首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 49 毫秒
1.
Two novel non-allelic mutants that were unable to fix nitrogen (Fix) were obtained after EMS (ethyl methyl sulfonate) mutagenesis of pea (Pisum sativum L.). Both mutants, SGEFix–1 and SGEFix–2, form two types of nodules: SGEFix–1 forms numerous white and some pink nodules, while mutant SGEFix–2 forms white nodules with a dark pit at the distal end and also some pinkish nodules. Both mutations are monogenic and recessive. In both lines the manifestation of the mutant phenotype is associated with the root genotype. White nodules of SGEFix–1 are characterised by hypertrophied infection threads and infection droplets, mass endocytosis of bacteria, abnormal morphological differentiation of bacteroids, and premature degradation of nodule symbiotic structures. The structure of the pink nodules of SGEFix–1 does not differ from that of the parental line, SGE. White nodules of SGEFix–2 are characterised by “locked” infection threads surrounded with abnormally thick plant cell walls. In these nodules there is no endocytosis of bacteria into host-cell cytoplasm. The pinkish nodules of SGEFix–2 are characterised by virtually undifferentiated bacteroids and premature degradation of nodule tissues. Thus, the novel pea symbiotic genes, sym40 and sym33, identified after complementation analysis in SGEFix–1 and SGEFix–2 lines, respectively, control early nodule developmental stages connected with infection thread formation and function. Received: 12 June 1998 / Accepted: 25 June 1998  相似文献   

2.
3.
The interface between the host cell and the microsymbiont is an important zone for development and differentiation during consecutive stages of Rhizobium-legume symbiosis. Legume root nodule extensins, otherwise known as arabinogalactan protein-extensins (AGPEs) are abundant components of infection thread matrix. We have characterized the origin and distribution of these glycoproteins at the symbiotic interface of root nodules of symbiotically defective mutants of pea (Pisum sativum L.) by using immunogold localization with MAC265 an anti-AGPE monoclonal antibody. For mutants with defective growth of infection threads, the AGPE epitope was abundant in the extracellular matrix surrounding infected host cells in the central infected tissue of the nodule, as well as in the lumen of Rhizobiuminduced infection threads. This seems to indicate a mistargeting of AGPE as a consequence of abnormal growth of the infection threads. Furthermore, mutants in the gene sym33 showed reduced labeling with MAC265 and, in some infection threads and droplets, the label was completely absent, a phenomenon that is not observed in wild-type nodules. This suggests an alteration in the composition of the infection thread matrix for sym33 mutants, which may be correlated to the absence of endocytosis of rhizobia into the host cytoplasm.  相似文献   

4.
5.
6.

Background and Aims

Legumes overcome nitrogen limitations by entering into a mutualistic symbiosis with N2-fixing bacteria (rhizobia). Fully compatible associations (effective) between Trifolium spp. and Rhizobium leguminosarum bv. trifolii result from successful recognition of symbiotic partners in the rhizosphere, root hair infection and the formation of nodules where N2-fixing bacteroids reside. Poorly compatible associations can result in root nodule formation with minimal (sub-optimal) or no (ineffective) N2-fixation. Despite the abundance and persistence of strains in agricultural soils which are poorly compatible with the commercially grown clover species, little is known of how and why they fail symbiotically. The aims of this research were to determine the morphological aberrations occurring in sub-optimal and ineffective clover nodules and to determine whether reduced bacteroid numbers or reduced N2-fixing activity is the main cause for the Sub-optimal phenotype.

Methods

Symbiotic effectiveness of four Trifolium hosts with each of four R. leguminosarum bv. trifolii strains was assessed by analysis of plant yields and nitrogen content; nodule yields, abundance, morphology and internal structure; and bacteroid cytology, quantity and activity.

Key Results

Effective nodules (Nodule Function 83–100 %) contained four developmental zones and N2-fixing bacteroids. In contrast, Sub-optimal nodules of the same age (Nodule Function 24–57 %) carried prematurely senescing bacteroids and a small bacteroid pool resulting in reduced shoot N. Ineffective-differentiated nodules carried bacteroids aborted at stage 2 or 3 in differentiation. In contrast, bacteroids were not observed in Ineffective-vegetative nodules despite the presence of bacteria within infection threads.

Conclusions

Three major responses to N2-fixation incompatibility between Trifolium spp. and R. l. trifolii strains were found: failed bacterial endocytosis from infection threads into plant cortical cells, bacteroid differentiation aborted prematurely, and a reduced pool of functional bacteroids which underwent premature senescence. We discuss possible underlying genetic causes of these developmental abnormalities and consider impacts on N2-fixation of clovers.  相似文献   

7.
Experiments were conducted to determine whether symbiotic bacteroids of Bradyrhizobium japonicum produce exopolysaccharide within soybean (Glycine max [L.] Merr. cv `Lee 74') nodules. B. japonicum strains RT2, a derivative of USDA 110 with resistance to streptomycin and rifampicin, and RT176-1, a mutant deficient in exopolysaccharide synthesis, were used. Although aerobically cultured RT2 produced 1550 micrograms of exopolysaccharide per 1010 cells, root nodules formed by RT2 contained only 55.7 micrograms of polysaccharide per 1010 bacteroids, indicating that little exopolysaccharide synthesis occurred within the nodules. The polysaccharide level of RT2 nodules was about equal to that of nodules containing the exopolysaccharide mutant RT176-1 (61.0 micrograms per 1010 bacteroids). Gas chromatographic analysis showed that the sugar composition of polysaccharide from nodules of RT2 or RT176-1 was almost the same as that of polysaccharide from unnodulated root tissue, but differed strikingly from that of rhizobial exopolysaccharide from aerobic cultures. Thus, the host plant and not the bacteroids was probably the source of most or all of the polysaccharide in the nodule extracts. Also, bacteroids from nodules failed to bind soybean lectin, confirming the absence of an exopolysaccharide capsule.  相似文献   

8.
Bacteria belonging to the genera Rhizobium, Mesorhizobium, Sinorhizobium, Bradyrhizobium, and Azorhizobium (collectively referred to as rhizobia) grow in the soil as free-living organisms but can also live as nitrogen-fixing symbionts inside root nodule cells of legume plants. The interactions between several rhizobial species and their host plants have become models for this type of nitrogen-fixing symbiosis. Temperate legumes such as alfalfa, pea, and vetch form indeterminate nodules that arise from root inner and middle cortical cells and grow out from the root via a persistent meristem. During the formation of functional indeterminate nodules, symbiotic bacteria must gain access to the interior of the host root. To get from the outside to the inside, rhizobia grow and divide in tubules called infection threads, which are composite structures derived from the two symbiotic partners. This review focuses on symbiotic infection and invasion during the formation of indeterminate nodules. It summarizes root hair growth, how root hair growth is influenced by rhizobial signaling molecules, infection of root hairs, infection thread extension down root hairs, infection thread growth into root tissue, and the plant and bacterial contributions necessary for infection thread formation and growth. The review also summarizes recent advances concerning the growth dynamics of rhizobial populations in infection threads.  相似文献   

9.
10.
11.
12.
Legumes have an intrinsic capacity to accommodate both symbiotic and endophytic bacteria within root nodules. For the symbionts, a complex genetic mechanism that allows mutual recognition and plant infection has emerged from genetic studies under axenic conditions. In contrast, little is known about the mechanisms controlling the endophytic infection. Here we investigate the contribution of both the host and the symbiotic microbe to endophyte infection and development of mixed colonised nodules in Lotus japonicus. We found that infection threads initiated by Mesorhizobium loti, the natural symbiont of Lotus, can selectively guide endophytic bacteria towards nodule primordia, where competent strains multiply and colonise the nodule together with the nitrogen-fixing symbiotic partner. Further co-inoculation studies with the competent coloniser, Rhizobium mesosinicum strain KAW12, show that endophytic nodule infection depends on functional and efficient M. loti-driven Nod factor signalling. KAW12 exopolysaccharide (EPS) enabled endophyte nodule infection whilst compatible M. loti EPS restricted it. Analysis of plant mutants that control different stages of the symbiotic infection showed that both symbiont and endophyte accommodation within nodules is under host genetic control. This demonstrates that when legume plants are exposed to complex communities they selectively regulate access and accommodation of bacteria occupying this specialized environmental niche, the root nodule.  相似文献   

13.
The effects of exogenous nitrate on the number of developing nodules and their leghemoglobin content in the original pea (Pisum sativumL.) line and its symbiotic mutants were studied. Mutation in the Sym31gene conferred the tolerance to nitrate in the corresponding pea line and manifested itself as the number of nodules independent of the nitrate concentration. Thus, the Sym31gene was identified as the only known symbiotic gene involved in both the differentiation of symbiotic compartments and the nitrate-dependent process of nodule formation. The presence of leghemoglobin in double mutants (sym13, sym31) indicates the possibility of the complementary contribution of these genes in the control of leghemoglobin synthesis.  相似文献   

14.
Legumes play an important role in the soil nitrogen availability via symbiotic nitrogen fixation (SNF). Phosphate (Pi) deficiency severely impacts SNF because of the high Pi requirement of symbiosis. Whereas PHT1 transporters are involved in Pi uptake into nodules, it is unknown how Pi is transferred from the plant infected cells to nitrogen-fixing bacteroids. We hypothesized that Medicago truncatula genes homologous to Arabidopsis PHO1, encoding a vascular apoplastic Pi exporter, are involved in Pi transfer to bacteroids. Among the seven MtPHO1 genes present in M. truncatula, we found that two genes, namely MtPHO1.1 and MtPHO1.2, were broadly expressed across the various nodule zones in addition to the root vascular system. Expressions of MtPHO1.1 and MtPHO1.2 in Nicotiana benthamiana mediated specific Pi export. Plants with nodule-specific downregulation of both MtPHO1.1 and MtPHO1.2 were generated by RNA interference (RNAi) to examine their roles in nodule Pi homeostasis. Nodules of RNAi plants had lower Pi content and a three-fold reduction in SNF, resulting in reduced shoot growth. Whereas the rate of 33Pi uptake into nodules of RNAi plants was similar to control, transfer of 33Pi from nodule cells into bacteroids was reduced and bacteroids activated their Pi-deficiency response. Our results implicate plant MtPHO1 genes in bacteroid Pi homeostasis and SNF via the transfer of Pi from nodule infected cells to bacteroids.

Two members of the PHO1 family in Medicago truncatula are involved in the transport of phosphate from the infected nodule cells to the Sinorhizobium meliloti bacteroids.  相似文献   

15.
Two symbiotic pea (Pisum sativum L.) mutants SGEFix(-)-1 (sym40) and SGEFix(-)-2 (sym33) with abnormalities in infection thread formation in symbiotic root nodules were characterised with respect to dynamics of arbuscule development at 15 degrees C and 24 degrees C. Mutation of sym33 decreased mycorrhiza colonisation at both temperatures and delayed arbuscule development at 15 degrees C, whereas mutation of sym40 accelerated mycorrhiza colonisation and arbuscule senescence at 24 degrees C. The differences between the mutants and the wild-type were more pronounced at 24 degrees C, a temperature close to the optimum for pea growth. The results demonstrate that both pea genes are important in the control of arbuscular mycorrhiza development and can be considered necessary for the tripartite symbiosis in pea.  相似文献   

16.
Pea plants (Pisum sativum L.) were treated with 50???M aluminum chloride at pH 4.5 for 2 or 24?h at room temperature. Following treatment, root nodule Al uptake, the generation of reactive oxygen species (ROS, O 2 and H2O2), and the activities of the antioxidant enzymes catalase (CAT), superoxide dismutase (SOD) and peroxidase (POX) were investigated. Aluminum accumulation was found chiefly in the apoplast of the nodule cortex, endodermis and meristem, while the formation of peroxide was detected in the nodule cortex, infection threads and bacteroidal tissue. Further, there were increased levels of superoxide in the meristem and bacteroidal tissue. The activity of SOD (EC 1.15.1.1) and POX (EC 1.11.1.7) increased in the Al-treated nodules and the roots of pea plants, whereas CAT (EC 1.11.1.6) activity decreased. The Al absorbed by the nodules induced ROS production. The POX and SOD are important ROS-scavengers in Al-stressed nodules.  相似文献   

17.
To identify bacterial genes involved in symbiotic nodule development, ineffective nodules of alfalfa (Medicago sativa) induced by 64 different Fix-mutants of Rhizobium meliloti were characterized by assaying for symbiotic gene expression and by morphological studies. The expression of leghemoglobin and nodulin-25 genes from alfalfa and of the nifHD genes from R. meliloti were monitored by hybridizing the appropriate DNA probes to RNA samples prepared from nodules. The mutants were accordingly divided into three groups. In group I none of the genes were expressed, in group II only the plant genes were expressed and in group III all three genes were transcribed. Light and electron microscopical analysis of nodules revealed that nodule development was halted at different stages in nodules induced by different group I mutants. In most cases nodules were empty lacking infection threads and bacteroids or nodules contained infection threads and a few released bacteroids. In nodules induced by a third mutant class bacteria were released into the host cells, however the formation of the peribacteroid membrane was not normal. On this basis we suggest that peribacteroid membrane formation precedes leghemoglobin and nodulin-25 induction, moreover, after induction of nodulation by the nod genes at least two communication steps between the bacteria and the host plants are necessary for the development of the mature nodule. By complementing each mutant of group I with a genomic R. meliloti library made in pLAFRl, four new fix loci were identified, indicating that several bacterial genes are involved in late nodule development.  相似文献   

18.
Carbonic anhydrase activity (hydration of CO2 was found in homogenates of leaves (116–500 units.mg?1 protein) and root nodules (27–255 units.mg?1 protein) from 8 legume genera inoculated in each case with a host specific Rhizobium. No enzyme, or only trace amounts (2–7 units.mg?1 protein), were detected in root extracts, The enzymatic activity was inhibited in all cases by azide and acetazolamide. The sizes of nodule and leaf carbonic anhydrases, estimated by gel filtration of partially purified preparations from Phaseolus vulgaris, were around 45 000 and 205 000 respectively. These enzymes also differed in sensitivity to inhibitors. More than 99% of the activity present in Vicia faba nodules was recovered as a soluble enzyme and only a trace was located in the isolated bacteroids.  相似文献   

19.
Spontaneous mutants of Rhizobium trifolii 24AR5 which did not produce exopoly-saccharide were isolated. The non-mucoid mutants formed small white and ineffective nodules on both red and white clover. These nodules contained infection threads, but only a small number of bacteria were released into nodule cells, and bacteroids were rarely observed. The non-mucoid phenotype was not complemented by the symbiotic plasmid (pJB5JI) of Rhizobium leguminosarum.  相似文献   

20.
The collection of symbiotic (sym) mutants of white sweetclover (Melilotus alba Desr.) provides a developmental sequence of mutants blocked early in infection or nodule organogenesis. Mutant phenotypes include non-nodulating mutants that exhibit root-hair deformations in response to Rhizobium meliloti, mutants that form ineffective nodules lacking infection threads, and mutants that form infection threads and ineffective nodules. Mutant alleles from both the sym-1 and the sym-3 loci exhibited a non-nodulating phenotype in response to R. meliloti, although one allele in the sym-1 locus formed ineffective nodules at a low frequency. Spot-inoculation experiments on a non-nodulating allele in the sym-3 locus indicated that this mutant lacked cortical cell divisions following inoculation with R. meliloti. The auxin transport inhibitor N-(1-naphthyl)phthalamic acid elicited development of pseudonodules at a high frequency on all of the sweetclover sym mutants, including the non-nodulating mutants, in which the early nodulin ENOD2 was expressed. This suggests that N-(1-naphthyl)phthalamic acid activates cortical cell divisions by circumventing a secondary signal transduction event that is lacking in the non-nodulating sweetclover mutants. The sym-3 locus and possibly the sym-1 locus appear to be essential to early host plant responses essential to nodule organogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号