首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract The distal swellings of growing flagella in spermatocytes of Ephestia kuehniella Z. contain dense material associated with the ends of axonemal microtubules. In order to define the nature of this material, spermatocytes were lysed under microtubule-stabilizing conditions, spun onto cover-slips, probed with an antibody against β-tubulin and processed for indirect immunofluorescence. Whereas the dense material was lost from the cells when untreated spermatocytes were used, a block of stained material was visible in cold-treated spermatocytes. Most probably, cold-treatment alters the dense material and guarantees its survival during preparation of the cells for anti-tubulin immunofluorescence. The positive reaction with the antibody indicates the presence of β-tubulin. Flagellar outgrowth in spermatogenesis of the moth starts in late prophase I and continues throughout both meiotic divisions. Therefore, spindles and flagella compete for tubulin monomers. A tubulin reserve, deposited early in development at the elongating tip of axonemes, may ensure their uninterrupted growth, independent of tubulin-consuming cytoplasmic events. In order to test this hypothesis, flagellar outgrowth was studied in the spermatocytes of a long-horned beetle, Agapanthia villosoviridescens de Geer (Cerambycidae, Coleoptera) using electron microscopy. In this species, flagella begin to elongate only in telophase II, when the second meiotic spindle is just disassembling. The absence of dense material at the tip of flagellar stubs in the beetle corroborates the hypothesis formulated above.  相似文献   

2.
The ultrastructure of the vas deferens, testes, spermatogenesis and spermatozoa of Gyrocotyle urna and G. parvispinosa is described. The vas deferens is ciliated and syncytial. Within the testes primary spermatocytes arise from the primary spermatogonia by incomplete mitotic divisions; the primary spermatocytes undergo two meiotic divisions leading to spermatids. In early spermatids microtubules are formed at the cell periphery. Later the spermatozoal cytoplasm (the ‘middle-piece’) grows out and the two spermatozoal flagella with their typical 9 + ‘1’ axonemes are formed. During ciliogenesis the flagella are at an angle of about 60° to the axis of the middle-piece. The flagella are inserted into basal bodies terminating in striated rootlets. Subsequently, the nucleus and isolated mitochondria migrate into the central axis. The angle between the flagella and the axis decreases; the flagella are incorporated to form the spermatozoon. In mature spermatozoa no basal body or rootlet elements were found. The phylogeny of parasitic Platyhelminthes is discussed with respect to the evolution of spermatozoa. The reduction of the acrosinoid granules which are found in spermatozoa of free-living Platyhelminthes and the incorporation of the spermatozoal flagella into the sperm body constitute autapomorphies of the Neodermata (the parasitic Platyhelminthes). Included in the Cestoda because of several common derived characters, Amphilinidea and Gyrocotylidea are the only cestodes with spermatozoa containing mitochondria. Their absence in Cestoidea—all taxa with a six-hooked larva and other characteristics—is an autapomorphy of this group.  相似文献   

3.
Summary Development of flagella was investigated by transmission electron microscopy in spermatocytes and spermatids of the Mediterranean mealmoth, Ephestia kuehniella Z. Growing flagella displayed voluminous distal swellings. In short flagella the apical portion of the swellings contained an amorphous, dense accumulation. In more developed flagella a less dense proximal extension of the apical accumulation was formed, which in turn was in contact with the elongating flagellar microtubules. The material of the flagellar tip is interpreted as being a precursor of the axoneme containing mainly tubulin. The material may be converted into the axoneme.  相似文献   

4.
Nine species of the Drosophila immigrans (Sturtevant) group (Diptera Drosophilidae) were examined for the number of primary spermatocytes per cyst. Seven species (D. formosana, D. immigrans, D. kohkoa, D. nasuta, D. neohypocausta, D. quadrilineata and D. sulfurigaster albostrigata) showed nearly 16 primary spermatocytes per cyst, but 2 species (D. annulipes and D. curviceps) had mean numbers of 20.41 and 24.02 primary spermatocytes per cyst, respectively. The frequency distribution patterns of the numbers of primary spermatocytes suggest that the multiplication divisions do not occur synchronously in these species. The systematic positions of D. annulipes and D. curviceps are also discussed.  相似文献   

5.
The structure of the predatory freshwater flagellate Colpodella pseudoedax was studied. The cell was found to contain two heterodynamic flagella, three-membrane pellicle, micropores, subpellicular microtubules, microtubular open-side conoid, roptries, micronemes, extrusive organelles (trichocysts), and mitochondria with vesicular and tubular cristae. Upon discharge, trichocysts form cross-striated bands. A thin-walled cylinder lies in the transitional zone of the flagella. Cells reproduce by means of longitudinal binary fission. This species differs from similar C. edax by their smaller cell size and lack of reproduction cyst. Similarities between C. pseudoedax and other colpodelids, as well as between colpodellids and perkinseids and sporozoans, are discussed.  相似文献   

6.
In cell culture, single motile flagella, 1 micron in length, were observed to grow from secondary spermatocytes of Xenopus laevis within 2-3 hours after telophase I, at 22 degrees C. About 90% of the secondary spermatocytes formed flagella as observed by phase-contrast microscopy. The flagella grew up to 2-6 microns in length during interphase II, which lasted about 18 hours. The presence of the "9 + 2" microtubular structure of the flagellar axonemes of secondary spermatocytes was confirmed by electron microscopy. When chromosomal condensation began (prophase II), the flagella were resorbed into the cells and, after the second meiotic division, a flagellum was formed again by each of the round spermatids. Thus, there appears to be a close relationship between the meiotic division cycle and the formation of flagella. The possible contribution of Sertoli cells to the formation of flagella in secondary spermatocytes was examined by reducing the number of Sertoli cells to less than ten per culture. Under these conditions, flagella formed in secondary spermatocytes with very high efficiency. It is very likely that secondary spermatocytes form flagella in vivo, since the secondary spermatocytes were observed to have flagella immediately after dissociation of the testes.  相似文献   

7.
Dissociated spermatogenic cells were cultivated within the collagen matrix at low cell density. The largest cell type in the culture was identified as the primary spermatocytes by their size and the morphological characteristics revealed by ultra-thin sections. Chromosome analysis showed that about 90% of the cells examined were either in first or second meiosis. Within the collagen matrix, the fates of 282 single primary spermatocytes at meiotic stage in diakinesis or metaphase were followed. In a few days, most of them gave rise to four spermatids, passing through first and second meiotic divisions. About 80% of the spermatids formed motile flagella. They grew about 20–60 μm a day. The final state of the differentiation attained in our culture conditions was the spermatids with localized spherical nuclei and motile flagella, about 500 μm in length after 1-month's culture. Ultra-thin sections of the spermatids show that the rings, neck-pieces, and acrosomes developed in the cells.  相似文献   

8.
The numbers of primary spermatocytes within cysts as well as numbers of postmeiotic spermatids in bundles in Drosophila hydei were determined. Within the contents of a single testis the cysts of primary spermatocytes are found to contain 5–11 germ cells. Furthermore, the number of spermatocytes per cyst is age-dependent, in that pupae have a mean of 8.1 cells whereas fertile adult males have a mean of 7.1 cells. Counts of spermatids in section of testes add further support to the view that the primary spermatocytes, from which the spermatids originated, were not formed in a strict geometric progression.  相似文献   

9.
We investigated the structure of the male reproductive system in Ichthyophis supachaii. The testis comprises a series of mulberry‐like lobes, each of which contains testis lobules occupied by germ cysts. A single cyst consists of synchronously developing germ cells. Six spermatogenic cell types, viz. primary spermatogonia, secondary spermatogonia, primary spermatocytes, secondary spermatocytes, spermatids and spermatozoa, have been identified and described. Notably, the testis of I. supachaii encompasses specific organization patterns of spermatids and spermatozoa during spermiogenesis. Spermiating cysts rupture and release spermatozoa to the collecting ducts, which are subsequently transported to the sperm duct, Wolffian duct and cloaca. We report for the first time ciliated cells in the epithelium of the caecilian Wolffian duct. The cloaca is divided into the urodeum and phallodeum. The urodeum has ciliated and glandular epithelia at its dorsolateral and ventral regions, respectively, as the lining of its internal surface. The muscular phallodeum is lined by ciliated epithelium. Paired Mullerian ducts lie parallel to the intestine and join the cloaca. The posterior portion of the duct is modified as the Mullerian gland. The most posterior region is non‐glandular and lined by ciliated epithelium. Our findings contribute further to information on the reproductive biology of caecilians in Thailand.  相似文献   

10.
Summary Spermatogenesis of the marine spongeHalichondria panicea begins with the break up of choanocyte chambers, choanocytes constituting the origin of spermatogonia. The transition from choanocytes to spermatogonia is direct, without cell division. Already the spermatogonia are flagellated. The ensuing large aggregates of spermatogonia are enclosed by spermatocyst-building cells. Further development takes place within the spermatocysts, mostly arranged in fields which, however, lack any developmental gradient. Within a single spermatocyst development is mostly synchronous. Spermatogonia transform into first order spermatocytes directly. The transition from spermatid to spermatozoon is characterized by an unusual prolongation of the chromatin, often resulting in a helical form of the chromosome material and a strong enlargement of the mitochondria which align with the nucleus, leading to an irregular shape of the spermatozoon. Another exceptional feature is the virtual absence of a Golgi apparatus during all stages of spermatogenesis. TheH. panicea investigated here contained only male reproductive elements, thus appear to be gonochorists. Some features of the spermatogenesis ofH. panicea, such as dissolving choanocyte chambers, the enclosure of spermatogonia by spermatocyst-building cells and the formation of a synaptonemal complex in first order spermatocytes occur in other sponge species as well; however, the early presence of flagella in spermatogonia, the absence of the Golgi apparatus and the later irregular development of nuclei, mitochondria and the spermatozoa themselves represent features hitherto not observed in sponges.  相似文献   

11.
The ultrastructure of the mature spermatozoa and spermatogenesis of the bivalve Scrobicularia plana are described. Support cells extend from the basal lamina to the lumen of the testis and are laterally connected to the germinal epithelium. Germ cells present intercellular bridges and flagella since the spermatogonial stage. While spermatogonia and spermatocytes appear connected to support cells by desmosome-like junctions, elongated spermatids are held at the acrosomal region by support cell finger-like processes. During spermiogenesis, the acrosomal vesicle differentiates from a golgian saccule and then migrates to the nuclear apex. A microtubular manchette arising from centrioles surrounds the acrosomal vesicle, the nucleus, and the mitochondria at the time these three organelles start their elongation, disappearing after that. The mature spermatozoon of S. plana lacks a distinct midpiece because the mitochondria extend from the region of the pericentriolar complex along the nucleus anteriorly for approximately 1.4 μm. The features of this bivalve type of modified spermatozoon are compared with those of other animal groups having similar modifications.  相似文献   

12.
The lepidopteran primary spermatocytes produce first eupyrene (nucleated) and later apyrene (anucleated) spermatozoa. The shift to apyrene commitment of the spermatocytes is related to an apyrene-spermatogenesis-inducing factor (ASIF) becoming active towards pupation. During diapause, the primary spermatocytes lyse and spermatogenesis ceases. The renewal of the dichotomous spermatogenesis in the testes of post-diapausing, last-instar larvae of the codling moth was studied in vivo and in vitro. In vivo, the post-diapausing larvae resume the two types of spermatogenesis. Since ASIF activity is related to pupation, the earliest apyrene spermatids appear one day before pupation, as in non-diapausing larvae. In vitro, renewal of spermatogenesis occurs if 20-hydroxy-ecdysone is added to the medium, but only eupyrene spermatids occur since the testes are explanted before ASIF activity has started. These spermatids are unreduced and develop directly from primary spermatocytes which do not undergo meiotic divisions. Moreover, only flagella develop in these spermatids and the nuclei remain spherical. Post-diapause resumption of spermatogenesis is thus a complex process in which meiosis-blocking and meiosis-deblocking factors, ecdysteroids, and the ASIF play regulative roles.  相似文献   

13.
During the development of a sterile male control method for Dermestes frischii Kugelann, testis follicles exposed to an X-ray dose of 3.0 krad were investigated using light and electron microscopy.

There was considerable variation in the radiation sensitivity of the various somatic and germ cells. The cyst wall cells seemed particularly resistant while the inner layer of the bilayered follicle sheath was destroyed. The general resistance and versatility of the outer sheath layer maintained the integrity of the follicles. The only outer sheath and apical cells observed to decay were those in close proximity to degenerating germ cells. In some follicles all primary spermatogonia were destroyed, in others their numbers were only depleted. The surviving cells all underwent mitotic delay for 7–14 days. Their subsequent offspring were frequently found to break down and sometimes were proliferated so that germarial polarity was lost. All secondary spermatogonia but only a few primary spermatocytes were destroyed. The decay of germ cells within the same cyst did not necessarily proceed synchronously.  相似文献   

14.
Data on the life-cycle of a population of Branchiura sowerbyi Beddard in a water-lily tank at the Botanical Garden in Padua are reported. The breeding period is from April to July, after which the reproductive system is partially resorbed (August–September) and reformed later in the autumn. The karyology of the species was also studied, and revealed 38 mitotic chromosomes in the gonia, and 19 bivalents in the primary spermatocytes and in the primary oocytes.  相似文献   

15.
Stage 1 of spermatogenesis in the protandrous polychaetePlatynereis massiliensis is represented by clusters of about 60 spermatogonia which appear in the coelomic cavity. There are no testes inP. massiliensis. The origin of the spermatogonial clusters is not known. Subclusters of approximately 20 primary spermatocytes each represent stage 2. The appearance of synaptonemal figures in the spermatocyte nuclei marks the beginning of stage 3. Cells tend to lose their tight packing during stage 3 but interdigitate with cellular processes. Then very small subclusters of 4 to 8 spermatocytes appear. Meiosis is completed during stage 4, giving rise to secondary spermatocytes and then to spermatid tetrads. Spermatogonia and primary spermatocytes are interconnected by structurally specialized fusomes while secondary spermatocytes and spermatids, which are also in cytoplasmic continuity, show rather simple cell bridges. Synthesis of acrosomal material starts during stage 2. During spermiogenesis the proacrosomal vesicles of Golgi origin travel from the posterior part of the cell to its anterior part to form the acrosome proper. Acrosome formation, nuclear condensation, shaping of the long and slender sperm nucleus, and development of the sperm tail are the main events during spermiogenesis. Sperm morphology is briefly discussed wity respect to its phylogenetic bearings.  相似文献   

16.
The genus Naegleria is one of the best known heterolobosean groups, and is the causative agent of primary amoebic meningoencephalitis. This group is rarely studied in temperate regions during winter. Here, three novel Naegleria were isolated from freshwaters on Jeju Island, Korea, during winter. Two isolates were amoeboflagellates, and one of the three amoebae did not undergo enflagellation. All amoebae had eruptive pseudopodia, and the layer of refractile granules around a large nucleus. They formed a cyst with ~2 pores in the cyst stage. The amoeboflagellate form had two flagella and no division in the flagellate stage, and no cytostome. These features are very similar to typical Naegleria. Furthermore, our isolates were able to grow at > 30 °C, suggesting that they had different thermophilicity from Naegleria in polar regions. All amoebae were largely encysted at 5 or 10 °C, indicating that they were likely encysted during winter. Based on the 18S rRNA gene and the ITS1‐5.8S rRNA gene‐ITS2 sequences, the phylogenetic analyses consistently revealed that the isolates are members of the Naegleria group. However, the isolates differ from other species in both phylogenetic trees. Thus, Naegleria in cold habitats appeared to have a high degree of novelty, but their thermophilicity may be dependent on locality.  相似文献   

17.
18.
Summary C.rufescens excystment, experimentally induced, corresponds to a general metabolism recovery of the cell, previously in a resting phase. The cytoplasm changes without any polarity, and organelles like gullet and flagella redifferentiate. The thylakoids develop mainly from the stored lipidic compounds which then disappear. Phycoerythrin immediately fills the intrathylakoidal lumen. Pigment synthesis seems closely associated with the development of membranes. The activated cell divides and the cyst wall breaks down. The destruction of the wall begins in the median layer and is followed by a mechanical rupture of the external and internal layers. Each germinative cyst releases two or four fully differentiated cells. There is an exact symmetry between excystment and encystment, all the transformations of theC. rufescens cell being reversible.  相似文献   

19.
10.0 micro M cycloheximide (CH) was found to completely inhibit the second meiotic division of newt spermatocytes. Under continuous incubation with CH from the beginning of interphase II, secondary spermatocytes fail to initiate chromosomal condensation and thus remain in interphase II. After 12-15 h of incubation, a single motile flagellum, about 5 micrometers in length, was observed on each of the secondary spermatocytes. These flagella grew to a length of 60-80 micrometers, but thereafter ceased to grow, whereas ordinarily spermatids grew flagella up to 500 micrometers in length in the absence of CH [1]. When CH was applied within 2 h following telophase I, the percentage of meiosis II inhibition was almost 100% and when applied even later, it became less, which showed that the early half period during interphase II was sensitive to CH. Regardless of the length of incubation time with CH, flagella were found to grow within a period of 12-15 h following telophase I. Upon removal of CH, even after 60 h of incubation, the flagella of the secondary spermatocytes shortened and disappeared completely. These spermatocytes underwent the second meiotic divisions. Also, flagella grew on the resulting spermatids. The possibility that a particular centriole which participated in the first meiotic division changes into a basal body for flagellar formation under the influence of CH and vice versa upon removal of it, is discussed in the following.  相似文献   

20.
Summary Spermatogensis of the freshwater sponge Ephydatia fluviatilis begins with differential mitosis of choanocytes in the flagellated chambers. The spermatogonia thus produced aggregate in the mesenchyme by amoeboid movement. They are surrounded by dendritic cells which eventually form the walls of spermatocysts, within which spermatogenesis takes place. Notable features are the early formation of flagella in first order spermatocytes and the appearance of two flagella in the metaphase of the second maturation division.Spermatids and spermatozoa are arranged in characteristic ways. The spermatids have their heads near the spermatocyst wall, with the flagella pointing toward the center. Later the spermatozoan heads form a median band in the spermatocyst, and the flagella extend toward the periphery.Normally all stages of spermatogenesis can be found simultaneously in a given sponge, but development within a single spermatocyst proceeds in relative synchrony. Young spermatocysts can take up additional free spermatogonia; moreover, spermatocysts at about the same stage of development, up to a maximal diatmeter of 200 m, can fuse with one another.The E. fluviatilis studied here seem to be gonochorists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号