首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The organization of the oesophagus in the budding styelid ascidian, Polyandrocarpa misakiensis, is described. The oesophagus consists of external and internal epithelium, and there are loose connective tissue, blood sinuses, and a muscular layer between them. The internal epithelium is simple columnar, except for the bottom of three folds. The external epithelium is simple squamous. The internal epithelium contains four cell types, i.e., ciliated mucous cells, band cells, endocrine cells, and undifferentiated cells. The ciliated mucous cells have apical cilia and microvilli, and two types of mucous vesicle. The band cells also have apical cilia and electron-dense granules in the apical cytoplasm. The endocrine cells are bottle-shaped, and have electron-dense granules both above and below the nucleus. The undifferentiated cells form pseudostratified epithelium at the bottom of each fold, and they have nuclei with prominent nucleoli. One type of coelomic cell, which has retractile cytoplasm, often migrates in the internal epithelium. Near the stomach, there are many darkly stained round cells clustered around the posterior end of the oesophagus. These two types of coelomic cells may be involved in the defense mechanism against the invasion of foreign organisms. The basic organization of the oesophagus of P. misakiensis is similar to those of other ascidians. However, the presence of three folds is a characteristic of a solitary species, rather than of a colonial species. Although ascidians are chordate invertebrates, the organization of their oesophagus is not very complex, which might reflect their life style.  相似文献   

2.
Morphometric, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) investigations have displayed regional differences in the mare oviductal epithelium. The entire mucosa of the oviduct was lined with a pseudostratified epithelium, which consisted of two distinct cell types, ciliated and non-ciliated. Ciliated cells were predominant in the three different segments of the oviduct and their percentage increased from fimbriae to ampulla and significantly decreased in the isthmus. SEM revealed in the infundibulum finger-like mucosal folds, some of them interconnected, in the ampulla numerous and elaborated branched folds of the mucosa, whereas the isthmus displayed a narrow lumen, short and non-branched mucosal folds. In the ampulla and isthmus the majority of non-ciliated cells showed apical blebs provided or not of short microvilli. TEM displayed different ultrastructural features of ciliated and non-ciliated cells along the oviduct. Isthmus ciliated cells presented a more electron-dense cytoplasm than in infundibulum and ampulla cells and its cilia were enclosed in an amorphous matrix. The non-ciliated cells of infundibulum did not contain secretory granules but some apical endocytic vesicles and microvilli coated by a well developed glycocalyx. Non-ciliated cells of ampulla and isthmus contained secretory granules. Apical protrusions of ampulla displayed two types of secretory granules as well as occasional electron-lucent vesicles. Isthmus non-ciliated cells showed either electron-lucent or electron-dense cytoplasm and not all contained apical protrusions. The electron-dense non-ciliated cells displayed microvilli coated with a well developed glycocalyx. Three types of granules were observed in the isthmus non-ciliated cells. The regional differences observed along the epithelium lining the mare oviduct suggest that the epithelium of the each segment is involved in the production of a distinctive microenvironment with a unique biochemical milieu related to its functional role.  相似文献   

3.
Gastric mucosa obtained from the body and pyloric portions of the human stomach were observed by light and transmission electron microscopy. Ciliated cells were found in two of 18 subjects examined, one patient with gastric ulcer and the other one with gastric adenocarcinoma. The ciliated cells were found in epithelia at sites away from the main lesions. The tissues containing ciliated cells showed intestinal metaplasia combined with mild chronic gastritis in both cases. The epithelial layer facing the gastric lumen was composed of columnar cells with numerous uniform microvilli and goblet cells. This epithelium extended to the superficial parts of the tubules surrounded by the lamina propria. The deeper portions of the tubules were composed of mucous secretory, endocrine, and rarely ciliated cells. These ciliated cells were provided with numerous cilia the numbers of which varied considerably from cell to cell. This was in contrast to the primary cilium which is usually single. The central part of the apical cell membrane was sometimes concave in the area from where cilia tended to arise. It was also observed that numerous basal bodies as well as mucus-like granules were contained in the same cell. The axonemal pattern was different from that of ordinary cilia and showed 9 + 0 and 8 + 1 patterns. In longitudinal sections it was found that one peripheral doublet was displaced to the center of the axoneme as it left the basal body.  相似文献   

4.
Summary The following five cell types have been recognized and defined on the basis of their fine structure in the gastric epithelium of B. schlosseri: vacuolated and zymogenic cells (described in a previous paper); ciliated mucous, endocrine and plicated cells. The ciliated mucous cells are distributed at the apex and the bottom of the gastric folds and along the dorsal groove. The mucus droplets appear to form from the Golgi complex as secretory granules of variable density and texture, which are released from the cell after fusion of their membranes with the apical plasma membrane. Holocrine or apocrine secretion has not been observed. The endocrine cells are scattered and are characterized by electron dense granules, especially numerous in the basal region of the cell. Finally, the plicated cells, present in the pyloric caecum, show rod-like microvilli, a well developed Golgi complex and abundant, deep infoldings of the basal plasma membrane, which are associated with numerous mitochondria. The possible role of the gastric cell types is discussed taking into account information concerning morphologically similar cells in other animals, as well as previously reported data on the biochemistry and physiology of digestion and excretion in ascidians.The authors are grateful to Mr. G. Tognon for technical help and to the Staff of the Stazione Idrobiologica di Chioggia for their assistance in collecting material. Work supported by a C.N.R. Grant from the Istituto di Biologia del Mare, Venezia, Contract n. 71.00396/04.115.542.  相似文献   

5.
The neritid snail Nerita picea is a marine prosobranch mollusc which resides high in the intertidal zone on the Hawaiian Islands. Since other studies have shown considerable variations in molluscan gut histology and the relatively few recent ultrastructural reports have revealed novel cellular structures in the molluscan gastrointestinal tract, this investigation was directed toward ultrastructural clarification of the neritid intestine. Seven principal cell types constituted the intestinal architecture, including absorptive cells, zymogen cells, neural and endocrine cells, myocytes, pigment and gland cells. The intestinal epithelium was composed mainly of tall ciliated (9 plus 2 complement of microtubules) columnar absorptive cells which also possessed microvilli, extensive deposits of non-membrane-bound lipid-like droplets, and large reservoirs of glycogen-like granules. Less frequent, columnar zymogen cells contained numerous large zymogen secretory granules and possessed microvilli but not cilia. Small endocrine-like cells with secretory granules were observed basolaterally between some absorptive cells, resembling mammalian gut endocrine cells. Nerve fibers were prevalent in close association with the epithelial cells. A thin layer of non-striated muscle was present, as well as a serosally located gland composed of storage cells with a granular matrix and large granules.  相似文献   

6.
The secondary and primary (mesobronchus) bronchi of chicken lung are lined by a typical respiratory epithelium: pseudostratified columnar ciliated with goblet cells. Up to date, four constituting epithelial cell types have been identified: ciliated, mucosecretory, basal and endocrine cells. In this study a putative new epithelial cell type, the brush-like cell, is described. The avian brush-like cells have only been found in the bronchial epithelia but never in the gas-exchange areas. They are scattered among the other epithelial cells, mainly ciliated cells, and their number is extremely low. The characteristic morphological feature of these cells is an apical protruding cytoplasm with microvilli. This cell type is similar to that found in the lung of some mammalian and non-mammalian species. The functional role of these cells is not yet clear; they could carry out absorptive processes.  相似文献   

7.
Suíçmez M  Ulus E 《Folia biologica》2005,53(1-2):95-100
The anatomy, histology and ultrastructure of the digestive tract of Orthrias angorae (Steindachner, 1897) were investigated using light microscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The histological structure consists of four layers: mucosa, submucosa, muscularis and serosa. The esophageal mucosa consists of undifferentiated basal epithelial cells, mucous cells and surface epithelial cells. It was observed that the J-shaped stomach had a meshwork of folds in the cardiac region, and longitudinal folds in the fundic and pyloric regions. A single layer of columnar cells, PAS positive only in their apical portions, forms the epithelium. The convoluted tube-shape intestine is lined by simple columnar epithelial cells, which have microvilli at the apical surface. The wall of the esophagus and stomach are thicker than that of the intestine because of the thick muscle layer. There were numerous goblet cells in the intestine. There were numerous gastric glands in the submucosa layer ofthe cardiac stomach, but none were present in the pyloric region of the stomach. There were no pyloric caeca between the stomach and intestine. The enterocytes with microvilli contained rough endoplasmic reticulum, ribosomes and rounded bodies, and the gastric cells contained a well-developed Golgi apparatus.  相似文献   

8.
The ultrastructure of the digestive tract of tornaria larva of enteropneusts was investigated. It showed that the digestive tract consists of three parts: esophagus, stomach, and intestine. The esophagus epithelium consists of two types of multiciliated epithelial cells and solitary muscle cells. Axonal tracts and neurons were found in the ventral wall of the esophagus. The cardiac sphincter contains an anterior band of strongly ciliated cells and a posterior band of cells with long vacuolized processes which partition the sphincter lumen. The stomach consists of three cell types: (1) cells with electron-opaque cytoplasm, bearing a fringed border on their apical sides; (2, 3) sparse cells with electron-light cytoplasm and different patterns of apical microvilli. Cells of the pyloric sphincter bear numerous cilia and almost no microvilli. The intestine consists of three parts. The anterior part is formed of multiciliated cells which bear the fringed border. The middle part consists of flattened cells bearing rare cilia and vast numbers of mace-like microvilli. The posterior part of the intestine is formed of cells bearing numerous cilia and few microvilli. Muscle cells were not found in either stomach or intestine epithelium. One noticed that the structure of the digestive tract of enteropneust tornaria larva differs from that of echinoid pluteus larva.  相似文献   

9.
Suuroia T  Aunapuu M  Arend A  Sépp E 《Tsitologiia》2002,44(7):656-660
The ultrastructure of oviduct epithelium of clinically healthy cows and 15 sows was investigated using scanning and transmission electron microscopy. In all parts of the oviduct, ciliated and non-ciliated epithelial cells are present, but their number varies in both the investigated animals in different regions of the oviduct, depending on the phase of the estrous cycle. In addition to ciliated cells with numerous cilia on their luminal surface, so-called pale ciliary cells were found in all parts of the oviduct of cows and sows. The cytoplasm of these cells is electron-lucent, their luminal surface carries few cilia and short microvilli. The apical cytoplasm contains species specific secretory granules, which means that these cells have features characteristic of both secretory and ciliated cells. It is suggested that the pale ciliated and non-ciliated secretory cells are functional stages of the same tubar epithelium cell, and that the transformation between these two cell types is regulated by functional requirements of the organ in different phases of the estrous cycle.  相似文献   

10.
Ciliated cysts in the human uterine tube epithelium were investigated with the transmission electron microscope. The cysts were about 3-9 microns in diameter and were provided with many ciliary apparatuses and microvilli. Degenerative changes of these cilia, such as electron-dense round or irregular bodies and amorphous substance, were observed in many cysts, but complete disappearance of ciliary structures was not detected in any ciliated cysts. The ciliated cysts were mostly observed in basal cells and were occasionally found in ciliated cells bordering the tubal lumen. In the basal cells, these cysts distended with the increase in degenerated cilia. Distended ciliated-cyst-containing cells became exposed directly to the tubal lumen. U- or reverse omega-shaped deep indentations of the apical surface of ciliated cells confirmed the opening of ciliated cysts into the lumen. It was suggested that the ciliated cysts result from the premature differentiation of basal cells or disturbed migration of centrioles in ciliogenic cells.  相似文献   

11.
The U-shaped alimentary tract of Cephalodiscus is of exclusively epithelial structure; on the basis of fine structural criteria the entire tract can be divided into two large subdivisions: an anterior one with mouth, mouth cavity, pharynx and oesophagus, and a posterior one with stomach and intestine. The anterior subdivision is built up of a relatively uniform, innervated, pseudostratified, ciliated epithelium with mucus cells which are concentrated in the initial parts of the mouth cavity. Cilia and mucus presumably constitute a mechanism transporting food particles into the stomach. In the area of the gill slits specific vacuolated cells occur which may lend rigidity to the walls of the slits. The gastric epithelium consists of prismatic cells characterized by, among others, large inclusion bodies, which may represent digestive vacuoles, small dense rod-shaped granules and an elaborate system of microridges, at the base of which abundant endocytotic vesicles occur. The dorsal gastric pouch contains cells rich in rough ER and secretory granules, probably containing digestive enzymes. Thus morphological evidence points both to intra- and extracellular digestion. The intestinal epithelium resembles that of the stomach, however, it is lower, its organelles are fewer and it bears, beside cilia, mainly microridges, which towards its distal end become sparse. Both in the gastric and intestinal epithelium small granulated cells have been found, which presumably represent endocrine cells.  相似文献   

12.
Ciliated vacuoles and intraepithelial cysts have been observed in oviductal and endocervical epithelia of rabbits. In this study, rabbits under various hormonal conditions were studied by light and transmission electron microscopy and tissue culture in an attempt to determine their distribution and origin. Ciliated vacuoles most frequently lay in the basal cytoplasm, below or beside the nucleus, and very close to the basal lamina. A few were apically located. Their average diameter was 8.8 by 5.1 microns. Cilia and microvilli projected into the vacuolar lumen. These vacuoles were located intracellularly as evidenced first by the degeneration of both their cilia and microvilli and the moderately dense matrix that often filled the vacuolar lumen, as observed by electron microscopy. Secondly, phase microscopy of the living endocervical epithelium allowed us to observe the beating of the cilia within the vacuoles, not on the surface of such cells. Thirdly, ruthenium red stained the surface glycocalyx of ciliated and secretory cells, but not that of the cilia and microvilli within the vacuoles. The intraepithelial cysts were not observed in all tissue blocks. The largest numbers were found in ovariectomized animals treated for 3 and 5 days with estradiol. More were seen in the isthmus and cervix than in the fimbria and ampulla. The cysts were located most often within the epithelium along the sides of, and at the bases of, the mucosal folds. They were lined by flattened epithelium of various combinations of secretory and ciliated cells. An unusual cell type was associated with some of the cysts and ciliated vacuoles. Its cytoplasm contained aggregates of mitochondria and vesicles whose contents varied in density. Although the genesis of the ciliated vacuoles is not certain, our results indicate that they may arise from aberrant positioning of proliferating procentrioles or from a defect in targeting or transporting the centrioles to the apical plasma membrane to serve as basal bodies. Fusion of adjacent ciliated vacuoles with lumina lined by secretory cells having deep apical invaginations appeared to contribute to the formation of cysts.  相似文献   

13.
We report the results of a morphological, histochemical, and cytochemical characterization of the Aplysia depilans stomach, an organ little studied in opisthobranchs. Very thin ciliated cells with microvilli on their apical surfaces are predominant in the epithelium lining the lumen of the stomach. Many lysosomes with a strong arylsulphatase activity were present in the apical regions of these cells that could also contain some lipid droplets and glycogen. Small peroxisomes were observed, usually around lipid droplets or mitochondria. Bottle-shaped secretory cells are very common in this epithelium and produce a secretion rich in proteins and acidic mucopolysaccharides. Most of the cytoplasm of these mucus-producing cells was filled with a very high number of granules and the nucleus is dislocated to the basal region. Cisternae of rough endoplasmic reticulum were abundant around the nucleus and several Golgi stacks were also present in this area. In spite of the variation in the electron density of the granules, only one type of secretory cell seems to be present in the stomach epithelium, since granules with very different electron densities were frequently found in the same cell. A few neurons were also found in the stomach epithelium of this species. Fibrocytes, muscle cells, nerves, and amebocytes were observed in the connective tissue of the stomach wall.  相似文献   

14.
The cardiac and pyloric glands in the gastric mucosa of the South African hedgehog, Atelerix frontalis, are described. The cardiac area of the stomach contains proper cardiac glands and lacks undifferentiated fundic glands. The cardiac glands are simple tubular, coiled, and lined with columnar cells ultrastructurally similar to those of the gastric surface epithelium. Secretory granules with varying electron densities fill the apical cytoplasm of these cells. In contrast to other mammals, these glands lack mucous neck cells. The neck of the pyloric glands contains only a single cell type, whereas the basal regions of these glands contain “light” and “dark” cells. The secretory granules in the “dark” cells and the pyloric neck cells have a moderate electron density and often contain an electron dense core. An electron-lucent cytoplasm with numerous polysomes is characteristic of the “light” cells. Some “light” cells contain electron-dense granules in the apical cytoplasm. The presence of only neutral mucins in the cardiac gland cells denotes the absence of mucous neck cells. The acidic mucins within the pyloric neck cells seem to indicate that these cells are mucous neck cells, whereas the neutral mucins within the basally located pyloric gland cells show at least a partial functional difference from the pyloric neck cells. © 1993 Wiley-Liss, Inc.  相似文献   

15.
Peroxidase activity was examined cytochemically in the mucosal epithelium along the length of the digestive tract from the esophagus through the large intestine during the development of the bullfrog, Rana catesbeiana. In the tadpole of this species, cells with peroxidase activity were found abundantly in the esophagus, stomach, and large intestine; and the types of such cells differed according to the region: ciliated cells and mucous cells in the esophagus; ciliated cells in the stomach; and brush cells, absorptive cells, and goblet cells in the large intestine, respectively. After metamorphosis, however, peroxidase activity was observed exclusively in absorptive cells and goblet cells in the large intestine. Peroxidase activity was commonly demonstrated in apical vesicles or granules, to some degree in rough endoplasmic reticulum, and in some elements of the Golgi apparatus. Furthermore, reaction product was also found in mucus covering the luminal surface of such epithelial cells. These findings indicate that peroxidase-positive cells, which may have the ability to synthesize peroxidase as a secretory product, were distributed mainly in three regions of the digestive tract in tadpoles (esophagus, stomach, and large intestine), but were centered in one specific region, the large intestine, after metamorphosis. Concomitantly, the variety of types of peroxidase-positive cells decreased during metamorphosis. Our results indicate that some of the peroxidase in the digestive tract may have a secretory origin and may play a role in the defense against microorganisms.  相似文献   

16.
The sensory epithelium of the abdominal sense organ (ASO) of the scallop Mizuchopecten yessoensis is composed of three cell types, sensory cells, mucous cells, and multiciliated cells. Sensory cells bear a single long (up to 250 microm) cilium surrounded by an inner ring of nine modified microvilli and an outer ring of ordinary microvilli paired with modified microvilli. Sensory cells make up about 90% of the total number of cells in the sensory epithelium. Mucous cells, which are much wider than sensory cells, bear only ordinary microvilli on their apical surface. Rare multiciliated cells with short (4-6 microm) cilia are scattered in the periphery of the sensory epithelium sheet. All hairs, cilium, and microvilli of each sensory cell are interconnected by a fibrous network. Nine modified microvilli of a single cell are interconnected by prominent laterally running fibrous links. Membrane-associated electron-dense material of modified microvilli is connected to the ciliary membrane-associated electron-dense material by fine string-like links. These links mechanically bridge the space between the cilium and modified microvilli, as do mechanical links, described for the stereocilia and kinocilium of vertebrate vestibular and cochlear hair cells. The proximal portion of a sensory cilium is about 100 microm long and has a typical 9 x 2+2 axoneme arrangement. The distal portion of a cilium is approximately 2 times thinner than the proximal one and is filled with homogeneous electron-dense material. Along the distal portion, diffuse material associated with the external surface of the membrane is found. The rigidity of distal portion of a cilium is much less than that of the proximal one.  相似文献   

17.
We studied the development of the human embryonic intestine from the 6th to the 8th week of gestation (embryos with a crown-rump length of 16-25 mm). Semithin sections show that a smooth, simple intestinal lumen, which is often a mere slit, is elsewhere, in the same specimen, distinctly formed and in places is partly occluded by accumulations of cells of a somewhat different character from those of the actual intestinal lining. Whereas the epithelium proper is mainly high and pseudostratified, the cells which secondarily occlude the originally open intestinal lumen are smaller and are more cuboidal to polyhedric in shape. In the electron microscope, the cells of the primitive epithelium appear narrow and columnar, with an ovoid nucleus and a few nucleoli. The cytoplasm contains numerous mitochondria and a gradually developing granular endoplasmic reticulum and Golgi complex. These cells have small, irregular microvilli on their surface, but some have an almost straight surface without any microvilli. They display striking pinocytotic activity and contain a quantity of multivesicular bodies. Their cytoplasm further contains isolated osmiophilic granules and lysosomes and a small amount of glycogen. The accumulation of glycogen is typical of the more mature developmental stages. Cilia are a characteristic finding in embryos with a c-r length of 16-25 mm. There is only one cilium to a cell, but not all the cells have cilia. The cilia are relatively thick and not very long and they almost always grow in the centre of the cell surface. The apical surface of such cells is usually slightly or more deeply concave. Structurally, the ciliated cells closely resemble phylogenetically primitive entodermal collar cells (choanocytes). They are apparently a phylogenetically old type of cells, whose existence could have functional value, which appears for a time during ontogenetic development. The cilia may temporarily play a role in the movement of the intestinal fluid and thus coparticipate in resorption before the musculature of the intestinal wall has been formed.  相似文献   

18.
Summary Single cells of a new type appear scattered among pneumocytes in the pulmonary epithelium. The surfaces of these cells communicate with the air space and display numerous finger-like microvilli. In comparison to pneumocytes, these cells have a more lucid cytoplasm and their apical parts contain large amounts of electron-lucent vesicles and electron-dense granules, which are probably released into the lumen of the lung. These secretory cells exhibit a yellow formaldehyde-induced fluorescence, which suggests that they belong to the class of APUD cells.  相似文献   

19.
The freetop of the fungiform papilla shows a sensorial area about 100 micron in diameter, surrounded by a ring of ciliated cells. Externally to the ciliated cells, i.e., in the lateral wall, numerous large goblet cells can be seen devoid of their mucous content. The sensorial area is composed by three types of cells: mucous, supporting, and neuroepithelial cells. Mucous cells form the most superficial layer, while the cell bodies of the other two are deep, and from them basal and apical processes arise. The above mentioned cells are connected by desmosomes preferentially located between the mucous and the supporting cells, rather than between the supporting and the neuroepithelial cells. The lateral wall of the papilla is made up of a multilayered epithelium that comprises two types of cells: the first type contains electron-dense granules and an abundant rough endoplasmic reticulum, the others are ciliated cells. In the connective axis of the papilla, numerous fenestrated capillaries with endothelial vesiculated cells and nerve fibers are found.  相似文献   

20.
In vivo ciliogenesis in human fetal tracheal epithelium   总被引:5,自引:0,他引:5  
Development of ciliated cells (CC) in the fetal human trachea was studied by light and electron microscopy in specimens obtained from 45 embryos or fetuses aged from 9 to 27 weeks of gestation (menstrual age). Four stages could be recognized during tracheal development. Up to 11 weeks (stage I), the trachea was covered with a columnar undifferentiated epithelium with abundant glycogen, apical microvilli, and primary cilia. From 12 to 18-19 weeks (stage II), centriologenesis and secondary ciliogenesis were very active, and the percentage of CC and secretory cells (SC) progressively increased. From 20 to 22-23 weeks, the density of CC was higher but, in parallel, the percentage of SC decreased (stage III). Throughout this period, the different steps of ciliogenesis could be identified in the same field, and the ciliated borders consisted of ciliary shafts with a disorderly arrangement. Megacilia were identified. Some of the preciliated cells had both cilia and secretory granules in their apical cytoplasm. After 24 weeks (stage IV), the ciliated border was apparently mature, the rootlets lengthened, and the cilia were correctly orientated. Whatever the fetal age, the density of CC was significantly higher (P less than .01) in the dorsal trachea compared to the ventral trachea. There are many similarities between animal and human ciliogenesis, but in human fetuses, most of the ciliary differentiation occurs early, during the first half of gestation. As demonstrated in experimental models, SC likely play a major role in genesis of CC during the fetal development of the human trachea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号