385 has interrupted an open reading frame with substantial homology to previously described alkyl hydrogen peroxide reductase genes. Segments of this open reading frame in both CH19 and CH116 have been deleted, but the amount of deleted DNA differs for the two insertions. Transfer of Tn5385 from both donors into E. faecalis recipients occurs at a low frequency. Two types of transconjugants have been identified. In one type, the target alkyl hydrogen peroxide reductase open reading frame has been deleted, and sequences flanking Tn5385 in the respective donors are carried over to the transconjugants. These data suggest that the mechanism of Tn5385 insertion into the recipient chromosome in these transconjugants was recombination across flanking regions in the donors and homologous sequences in the recipients. The second type of transconjugant appears to have resulted from excision of Tn5385 from the CH19 chromosome by recombination across the terminal IS1216 elements and insertion into the recipient chromosome by recombination across Tn5381 (within Tn5385) and a previously transferred Tn5381 copy in the recipient chromosome. These data confirm that Tn5385 is a composite structure with genetic material from diverse genera and suggest that it is a functional transposon. They also suggest that chromosomal recombination is a mechanism of genetic exchange in enterococci.  相似文献   

7.
The 6645-bp mercury resistance transposon of the chemolithotrophic bacterium Thiobacillus ferrooxidanswas cloned and sequenced. This transposon, named Tn5037, belongs to the Tn21branch of the Tn21subgroup, many members of which have been isolated from clinical sources. Having the minimum set of the genes (merRTPA), the mercury resistance operon of Tn5037is organized similarly to most of the Gram-negative bacteria meroperons and is closest to that of ThiobacillusT3.2. The operator-promoter region of the meroperon of Tn5037also has the common (Tn21/Tn501-like) structure. However, its inverted, presumably MerR protein binding repeats in the operator/promoter element are two base pairs shorter than in Tn21/Tn501. In the merA region, this transposon shares 77.4, 79.1, 83.2 and 87.8% identical bases with Tn21, Tn501, T. ferrooxidansE-15, and ThiobacillusT3.2, respectively. No inducibility of the Tn5037 meroperon was detected in the in vivo experiments. The transposition system (terminal repeats plus gene tnpA) of Tn5037was inactive in Escherichia coliK12, in contrast to its resolution system (ressite plus gene tnpR). However, transposition of Tn5037in this host was provided by the tnpAgene of Tn5036, a member of the Tn21subgroup. Sequence analysis of the Tn5037 ressite suggested its recombinant nature.  相似文献   

8.
9.
Specificity of the Tn4430 target immunity signal was examined by fusing the transposase TnpA to the LacI repressor of Escherichia coli. The resulting chimeric proteins failed to impose immunity to DNA targets carrying copies of the lacO operator, though they were proficient in lacO binding in vivo and remained responsive to wild-type immunity conferred by the Tn4430 inverted repeat end. Intriguingly, the presence of lacO repeats within the target was found to strongly influence target site selection by Tn4430, but in a LacI-independent manner.Tn4430 is a transposon of the Tn3 family that was originally isolated from Bacillus thuringiensis (Fig. (Fig.11 A) (12). Transposons of this family exhibit “target immunity,” a mechanism that prevents multiple insertion of the element into the same DNA molecule (9). Immunity has also been described for two other bacterial transposons, the bacteriophage Mu (1) and Tn7 (14). In all cases, the presence of a single copy of the transposon end is sufficient to confer immunity to the target, indicating that specific recognition of the target DNA by the transposase protein plays a central role in the process (2, 6, 8, 10). In the case of Mu and Tn7, target immunity results from the interplay between the transposase (i.e., MuA and TnsAB, respectively) and an ATP-dependent DNA binding protein involved in target capture (i.e., MuB and TnsC, respectively) (3, 4). No equivalent accessory protein is found in Tn3 family transposons, indicating that the transposase is the only transposon-encoded protein involved in immunity. The mechanism of “molecular repulsion,” underlying transposition immunity of this family of transposons, remains poorly understood.Open in a separate windowFIG. 1.(A) Genetic organization of Tn4430. The transposon (4,149 bp) is delineated by two identical inverted repeats (IR) of 38 bp that are specifically contacted by the transposase TnpA. The internal recombination site (IRS; 116 bp) is where the tyrosine recombinase TnpI acts to resolve the replicative intermediates (cointegrates) of transposition (15). (B) Schematic overview of the fusion proteins used in this study. The LacI349 and TnpA coding sequences are shown as shaded and black arrows, respectively. The position of the cMyc epitope is shown as a gray box.In this study, we sought to see whether specific recognition of Tn4430 terminal inverted repeat (IR; 38 bp) by the TnpA transposase is a mandatory step in transposition immunity or whether TnpA binding to unrelated DNA sequences is sufficient to reorient target site selection. To this end, we examined whether fusion proteins between TnpA and the LacI repressor of Escherichia coli could confer transposition immunity to target molecules containing copies of the lacO operator.  相似文献   

10.
In this study, we report on the transposition behavior of the mercury(II) resistance transposons Tn502 and Tn512, which are members of the Tn5053 family. These transposons exhibit targeted and oriented insertion in the par region of plasmid RP1, since par-encoded components, namely, the ParA resolvase and its cognate res region, are essential for such transposition. Tn502 and, under some circumstances, Tn512 can transpose when par is absent, providing evidence for an alternative, par-independent pathway of transposition. We show that the alternative pathway proceeds by a two-step replicative process involving random target selection and orientation of insertion, leading to the formation of cointegrates as the predominant product of the first stage of transposition. Cointegrates remain unresolved because the transposon-encoded (TniR) recombination system is relatively inefficient, as is the host-encoded (RecA) system. In the presence of the res-ParA recombination system, TniR-mediated (and RecA-mediated) cointegrate resolution is highly efficient, enabling resolution both of cointegrates involving functional transposons (Tn502 and Tn512) and of defective elements (In0 and In2). These findings implicate the target-encoded accessory functions in the second stage of transposition as well as in the first. We also show that the par-independent pathway enables the formation of deletions in the target molecule.It is widely recognized that mobile genetic elements contribute to genome plasticity and have been a driving force in the emergence and spread of resistance determinants within and between bacterial species; their impact is ongoing (10, 51). Significant among these elements are various classes of plasmids, transposons, and integrons which may lack resistance determinants or carry one or multiple determinants. Resistance determinants that have become globally dispersed in environmental and clinically significant bacteria include mercury(II) resistance (2, 17), evident even in ancient bacteria (27), and antibiotic resistance, which has increased in dominance since the advent of the antibiotic era (23, 40).This paper concerns the mercury resistance (mer) transposons Tn502 and Tn512, whose sequence organization and transpositional behavior show that they are new members of a family of elements exemplified by the mer transposon Tn5053 (22). These elements are closely related to those in the Tn402 family, which contain an integron (intI) recombination system (14, 36). Members of the two families differ in the positions of the mer or intI determinants (modules) near one end of the transposition (tni) module. The latter module contains four genes (tniABQR), and the entire transposon is bounded by 25-bp inverted-repeat termini (IRi and IRt). TniA, TniB, and TniQ are required to form the transpositional cointegrate, which is then resolved by the action of TniR (a serine resolvase) on a resolution (res) sequence located between tniR and tniQ (22). The transposon in its new location is flanked by 5-bp direct repeats (DRs) (20, 22). TniA, which contains a D,D(35)E transposase catalytic motif, is thought to function cooperatively with TniB, a putative nucleotide-binding protein, as the active TniAB transposase (21, 36). Studies of TniA conducted in vitro show binding to the IRs and to additional 19-bp repeat sequences that make up the complex termini of the transposon (21). The precise role of TniQ is unknown.An unexpected and unique feature of Tn5053 and Tn402 is that they depend on externally coded accessory functions for efficient transposition, namely, a res site served by a cognate resolvase (25). As a consequence, these transposons exhibit a strong transpositional bias for some target res sites (20, 25, 26) and have aptly been described as “res site hunters” (25). One such efficient interaction involves the res-ParA multimer resolution system of plasmid RP1 (IncPα); other plasmid- or transposon-encoded systems are less efficient or are refractory. Although the role of the external resolvase remains obscure, its capacity to bind to its cognate res is an essential requirement whereas its catalytic activity is not (20). For each interaction system, the target sites typically cluster in a single part of res but not necessarily within the same subregion and, on occasion, can lie in the vicinity of res. Typically, the transposon is in a single orientation with IRi closest to the resolvase gene. In one study, Tn402 clustered at two target sites, one within res and one nearby, and the orientations were different at the two sites (20).The experimentally observed target preference described above also occurs in natural associations of Tn5053/Tn402-like elements and became evident on sequencing class 1 integrons, which were often found positioned close to different res-resolvase gene regions (6, 20, 25). Most Tn402 family elements are comprised of an intI module that is flanked on the left by IRi and on the right by a 3′ conserved sequence (3′-CS) (13). In others, a remnant tni gene cluster may be present instead of the 3′-CS, and IRt occurs at the right flank. The structure of the latter category of integrons strongly indicated that they are defective transposons that were presumably capable of relocation provided that tni functions were supplied in trans (6, 32). The movement of In33 (Tn2521) from a chromosomal to a plasmid location appears to have been such an in trans event (30, 42), and others involving In0 and In2 are demonstrated in this study. In contrast, the integrons that lack the IRt end appear to be nonmobile remnants of Tn402-like transposons; they belong to several lineages, including those in which the incurred deletions are attributable to acquired insertion sequences (6). More recently, intact Tn5053/Tn402-like transposons and class 1 integrons have increasingly been detected in the res-parA region of IncP plasmids (39), which are arguably the most promiscuous of known plasmids (50). These various experimental and natural interactions provide insight into the dispersal pathways possible for Tn5053/Tn402-like elements.The res-hunting attribute is a striking feature that is experimentally supported by studies of four family members (namely, Tn5053 [22, 25], Tn402 [20, 26], and in this study, Tn502 [48] and Tn512). Another facet of the transposition of Tn502 is explored here. It concerns the observation that loss of the preferred par target region in RP1 does not abolish transposition of Tn502 (48), contrary to the finding with Tn5053 (25, 26) and, in this study, Tn512. The continued, low-frequency transposition of Tn502 involved at least three dispersed locations (48); however, nothing is known about the nature of these sites or about the features and requirements of the transposition process. Here we address these issues and uncover the existence of an alternative, par-independent pathway that is employed by Tn502 and is available to Tn512 under some circumstances. The study also provides information on the roles of the TniR and host (RecA) recombination systems in the resolution of transpositional cointegrates and on the ability of the par-independent transposition pathway to generate plasmid deletions.  相似文献   

11.
Tn7-encoded proteins   总被引:1,自引:0,他引:1  
Summary Proteins encoded by Tn7 have been studied in Escherichia coli maxicells harbouring either various deleted ColE1:: Tn7 plasmids or Tn7 fragments cloned in pBR322. Six Tn7-encoded proteins were detected and named p18, p32, p40, p54, p85-a and p85-b according to their apparent molecular weight. Protein p18 is dihydrofolate reductase type I and p32 is probably the protein conferring resistance to streptomycin/spectinomycin. Both genes map on the lefthand part of Tn7. The genes for the four other proteins are located on the right-hand part of Tn7. We propose that they fully cover a 6.9 kb DNA fragment without any overlapping. Starting from the right-hand end towards the middle of the transposon, these four genes are in the following order: p85-a, p54, p40 and p85-b. Transposition of Tn7 onto E. coli plasmids requires the proteins p85-a, p85-b, p54 and p40. However, transposition onto the chromosome does not require the p85-b and p40 products.  相似文献   

12.
Functional transposable elements (TEs) of several Pseudomonas spp. strains isolated from black shale ore of Lubin mine and from post-flotation tailings of Zelazny Most in Poland, were identified using a positive selection trap plasmid strategy. This approach led to the capture and characterization of (i) 13 insertion sequences from 5 IS families (IS3, IS5, ISL3, IS30 and IS1380), (ii) isoforms of two Tn3-family transposons – Tn5563a and Tn4662a (the latter contains a toxin-antitoxin system), as well as (iii) non-autonomous TEs of diverse structure, ranging in size from 262 to 3892 bp. The non-autonomous elements transposed into AT-rich DNA regions and generated 5- or 6-bp sequence duplications at the target site of transposition. Although these TEs lack a transposase gene, they contain homologous 38-bp-long terminal inverted repeat sequences (IRs), highly conserved in Tn5563a and many other Tn3-family transposons. The simplest elements of this type, designated TIMEs (Tn3 family-derived Inverted-repeat Miniature Elements) (262 bp), were identified within two natural plasmids (pZM1P1 and pLM8P2) of Pseudomonas spp. It was demonstrated that TIMEs are able to mobilize segments of plasmid DNA for transposition, which results in the generation of more complex non-autonomous elements, resembling IS-driven composite transposons in structure. Such transposon-like elements may contain different functional genetic modules in their core regions, including plasmid replication systems. Another non-autonomous element “captured” with a trap plasmid was a TIME derivative containing a predicted resolvase gene and a res site typical for many Tn3-family transposons. The identification of a portable site-specific recombination system is another intriguing example confirming the important role of non-autonomous TEs of the TIME family in shuffling genetic information in bacterial genomes. Transposition of such mosaic elements may have a significant impact on diversity and evolution, not only of transposons and plasmids, but also of other types of mobile genetic elements.  相似文献   

13.
Transposition of a DNA fragment flanked by two inverted Tn1 sequences   总被引:1,自引:0,他引:1  
The 32 Md fragment (derived from plasmid RP4::Tn1) carrying the Kmr gene and flanked by two inverted Tn1 elements is capable of recA-independent translocation to other plasmids. We designated this new transposon Tn1755. In various crosses, frequencies of Tn1755 transposition to plasmids Co1B-R3, R15 and F′ColVBtrp varied from 2.5 to 90% of the frequencies of Tn1 transposition. Tn1755 can integrate into various sites of the recipient plasmids. We failed to observe transposition of another RP4::Tn1 fragment flanked by two opposingly oriented Tn1 transposons and harboring the Tcr gene. Presumably, to form a new transposable structure, other features must also be of importance.  相似文献   

14.
Gene orf18, which is situated within the intercellular transposition region of the conjugative transposon Tn916 from the bacterial pathogen Enterococcus faecalis, encodes a putative ArdA (alleviation of restriction of DNA A) protein. Conjugative transposons are generally resistant to DNA restriction upon transfer to a new host. ArdA from Tn916 may be responsible for the apparent immunity of the transposon to DNA restriction and modification (R/M) systems and for ensuring that the transposon has a broad host range. The orf18 gene was engineered for overexpression in Escherichia coli, and the recombinant ArdA protein was purified to homogeneity. The protein appears to exist as a dimer at nanomolar concentrations but can form larger assemblies at micromolar concentrations. R/M assays revealed that ArdA can efficiently inhibit R/M by all four major classes of Type I R/M enzymes both in vivo and in vitro. These R/M systems are present in over 50% of sequenced prokaryotic genomes. Our results suggest that ArdA can overcome the restriction barrier following conjugation and so helps increase the spread of antibiotic resistance genes by horizontal gene transfer.  相似文献   

15.
Summary The purpose of this work was to localize the DNA regions necessary for the transposition of Tn7. Several deletions of Tn7 were constructed by the excision of DNA fragments between restriction sites. The ability of these deleted Tn7s to transpose onto the recipient plasmid RP4 was examined. All the deleted Tn7s isolated in this work had lost their transposing capability. The possibility of complementing them was studied using plasmids containing all or part of Tn7. Two deleted Tn7s could not be complemented by an entire Tn7 indicating that a DNA sequence greater than the 42 bp terminal sequence is needed for recognition of the transposon by a transposition function. Four other deleted Tn7s could be complemented by Tn7. One of these was studied intensively in complementation experiments using different parts of Tn7 to obtain transposition. The results obtained allow us to propose that all genes needed for transposition of Tn7 onto plasmids are contained in a DNA segment of between 6.0 and 7.4 kb. Furthermore, one essential function must be contained in a DNA fragment longer than 2.5 kb on the right-hand end of Tn7. The classification of Tn7 with regard to the other transposable elements is discussed.  相似文献   

16.
The Clostridium perfringens enterotoxin gene is on a transposon-like element, Tn5565, integrated in the chromosome in human food poisoning strains. The flanking IS elements, IS1470 A and B, are related to IS30. The IS element found in the transposon, IS1469, is related to IS200 and has been found upstream of cpe in all Type A strains. PCR and sequencing studies from cell extracts and plasmid isolations of C. perfringens indicate that Tn5565 can form a circular form with the tandem repeat (IS1470)2, similar to the transposition intermediates described for a number of IS elements.  相似文献   

17.
Tn4371 is a 55 kb transposon which encodes enzymes for the degradation of biphenyl and 4-chlorobiphenyl compounds into benzoate and 4-chlorobenzo-ate derivatives. We constructed a cosmid library of Tn4371 DNA. The bph genes involved in biphenyl/4-chlorobiphenyl degradation were found to be clustered in the middle of the transposon. Sequencing revealed an organisation of the bph genes similar to that previously found in Pseudomonas sp. KKS102, i.e. the bphEGF genes are located upstream of bphA1A2A3 and bphA4 is separated from bphA1A2A3 by bphBCD. Consensus sequences for σ54-associated RNA polymerase were found upstream of bphA1 and bphEGF. Plasmid RP4::Tn4371 was transferred into a mutant of Alcaligenes eutrophus H16 lacking σ54. In contrast to wild-type H16 exconjugants, the σ54 mutant exconjugants could not grow on biphenyl, indicating the dependence of Tn4371bph gene expression on σ54. The Tn4371-encoded bph pathway was activated when biphenyl and various biphenyl-like compounds were present in the growth medium. Preliminary observations indicate the presence of a region outside the catabolic genes downstream of bphA4 which is involved in mediating at least the basal expression of BphC.  相似文献   

18.
《Gene》1998,208(1):37-42
The two mer operons of the Pseudomonas stutzeri OX plasmid pPB and their flanking regions have been sequenced and found to be part of two aberrant transposons. The narrow spectrum mer operon is almost identical to that of Tn501, but is associated with the remnants of Tn5053 tni genes rather than the Tn501 transposition module. The broad spectrum mer operon shows an overall homology with that of Tn5053, but differs from it in the presence of a merB gene, absent in Tn5053, and a merC gene instead of a merF. The pPB broad spectrum mer operon is associated with an incomplete Tn5053-like transposition module and with the Tn501 tnp genes, which are proximal, respectively, to the end and to the beginning of the mer operon. A hypothesis about pPB evolution is presented.  相似文献   

19.
陈璇  毛铃雅  王钦  王红宁  雷昌伟 《微生物学报》2023,63(11):4133-4143
转座子是介导细菌耐药性传播的重要可移动遗传元件。Tn7转座子与细菌耐药密切相关,其携带转座模块和Ⅱ类整合子系统。Tn7编码转座相关蛋白TnsABCDE进行“剪切-粘贴”机制转座,转座核心TnsABC也可与三链DNA或Cas-RNA复合物结合实现转座。近年来新发现了多种介导多重耐药的Tn7转座子,其在介导细菌抗生素、消毒剂和重金属抗性基因的获得、传播扩散等方面发挥了重要作用。本文综述了细菌中Tn7转座子的遗传结构、转座机制、流行以及新发现的介导多重耐药的Tn7转座子,以期为细菌中Tn7转座子的深入研究提供参考。  相似文献   

20.
Summary Intermolecular transposition of Tn2660 into pCR1 was measured at 30°C in recA and recA + hosts as between 2.6 and 5.5x10–3, a similar value to that previously found for Tn3. No cointegrate structures were found under conditions where 104 transposition events occurred. Immunity to intermolecular transposition of Tn2660, similar to that found for Tn3 was demonstrated by showing that the above transposition frequency was reduced by a factor of between 10–3 and 10–4 when a mutant Tn2660 (resulting in the synthesis of a temperaturesensitive -lactamase) was present in the recipient plasmid. Intramolecular transposition of Tn3 was found to occur under the same conditions as previously demonstrated for Tn2660 giving rise to similar end products, in which the newly introduced Tn3 is oriented inversely to the resident Tn3 and the DNA sequence between the two transposons has been inverted. Thus, in all respects functional identity of the transposition activities of Tn3 and Tn2660 is shown, thereby identifying characteristics of intramolecular transposition that are not readily accommodated by current models of transposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号