首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
H-NS is a major Escherichia coli nucleoid-associated protein involved in bacterial DNA condensation and global modulation of gene expression. This protein exists in cells as at least two different isoforms separable by isoelectric focusing. Among other phenotypes, mutations in hns result in constitutive expression of the proU and fimB genes, increased fimA promoter inversion rates, and repression of the flhCD master operon required for flagellum biosynthesis. To understand the relationship between H-NS structure and function, we transformed a cloned hns gene into a mutator strain and collected a series of mutant alleles that failed to repress proU expression. Each of these isolated hns mutant alleles also failed to repress fimB expression, suggesting that H-NS-specific repression of proU and fimB occurs by similar mechanisms. Conversely, alleles encoding single amino acid substitutions in the C-terminal DNA-binding domain of H-NS resulted in significantly reduced affinity for DNA yet conferred a wild-type fimA promoter inversion frequency, indicating that the mechanism of H-NS activity in modulating promoter inversion is independent of DNA binding. Furthermore, two specific H-NS amino acid substitutions resulted in hypermotile bacteria, while C-terminal H-NS truncations exhibited reduced motility. We also analyzed H-NS isoform composition expressed by various hns mutations and found that the N-terminal 67 amino acids were sufficient to support posttranslational modification and that substitutions at positions 18 and 26 resulted in the expression of a single H-NS isoform. These results are discussed in terms of H-NS domain organization and implications for biological activity.  相似文献   

3.
4.
5.
6.
Summary We previously demonstrated that the E. coli protein, H-NS (or Hla), encoded by the gene hns (or osmZ or bglY preferentially recognizes curved DNA sequences in vitro. In order to gain further insight into the complex function of H-NS and the significance of DNA curvature, we constructed a structurally defined hns deletion mutant on the E. coli chromosome. The hns deletion mutant thus obtained showed a variety of phenotypes previously for other lesions in hns. It was further demonstrated that, in this hns deletion background, numerous E. coli cellular proteins were either strongly expressed or remarkably repressed, as compared to their expression levels in wild-type cells.  相似文献   

7.
The T4 phage protein Arn (Anti restriction nuclease) was identified as an inhibitor of the restriction enzyme McrBC. However, until now its molecular mechanism remained unclear. In the present study we used structural approaches to investigate biological properties of Arn. A structural analysis of Arn revealed that its shape and negative charge distribution are similar to dsDNA, suggesting that this protein could act as a DNA mimic. In a subsequent proteomic analysis, we found that the bacterial histone-like protein H-NS interacts with Arn, implying a new function. An electrophoretic mobility shift assay showed that Arn prevents H-NS from binding to the Escherichia coli hns and T4 p8.1 promoters. In vitro gene expression and electron microscopy analyses also indicated that Arn counteracts the gene-silencing effect of H-NS on a reporter gene. Because McrBC and H-NS both participate in the host defense system, our findings suggest that T4 Arn might knock down these mechanisms using its DNA mimicking properties.  相似文献   

8.
9.
The hns gene is a member of the cold-shock regulon, indicating that the nucleoid-associated, DNA-binding protein H-NS plays an important role in the adaptation of Escherichia coli to low temperatures. We show here that the ability to cope efficiently with a cold environment (12°C and 25°C) is strongly impaired in E. coli strains carrying hns mutations. Growth inhibition is much more pronounced in strains carrying the hns-206 allele (an ampicillin resistance cassette inserted after codon 37) than in those carrying the hns-205 mutation (a Tn10 insertion located in codon 93). A protein fragment (H-NS*) is synthesized in strains carrying the hns-205::Tn10 mutation, suggesting that this truncated polypeptide is partially functional in the cold adaptation process. Analysis of the growth properties of strains harbouring four different low-copy-number plasmid-encoded hns genes that result in the production of C-terminally truncated H-NS proteins supports this proposal. H-NS* proteins composed of 133, 117 or 94 amino-terminal amino acids partially complemented the severe cold-sensitive growth phenotype of the hns-206 mutant. In contrast, synthesis of a truncated H-NS protein with only 75 amino-terminal amino acids was insufficient to restore growth at low temperature.  相似文献   

10.
Extracellular DNA (eDNA) is a structural component of the polymeric matrix of biofilms from different species. Different mechanisms for DNA release have been proposed including lysis of cells, lysis of DNA-containing vesicles, and DNA secretion. Here, a genome-wide screen of 3985 non-lethal mutations was performed to identify genes whose deletion alters eDNA release in Escherichia coli. Deleting nlpI, yfeC, and rna increased eDNA from planktonic cultures while deleting hns and rfaD decreased eDNA production. The lipoprotein NlpI negatively affects eDNA release since the overexpression of nlpI decreases eDNA 16 fold while deleting nlpI increases eDNA threefold. The global regulator H-NS is required for eDNA production since DNA was not detected for the hns mutant and production of H-NS restored eDNA production to wild-type levels. Therefore our results suggest that secretion may play a role in eDNA release in E. coli since the effect of the hns deletion on cell lysis (slight decrease) and membrane vesicles (threefold increase) does not account for the reduction in eDNA.  相似文献   

11.
12.
13.
14.
15.
Replacement of the CRP-binding site of the gal control region by curved sequences can lead to the restoration of promoter strength in vivo. One curved sequence called 5A6A, however, failed to do so. The gene hns exerts a strong negative control on the resulting 5A6A gal promoter as well as on the distant bla promoter, specifically in a 5A6A gal context. The product of this gene, H-NS, displays a better affinity for this particular insert compared to other curved sequences. Mechanisms by which H-NS may repress promoters both at short and long distances from a favoured binding site are discussed.  相似文献   

16.
Nucleoid Associated Proteins (NAPs) organize the bacterial chromosome within the nucleoid. The interaction of the NAP H-NS with DNA also represses specific host and xenogeneic genes. Previously, we showed that the bacteriophage T4 early protein MotB binds to DNA, co-purifies with H-NS/DNA, and improves phage fitness. Here we demonstrate using atomic force microscopy that MotB compacts the DNA with multiple MotB proteins at the center of the complex. These complexes differ from those observed with H-NS and other NAPs, but resemble those formed by the NAP-like proteins CbpA/Dps and yeast condensin. Fluorescent microscopy indicates that expression of motB in vivo, at levels like that during T4 infection, yields a significantly compacted nucleoid containing MotB and H-NS. motB overexpression dysregulates hundreds of host genes; ∼70% are within the hns regulon. In infected cells overexpressing motB, 33 T4 late genes are expressed early, and the T4 early gene repEB, involved in replication initiation, is up ∼5-fold. We postulate that MotB represents a phage-encoded NAP that aids infection in a previously unrecognized way. We speculate that MotB-induced compaction may generate more room for T4 replication/assembly and/or leads to beneficial global changes in host gene expression, including derepression of much of the hns regulon.  相似文献   

17.
18.
The Escherichia coli protein Hha is a temperature- and osmolarity-dependent modulator of the expression of the hemolysin operon. The Hha protein was purified and its DNA-binding properties analyzed. Hha binds in a non-specific manner throughout the upstream regulatory region of the hemolysin operon in the recombinant hemolytic plasmid pANN202-312. A search for interacting proteins revealed that Hha interacts with H-NS. DNA-binding studies showed that, in vitro, Hha and H-NS together form a complex with DNA that differs from those formed with either protein alone. These data, together with the effects of hha and hns mutations on the expression of the hemolysin genes, suggest that in vivo H-NS and Hha form a nucleoid-protein complex that accounts for the thermo-osmotic regulation of the hemolysin operon in E. coli. Received. 18 October 1999 / Accepted: 21 December 1999  相似文献   

19.
The hns gene is a member of the cold-shock regulon, indicating that the nucleoid-associated, DNA-binding protein H-NS plays an important role in the adaptation of Escherichia coli to low temperatures. We show here that the ability to cope efficiently with a cold environment (12°C and 25°C) is strongly impaired in E. coli strains carrying hns mutations. Growth inhibition is much more pronounced in strains carrying the hns-206 allele (an ampicillin resistance cassette inserted after codon 37) than in those carrying the hns-205 mutation (a Tn10 insertion located in codon 93). A protein fragment (H-NS*) is synthesized in strains carrying the hns-205::Tn10 mutation, suggesting that this truncated polypeptide is partially functional in the cold adaptation process. Analysis of the growth properties of strains harbouring four different low-copy-number plasmid-encoded hns genes that result in the production of C-terminally truncated H-NS proteins supports this proposal. H-NS* proteins composed of 133, 117 or 94 amino-terminal amino acids partially complemented the severe cold-sensitive growth phenotype of the hns-206 mutant. In contrast, synthesis of a truncated H-NS protein with only 75 amino-terminal amino acids was insufficient to restore growth at low temperature.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号