首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Kong BY  Clarke RJ 《Biochemistry》2004,43(8):2241-2250
Kinetic models are presented that allow the Na(+),K(+)-ATPase steady-state turnover number to be estimated at given intra- and extracellular concentrations of Na(+), K(+), and ATP. Based on experimental transient kinetic data, the models utilize either three or four steps of the Albers-Post scheme, that is, E(2) --> E(1), E(1) --> E(2)P (or E(1) --> E(1)P and E(1)P --> E(2)P), and E(2)P --> E(2), which are the major rate-determining steps of the enzyme cycle. On the time scale of these reactions, the faster binding steps of Na(+), K(+), and ATP to the enzyme are considered to be in equilibrium. Each model was tested by comparing calculations of the steady-state turnover from rate constants and equilibrium constants for the individual partial reactions with published experimental data of the steady-state activity at varying Na(+) and K(+) concentrations. To provide reasonable agreement between the calculations and the experimental data, it was found that Na(+)/K(+) competition for cytoplasmic binding sites was an essential feature required in the model. The activity was also very dependent on the degree of K(+)-induced stimulation of the reverse reaction E(1) --> E(2). Taking into account the physiological substrate concentrations, the models allow the most likely potential sites of short-term Na(+),K(+)-ATPase regulation to be identified. These were found to be (a) the cytoplasmic Na(+) and K(+) binding sites, via changes in Na(+) or K(+) concentration or their dissociation constants, (b) ATP phosphorylation (as a substrate), via a change in its rate constant, and (c) the position of the E(2)<==>E(1) equilibrium.  相似文献   

2.
The kinetics of Na(+)-dependent partial reactions of the Na+,K(+)-ATPase from rabbit kidney were investigated via the stopped-flow technique, using the fluorescent labels N-(4-sulfobutyl)-4-(4-(p-(dipentylamino)phenyl)butadienyl)py ridinium inner salt (RH421) and 5-iodoacetamidofluorescein (5-IAF). When covalently labeled 5-IAF enzyme is mixed with ATP, the two labels give almost identical kinetic responses. Under the chosen experimental conditions two exponential time functions are necessary to fit the data. The dominant fast phase, 1/tau 1 approximately 155 s-1 for 5-IAF-labeled enzyme and 1/tau 1 approximately 200 s-1 for native enzyme (saturating [ATP] and [Na+], pH 7.4 and 24 degrees C), is attributed to phosphorylation of the enzyme and a subsequent conformational change (E1ATP(Na+)3-->E2P(Na+)3 + ADP). The smaller amplitude slow phase, 1/tau 2 = 30-45 s-1, is attributed to the relaxation of the dephosphorylation/rephosphorylation equilibrium in the absence of K+ ions (E2P<==>E2). The Na+ concentration dependence of 1/tau 1 showed half-saturation at a Na+ concentration of 6-8 mM, with positive cooperatively involved in the occupation of the Na+ binding sites. The apparent dissociation constant of the high-affinity ATP-binding site determined from the ATP concentration dependence of 1/tau 1 was 8.0 (+/- 0.7) microM. It was found that P3-1-(2-nitrophenyl)ethyl ATP, tripropylammonium salt (NPE-caged ATP), at concentrations in the hundreds of micromolar range, significantly decreases the value of 1/tau 1, observed. This, as well as the biexponential nature of the kinetic traces, can account for previously reported discrepancies in the rates of the reactions investigated.  相似文献   

3.
Glu(282) located in the NH(2)-terminal part of transmembrane helix M3 of the Na(+),K(+)-ATPase was replaced by alanine, glycine, leucine, lysine, aspartate, or glutamine, and the effects of the mutations on the overall and partial reactions of the enzyme were analyzed. The mutations affected at least 3 important functions of the Na(+),K(+)-ATPase: (i) the conformational transitions between E(1) and E(2) forms of dephospho- and phosphoenzyme, (ii) Na(+) binding at the cytoplasmically facing sites of E(1), and (iii) long-range interaction controlling dephosphorylation. In mutants Glu(282) --> Lys and Glu(282) --> Asp, the E(1) form was favored during ATP hydrolysis, whereas the E(2) form was favored in Glu(282) --> Ala and Glu(282) --> Gly. Regardless of the change of conformational equilibrium, all the mutants displayed a reduced apparent affinity for Na(+), at least 3-fold for Glu(282) --> Lys and Glu(282) --> Asp, suggesting a direct effect on the Na(+) binding properties of E(1). Glu(282) --> Ala and Glu(282) --> Gly exhibited an extraordinary high rate of ATP hydrolysis in the mere presence of Na(+) without K(+) ("Na(+)-ATPase activity"), because of an increased rate of dephosphorylation of E(2)P. These results are in accordance with the hypothesis that Glu(282) is involved in the communication between the cation binding pocket and the catalytic site and in control of the cytoplasmic entry pathway for Na(+).  相似文献   

4.
The kinetics of Na(+)-dependent phosphorylation of the Na(+),K(+)-ATPase by ATP were investigated via the stopped-flow technique using the fluorescent label RH421 (saturating [ATP], [Na(+)], and [Mg(2+)], pH 7.4, and 24 degrees C). The well-established effect of buffer composition on the E(2)-E(1) equilibrium was used as a tool to investigate the effect of the initial enzyme conformation on the rate of phosphorylation of the enzyme. Preincubation of pig kidney enzyme in 25 mM histidine and 0.1 mM EDTA solution (conditions favoring E(2)) yielded a 1/tau value of 59 s(-1). Addition of MgCl(2) (5 mM), NaCl (2 mM), or ATP (2 mM) to the preincubation solution resulted in increases in 1/tau to values of 129, 167, and 143 s(-1), respectively. The increases can be attributed to a shift in the enzyme conformational equilibrium before phosphorylation from the E(2) state to an E(1) or E(1)-like state. The results thus demonstrate conclusively that the E(2) --> E(1) transition does in fact limit the rate of subsequent reactions of the pump cycle. Based on the experimental results, the rate constant of the E(2) --> E(1) transition under physiological conditions could be estimated to be approximately 65 s(-1) for pig kidney enzyme and 90 s(-1) for enzyme from rabbit kidney. Taking into account the rates of other partial reactions, computer simulations show these values to be consistent with the turnover number of the enzyme cycle (approximately 48 s(-1) and approximately 43 s(-1) for pig and rabbit, respectively) calculated from steady-state measurements. For enzyme of the alpha(1) isoform the E(2) --> E(1) conformational change is thus shown to be the major rate-determining step of the entire enzyme cycle.  相似文献   

5.
P(3)-[2-(4-hydroxyphenyl)-2-oxo]ethyl ATP (pHP-caged ATP) has been investigated for its application as a phototrigger for the rapid activation of electrogenic ion pumps. The yield of ATP after irradiation with a XeCl excimer laser (lambda = 308 nm) was determined at pH 6.0-7.5. For comparison, the photolytic yields of P(3)-[1-(2-nitrophenyl)]ethyl ATP (NPE-caged ATP) and P(3)-[1, 2-diphenyl-2-oxo]ethyl ATP (desyl-caged ATP) were also measured. It was shown that at lambda = 308 nm pHP-caged ATP is superior to the other caged ATP derivatives investigated in terms of yield of ATP after irradiation. Using time-resolved single-wavelength IR spectroscopy, we determined a lower limit of 10(6) s(-1) for the rate constant of release of ATP from pHP-caged ATP at pH 7.0. Like NPE-caged ATP, pHP-caged ATP and desyl-caged ATP bind to the Na(+), K(+)-ATPase and act as competitive inhibitors of ATPase function. Using pHP-caged ATP, we investigated the charge translocation kinetics of the Na(+),K(+)-ATPase at pH 6.2-7.4. The kinetic parameters obtained from the electrical measurements are compared to those obtained with a technique that does not require caged ATP, namely parallel stopped-flow experiments using the voltage-sensitive dye RH421. It is shown that the two techniques yield identical results, provided the inhibitory properties of the caged compound are taken into account. Our results demonstrate that under physiological (pH 7.0) and slightly basic (pH 7.5) or acidic (pH 6. 0) conditions, pHP-caged ATP is a rapid, effective, and biocompatible phototrigger for ATP-driven biological systems.  相似文献   

6.
T Friedrich  E Bamberg    G Nagel 《Biophysical journal》1996,71(5):2486-2500
The giant-patch technique was used to study the Na+,K(+)-ATPase in excised patches from rat or guinea pig ventricular myocytes. Na+,K(+)-pump currents showed a saturable ATP dependence with aK(m) of approximately 150 microM at 24 degrees C. The pump current can be completely abolished by ortho-vanadate. Dissociation of vanadate from the enzyme in the absence of extracellular Na+ was slow, with a Koff of 3.10(-4) S-1 (K1 approximately 0.5 microM, at 24 degrees C). Stationary currents were markedly dependent on intracellular pH, with a maximum at pH 7.9. Temperature-dependence measurements of the stationary pump current yielded an activation energy of approximately 100 kJ mol-1. Partial reactions in the transport cycle were investigated by generating ATP concentration jumps through photolytic release of ATP from caged ATP at pH 7.4 and 6.3. Transient outward currents were obtained at pH 6.3 with a fast rising phase followed by a slower decay to a stationary current. It was concluded that the fast rate constant of approximately 200 s-1 at 24 degrees C (pH 6.3) reflects a step rate-limiting the electrogenic Na+ release. Simulating the data with a simple three-state model enabled us to estimate the turnover rate under saturating substrate concentrations, yielding rates (at pH 7.4) of approximately 60 s-1 and 200 s-1 at 24 degrees C and 36 degrees C, respectively.  相似文献   

7.
Halenaquinol inhibited the partial reactions of ATP hydrolysis by rat brain cortex Na(+),K(+)-ATPase, such as [3H]ATP binding to the enzyme, Na(+)-dependent front-door phosphorylation from [gamma-(33)P]ATP, and also Na(+)- and K(+)-dependent E(1)<-->E(2) conformational transitions of the enzyme. Halenaquinol abolished the positive cooperativity between the Na(+)- and K(+)-binding sites on the enzyme. ATP and sulfhydryl-containing reagents (cysteine and dithiothreitol) protected the Na(+),K(+)-ATPase against inhibition. Halenaquinol can react with additional vital groups in the enzyme after blockage of certain sulfhydryl groups with 5,5'-dithio-bis-nitrobenzoic acid. Halenaquinol inhibited [3H]ouabain binding to Na(+),K(+)-ATPase under phosphorylating and non-phosphorylating conditions. Binding of fluorescein 5'-isothiocyanate to Na(+),K(+)-ATPase and intensity of fluorescence of enzyme tryptophanyl residues were decreased by halenaquinol. We suggest that interaction of halenaquinol with the essential sulfhydryls in/or near the ATP-binding site of Na(+),K(+)-ATPase resulted in a change of protein conformation and subsequent alteration of overall and partial enzymatic reactions.  相似文献   

8.
We are attempting to supply a new insight on interaction between Na(+)/K(+)-ATPase and H(2)O(2). We demonstrate that in vitro the Na(+)/K(+)-ATPase, a non heme-protein, is able to disproportionate H(2)O(2) catalatically into dioxygen and water, as well as C(40) catalase. By polarography, we quantify O(2) production and by Raman spectroscopy H(2)O(2) consumption. A comparative analysis of kinetics parameters relative to O(2) production shows that for Na(+)/K(+)-ATPase the affinity of the catalytic site able to transform H(2)O(2) into O(2) is twice weaker than that for C(40) catalase. It also shows that the molar activity for O(2) production is 300-fold weaker for ATPase than for catalase. Inhibitors, pH and GSH studies highlight the differences between the heme- and nonheme-proteins. Indeed, for C(40), NaN(3) is strongly inhibiting, but much less for ATPase. The pH range for the catalatic activity of ATPase is wide (6.5 to 8.5), while it is not for C(40) catalase (optimum at pH 8). The Na(+)/K(+)-ATPase catalatic activity is reduced in presence of glutathione, while it is not the case with C(40) catalase.  相似文献   

9.
In the Albers-Post model, occlusion of K(+) in the E(2) conformer of the enzyme (E) is an obligatory step of Na(+)/K(+)-ATPase reaction. If this were so the ratio (Na(+)/K(+)-ATPase activity)/(concentration of occluded species) should be equal to the rate constant for deocclusion. We tested this prediction in a partially purified Na(+)/K(+)-ATPase from pig kidney by means of rapid filtration to measure the occlusion using the K(+) congener Rb(+). Assuming that always two Rb(+) are occluded per enzyme, the steady-state levels of occluded forms and the kinetics of deocclusion were adequately described by the Albers-Post model over a very wide range of [ATP] and [Rb(+)]. The same happened with the kinetics of ATP hydrolysis. However, the value of the parameters that gave best fit differed from those for occlusion in such a way that the ratio (Na(+)/K(+)-ATPase activity)/(concentration of occluded species) became much larger than the rate constant for deocclusion when [Rb(+)] <10 mM. This points to the presence of an extra ATP hydrolysis that is not Na(+)-ATPase activity and that does not involve occlusion. A possible way of explaining this is to posit that the binding of a single Rb(+) increases ATP hydrolysis without occlusion.  相似文献   

10.
GerN, a Bacillus cereus spore germination protein, exhibits homology to a widely distributed group of putative cation transporters or channel proteins. GerN complemented the Na(+)-sensitive phenotype of an Escherichia coli mutant that is deficient in Na(+)/H(+) antiport activity (strain KNabc). GerN also reduced the concentration of K(+) required to support growth of an E. coli mutant deficient in K(+) uptake (strain TK2420). In a fluorescence-based assay of everted E. coli KNabc membrane vesicles, GerN exhibited robust Na(+)/H(+) antiport activity, with a K(m) for Na(+) estimated at 1.5 mM at pH 8.0 and 25 mM at pH 7.0. Li(+), but not K(+), served as a substrate. GerN-mediated Na(+)/H(+) antiport was further demonstrated in everted vesicles as energy-dependent accumulation of (22)Na(+). GerN also used K(+) as a coupling ion without completely replacing H(+), as indicated by partial inhibition by K(+) of H(+) uptake into right-side-out vesicles loaded with Na(+). K(+) translocation as part of the antiport was supported by the stimulatory effect of intravesicular K(+) on (22)Na(+) uptake by everted vesicles and the dependence of GerN-mediated (86)Rb(+) efflux on the presence of Na(+) in trans. The inhibitory patterns of protonophore and thiocyanate were most consistent with an electrogenic Na(+)/H(+)-K(+) antiport. GerN-mediated Na(+)/H(+)-K(+) antiport was much more rapid than GerN-mediated Na(+)/H(+) antiport.  相似文献   

11.
The ntpJ gene, a cistron located at the tail end of the vacuolar-type Na(+)-ATPase (ntp) operon of Enterococcus hirae, encodes a transporter of the KtrII K(+) uptake system. We found that K(+) accumulation in the ntpJ-disrupted mutant JEM2 was markedly enhanced by addition of valinomycin at pH 10. Studies of the membrane potential (DeltaPsi; inside negative) by 3, 3'-dihexyloxacarbocyanine iodide fluorescence revealed that the DeltaPsi was hyperpolarized at pH 10 in JEM2; the DeltaPsi values of the parent strain ATCC 9790 and JEM2, estimated by determining the equilibrium distribution of K(+) or Rb(+) in the presence of valinomycin, were -118 and -160 mV, respectively. DeltaPsi generation at pH 10 was accomplished by an electrogenic Na(+) efflux via the Na(+)-ATPase, whose levels in the two strains were quite similar. Na(+) uptake driven by an artificially imposed DeltaPsi (inside negative) was missing in JEM2, suggesting that NtpJ mediates Na(+) movement in addition to K(+) movement. Finally, the growth of JEM2 arrested in K(+)-limited high-Na(+) medium at pH 10 was restored by addition of valinomycin. These results suggest that NtpJ mediates electrogenic transport of K(+) as well as Na(+), that it likely mediates K(+) and Na(+) cotransport, and that Na(+) movement via NtpJ is the major Na(+) reentry pathway at high pH values.  相似文献   

12.
The secondary structure of Na(+)/K(+)-ATPase after modification of the ATP-binding sites was analyzed. Consistently with recent reports, we found in trypsin-treated Na(+)/K(+)-ATPase additionally to alpha-helix also beta-sheet structures in the transmembrane segments. However, binding of fluorescein 5'-isothiocyanate (FITC), the pseudo-ATP analog, to the ATP-binding site did not affect the secondary structure of undigested Na(+)/K(+)-ATPase. Consequently, fluorescence intensity changes of FITC-labeled Na(+)/K(+)-ATPase commonly used to observe conformational transitions of the enzyme reflect physiological changes of the native structure. The metal complex analogues of ATP, Cr(H(2)O)(4)ATP and Co(NH(3))(4)ATP, on the other hand, affected the secondary structure of Na(+)/K(+)-ATPase. We propose that these changes in the secondary structure are responsible for inhibition of backdoor phosphorylation.  相似文献   

13.
Mutations in ATP1A2, the gene coding for the Na(+)/K(+)-ATPase alpha(2)-subunit, are associated with both familial hemiplegic migraine and sporadic cases of hemiplegic migraine. In this study, we examined the functional properties of 11 ATP1A2 mutations associated with familial or sporadic hemiplegic migraine, including missense mutations (T263M, T376M, R383H, A606T, R763H, M829R, R834Q, R937P, and X1021R), a deletion mutant (del(K935-S940)ins(I)), and a frameshift mutation (S966fs). According to the Na(+)/K(+)-ATPase crystal structure, a subset of the mutated residues (Ala(606), Arg(763), Met(829), and Arg(834)) is involved in important interdomain H-bond networks, and the C terminus of the enzyme, which is elongated by the X1021R mutation, has been implicated in voltage dependence and formation of a third Na(+)-binding site. Upon heterologous expression in Xenopus oocytes, the analysis of electrogenic transport properties, Rb(+) uptake, and protein expression revealed pronounced and markedly diverse functional alterations in all ATP1A2 mutants. Abnormalities included a complete loss of function (T376M), impaired plasma membrane expression (del(K935-S940)ins(I) and S966fs), and altered apparent affinities for extracellular cations or reduced enzyme turnover (R383H, A606T, R763H, R834Q, and X1021R). In addition, changes in the voltage dependence of pump currents and the increased rate constants of the voltage jump-induced redistribution between E(1)P and E(2)P states were observed. Thus, mutations that disrupt distinct interdomain H-bond patterns can cause abnormal conformational flexibility and exert long range consequences on apparent cation affinities or voltage dependence. Of interest, the X1021R mutation severely impaired voltage dependence and kinetics of Na(+)-translocating partial reactions, corroborating the critical role of the C terminus of Na(+)/K(+)-ATPase in these processes.  相似文献   

14.
Choline chloride, 100 mM, stimulates Na+/K(+)-ATPase activity of a purified dog kidney enzyme preparation when Na+ is suboptimal (9 mM Na+ and 10 mM K+) and inhibits when K+ is suboptimal (90 mM Na+ and 1 mM K+), but has a negligible effect at optimal concentrations of both (90 mM Na+ and 10 mM K+). Stimulation occurs at low Na+ to K+ ratios, but not at those same ratios when the actual Na+ concentration is high (90 mM). Stimulation decreases or disappears when incubation pH or temperature is increased or when Li+ is substituted for K+ or Rb+. Choline+ also reduces the Km for MgATP at the low ratio of Na+ to K+ but not at the optimal ratio. In the absence of K+, however, choline+ does not stimulate at low Na+ concentrations: either in the Na(+)-ATPase reaction or in the E1 to E2P conformational transition. Together, these observations indicate that choline+ accelerates the rate-limiting step in the Na+/K(+)-ATPase reaction cycle, K(+)-deocclusion; consequently, optimal Na+ concentrations reflect Na+ accelerating that step also. Thus, the observed K0.5 for Na+ includes high-affinity activation of enzyme phosphorylation and low-affinity acceleration of K(+)-deocclusion. Inhibition of Na+/K(+)-ATPase and K(+)-nitrophenylphosphatase reactions by choline+ increases as the K(+)-concentration is decreased; the competition between choline+ and K+ may represent a similar antagonism between conformations selected by choline+ and by K+.  相似文献   

15.
Effects of dimethyl sulfoxide (Me(2)SO) on substrate affinity for phosphorylation by inorganic phosphate, on phosphorylation by ATP in the absence of Na(+), and on ouabain binding to the free form of the Na(+)/K(+)-ATPase have been attributed to changes in solvation of the active site or Me(2)SO-induced changes in the structure of the enzyme. Here we used selective trypsin cleavage as a procedure to determine the conformations that the Na(+)/K(+)-ATPase acquires in Me(2)SO medium. In water or in Me(2)SO medium, Na(+)/K(+)-ATPase exhibited after partial proteolysis two distinct groups of fragments: (1) in the presence of 0.1 M Na(+) or 0.1 M Na(+) + 3 mM ADP (enzyme in the E1 state) cleavage produced a main fragment of about 76 kDa; and (2) in the presence of 20 mM K(+) (E2 state) a 58-kDa fragment plus two or three fragments of 39-41 kDa were obtained. Cleavage in Me(2)SO medium in the absence of Na(+) and K(+) exhibited the same breakdown pattern as that obtained in the presence of K(+), but a 43-kDa fragment was also observed. An increase in the K(+) concentration to 0.5 mM eliminated the 43-kDa fragment, while a 39- to 41-kDa doublet was accumulated. Both in water and in Me(2)SO medium, a strong enhancement of the 43-kDa band was observed in the presence of either P(i) + ouabain or vanadate, suggesting that the 43-kDa fragment is closely related to the conformation of the phosphorylated enzyme. These results indicate that Me(2)SO acts not only by promoting the release of water from the ATP site, but also by inducing a conformation closely related to the phosphorylated state, even when the enzyme is not phosphorylated.  相似文献   

16.
A gene encoding a Li(+) extrusion system was cloned from the chromosomal DNA of Pseudomonas aeruginosa and expressed in Escherichia coli cells. The gene enabled growth of E. coli KNabc cells, which were unable to grow in the presence of 10 mM LiCl or 0.1 M NaCl because of the lack of major Na(+) (Li(+))/H(+) antiporters. We detected Li(+)/H(+) and Na(+)/H(+) antiport activities in membrane vesicles prepared from E. coli KNabc cells that harbored a plasmid carrying the cloned gene. Activity of this antiporter was pH-dependent with an optimal pH activity between pH 7.5 and 8.5. These properties indicate that this antiporter is different from NhaP, an Na(+)/H(+) antiporter from P. aeruginosa that we reported previously, and that is rather specific to Na(+) but it cannot extrude Li(+) effectively. The gene was sequenced and an open reading frame (ORF) was identified. The amino acid sequence deduced from the ORF showed homology (about 60% identity and 90% similarity) with that of the NhaB Na(+)/H(+) antiporters of E. coli and Vibrio parahaemolyticus. Thus, we designated the antiporter as NhaB of P. aeruginosa. E. coli KNabc carrying the nhaB gene from P. aeruginosa was able to grow in the presence of 10 to 50 mM LiCl, although KNabc carrying nhaP was unable to grow in these conditions. The antiport activity of NhaB from P. aeruginosa was produced in E. coli and showed apparent Km values for Li(+) and Na(+) of 2.0 mM and 1.3 mM, respectively. The antiport activity was inhibited by amiloride with a Ki value for Li(+) and Na(+) of 0.03 mM and 0.04 mM, respectively.  相似文献   

17.
The structural-functional roles of 23 cysteines present in the sheep (Na,K)-ATPase alpha1 subunit were studied using site directed mutagenesis, expression, and kinetics analysis. Twenty of these cysteines were individually substituted by alanine or serine. Cys452, Cys455 and Cys456 were simultaneously replaced by serine. These substitutions were introduced into an ouabain resistant alpha1 sheep isoform and expressed in HeLa cells under ouabain selective pressure. HeLa cells transfected with a cDNA encoding for replacements of Cys242 did not survive ouabain selective pressure. Single substitutions of the remaining cysteines yielded functional enzymes, although some had reduced turnover rates. Only minor variations were observed in the enzyme Na(+) and K(+) dependence as a result of these replacements. Some substitutions apparently affect the E1<-->E2 equilibrium as suggested by changes in the K(m) of ATP acting at its low affinity binding site. These results indicate that individual cysteines, with the exception of Cys242, are not essential for enzyme function. Furthermore, this suggests that the presence of putative disulfide bridges is not required for alpha1 subunit folding and subsequent activity. A (Na,K)-ATPase lacking cysteine residues in the transmembrane region was constructed (Cys104, 138, 336, 802, 911, 930, 964, 983Xxx). No alteration in the K(1/2) of Na(+) or K(+) for (Na,K)-ATPase activation was observed in the resulting enzyme, although it showed a 50% reduction in turnover rate. ATP binding at the high affinity site was not affected. However, a displacement in the E1<-->E2 equilibrium toward the E1 form was indicated by a small decrease in the K(m) of ATP at the low affinity site accompanied by an increase in IC(50) for vanadate inhibition. Thus, the transmembrane cysteine-deficient (Na,K)-ATPase appears functional with no critical alteration in its interactions with physiological ligands.  相似文献   

18.
The whole-cell voltage-clamp technique was used in rat cardiac myocytes to investigate the kinetics of ADP binding to phosphorylated states of Na,K-ATPase and its effects on presteady-state Na(+)-dependent charge movements by this enzyme. Ouabain-sensitive transient currents generated by Na,K-ATPase functioning in electroneutral Na(+)-Na(+) exchange mode were measured at 23 degrees C with pipette ADP concentrations ([ADP]) of up to 4.3 mM and extracellular Na(+) concentrations ([Na](o)) between 36 and 145 mM at membrane potentials (V(M)) from -160 to +80 mV. Analysis of charge-V(M) curves showed that the midpoint potential of charge distribution was shifted toward more positive V(M) both by increasing [ADP] at constant Na(+)(o) and by increasing [Na](o) at constant ADP. The total quantity of mobile charge, on the other hand, was found to be independent of changes in [ADP] or [Na](o). The presence of ADP increased the apparent rate constant for current relaxation at hyperpolarizing V(M) but decreased it at depolarizing V(M) as compared to control (no added ADP), an indication that ADP binding facilitates backward reaction steps during Na(+)-Na(+) exchange while slowing forward reactions. Data analysis using a pseudo three-state model yielded an apparent K(d) of approximately 6 mM for ADP binding to and release from the Na,K-ATPase phosphoenzyme; a value of 130 s(-1) for k(2), a rate constant that groups Na(+) deocclusion/release and the enzyme conformational transition E(1) approximately P --> E(2)-P; a value of 162 s(-1)M(-1) for k(-2), a lumped second-order V(M)-independent rate constant describing the reverse reactions; and a Hill coefficient of approximately 1 for Na(+)(o) binding to E(2)-P. The results are consistent with electroneutral release of ADP before Na(+) is deoccluded and released through an ion well. The same approach can be used to study additional charge-moving reactions and associated electrically silent steps of the Na,K-pump and other transporters.  相似文献   

19.
The present study was aimed at evaluating the role of D(1)- and D(2)-like receptors and investigating whether inhibition of Na(+) transepithelial flux by dopamine is primarily dependent on inhibition of the apical Na(+)/H(+) exchanger, inhibition of the basolateral Na(+)-K(+)-ATPase, or both. The data presented here show that opossum kidney cells are endowed with D(1)- and D(2)-like receptors, the activation of the former, but not the latter, accompanied by stimulation of adenylyl cyclase (EC(50) = 220 +/- 2 nM), marked intracellular acidification (IC(50) = 58 +/- 2 nM), and attenuation of amphotericin B-induced decreases in short-circuit current (28.6 +/- 4.5% reduction) without affecting intracellular pH recovery after CO(2) removal. These results agree with the view that dopamine, through the activation of D(1)- but not D(2)-like receptors, inhibits both the Na(+)/H(+) exchanger (0.001933 +/- 0.000121 vs. 0.000887 +/- 0.000073 pH unit/s) and Na(+)-K(+)-ATPase without interfering with the Na(+)-independent HCO transporter. It is concluded that dopamine, through the action of D(1)-like receptors, inhibits both the Na(+)/H(+) exchanger and Na(+)-K(+)-ATPase, but its marked acidifying effects result from inhibition of the Na(+)/H(+) exchanger only, without interfering with the Na(+)-independent HCO transporter and Na(+)-K(+)-ATPase.  相似文献   

20.
B Vilsen 《FEBS letters》1992,314(3):301-307
Site-specific mutagenesis was used to analyse the functional roles of the residues Pro328 and Leu332 located in the conserved PEGLL motif of the predicted transmembrane helix M4 in the alpha 1-subunit of the ouabain resistant rat kidney Na+,K(+)-ATPase. cDNAs encoding either of the Na+,K(+)-ATPase mutants Pro328-->Ala and Leu332-->Ala, and wild type, were cloned into the expression vector pMT2 and transfected into COS-1 cells. Ouabain-resistant clones growing in the presence of 10 microM ouabain were isolated, and the Na+,K+, ATP and pH dependencies of the Na+,K(+)-ATPase activity measured in the presence of 10 microM ouabain were analysed. Under these conditions the exogenous expressed Na+,K(+)-ATPase contributed more than 95% of the Na+,K(+)-ATPase activity. The Pro328-->Ala mutant displayed a reduced apparent affinity for Na+ (K0.5 (Na+) 13.04 mM), relative to the wild type (K0.5 (Na+) 7.13 mM). By contrast, the apparent affinity for Na+ displayed by the Leu332-->Ala mutant was increased (K0.5 (Na+) 3.92 mM). Either of the mutants exhibited lower apparent affinity for K+ relative to the wild type (K0.5 (K+) 2.46 mM for Pro328-->Ala and 1.97 mM for Leu332-->Ala, compared with 0.78 mM for wild type). Both mutants exhibited higher apparent affinity for ATP than the wild type (K0.5 (ATP) 0.086 mM for Pro328-->Ala and 0.042 mM for Leu332-->Ala, compared with 0.287 mM for wild type). The influence of pH was in accordance with an acceleration of the E2 (K)-->E1 transition in the mutants relative to the wild type. These data are consistent with a role of Pro328 and Leu332 in the stabilization of the E2 form and of Pro328 in Na+ binding. The possible role of the mutated residues in K+ binding is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号