首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hemopressin, a bioactive nonapeptide derived from the α1 chain of hemoglobin, was recently shown to possess selective antagonist activity at the cannabinoid CB(1) receptor [Heimann, A. S., et al. (2007) Proc. Natl. Acad. Sci. U.S.A. 104, 20588-20593]. CB(1) receptor antagonists have been extensively studied for their possible therapeutic use in the treatment of obesity, drug abuse, and heroin addiction. In particular, many compounds acting as CB(1) receptor antagonists have been synthesized and subjected to experiments as possible anti-obesity drugs, but their therapeutic application is still complicated by important side effects. Using circular dichroism and nuclear magnetic resonance spectroscopy, this work reports the conformational analysis of hemopressin and its truncated, biologically active fragment hemopressin(1-6). The binding modes of both hemopressin and hemopressin(1-6) are investigated by molecular docking calculations. Our conformational data indicate that regular turn structures in the central portion of hemopressin and hemopressin(1-6) are critical for an effective interaction with the receptor. The results of molecular docking calculations, indicating similarities and differences in comparison to the most accepted CB(1) pharmacophore model, suggest the possibility of new chemical scaffolds for the design of new CB(1) antagonist lead compounds.  相似文献   

2.
Endogenous hemorphins, derived from degradation of the beta-chain of hemoglobin, lower arterial blood pressure and exert an antinociceptive action in experimental models of nociception. Hemopressin, derived from the alpha-chain of hemoglobin, also decreases blood pressure, but its effects on pain have not been studied. In this work, we examined the influence of hemopressin on inflammatory pain. Hemopressin reverted the hyperalgesia induced by either carrageenin or bradykinin when injected concomitantly or 2.5 h after the phlogistic agents. Hemopressin administered systemically also reverted the hyperalgesia induced by carrageenin. Naloxone did not prevent the antinociceptive action of this peptide. These data suggest that hemopressin inhibits peripheral hyperalgesic responses by mechanisms independent of opioid receptor activation.  相似文献   

3.
Endopeptidase 24.15 (EC; ep24.15), neurolysin (EC; ep24.16), and angiotensin-converting enzyme (EC; ACE) are metallopeptidases involved in neuropeptide metabolism in vertebrates. Using catalytically inactive forms of ep24.15 and ep24.16, we have identified new peptide substrates for these enzymes. The enzymatic activity of ep24.15 and ep24.16 was inactivated by site-directed mutagenesis of amino acid residues within their conserved HEXXH motifs, without disturbing their secondary structure or peptide binding ability, as shown by circular dichroism and binding assays. Fifteen of the peptides isolated were sequenced by electrospray ionization tandem mass spectrometry and shared homology with fragments of intracellular proteins such as hemoglobin. Three of these peptides (PVNFKFLSH, VVYPWTQRY, and LVVYPWTQRY) were synthesized and shown to interact with ep24.15, ep24.16, and ACE, with K(i) values ranging from 1.86 to 27.76 microm. The hemoglobin alpha-chain fragment PVNFKFLSH, which we have named hemopressin, produced dose-dependent hypotension in anesthetized rats, starting at 0.001 microg/kg. The hypotensive effect of the peptide was potentiated by enalapril only at the lowest peptide dose. These results suggest a role for hemopressin as a vasoactive substance in vivo. The identification of these putative intracellular substrates for ep24.15 and ep24.16 is an important step toward the elucidation of the role of these enzymes within cells.  相似文献   

4.
Changes in the endocannabinoid system are implicated in numerous diseases, making it an attractive target for pharmaceutical development. The endocannabinoid receptors have traditionally been thought to act through the effects of lipophilic messengers called cannabinoids. The exciting finding of endocannabinoid system modulation by the nonapeptide hemopressin and its N-terminal extensions has highlighted the complexity of cannabinoid biology and pharmacology and sparked interest for therapeutic purposes. However, many questions surrounding the generation and regulation of the hemopressin peptides, the self-assembly of hemopressin and the potential for drug development based on hemopressin remain and are discussed in this review.  相似文献   

5.
Summary A voltage-dependent cationic channel of large conductance is observed in phospholipid bilayers formed at the tip of microelectrodes from proteoliposomes derived from mitochondrial membranes. This channel was blocked by a 13-residue peptide with the sequence of the amino terminal extremity of the nuclear-coded subunit IV of cytochromec oxidase. The blockade was reversible, voltage- and dose-dependent. The peptide did not affect the activity of aTorpedo chloride channel observed under the same conditions. From experiments with phospholipid monolayers, it is unlikely that the peptide inserts into bilayers under the experimental conditions used. The blockade was observed from both sides of the membrane, being characterized by more frequent transitions to the lower conductance states, and a maximum effect was observed around 0 mV. Channels, the gating mechanism of which had been eliminated by exposure to trypsin, were also blocked by the peptide. For trypsinized channels, the duration of the closure decreased and the blockade saturated at potentials below –30 mV. These observations are consistent with a translocation of the peptide through the channel. Dynorphin B, which has the same length and charge as the peptide, had some blocking activity. Introduction of negative charges in the peptide by succinylation suppressed the activity.  相似文献   

6.
F Schmid  H Blaschek 《Biochemistry》1984,23(10):2128-2133
Folding of bovine pancreatic ribonuclease A (RNase A) is a sequential process which involves the formation of well-populated structural intermediates under suitable conditions. Two intermediates have been detected on the major slow-refolding pathway of RNase A: a late intermediate (IN) which already resembles the native protein in a number of properties and a rapidly formed early intermediate (I1) which shows extensive hydrogen-bonded secondary structure. Here competition experiments between refolding and proteolytic cleavage of the peptide chain are described which yield information about the decrease in accessibility of particular proteolytic cleavage sites during the folding process. Results obtained with pepsin as a proteolytic probe of folding indicate that the primary cleavage site for pepsin, Phe-120-Asp-121, becomes inaccessible early in the course of refolding, if folding is carried out under conditions which effectively stabilize the native state. Under marginally stable conditions, folding is very slow, and protection against peptic cleavage is not detectable prior to the final formation of native protein. The comparison with amide proton exchange experiments suggests that the protection against peptic cleavage occurs during the formation and/or stabilization of hydrogen-bonded secondary structure in the early intermediate (I1). We conclude that the carboxy-terminal region of the RNase peptide chain, which is known to be important for the stability of the folded protein, may also be relevant for early steps of refolding.  相似文献   

7.
The oligomerization of amino acids is an essential process in the chemical evolution of proteins, which are precursors to life on Earth. Although some researchers have observed peptide formation on clay mineral surfaces, the mechanism of peptide bond formation on the clay mineral surface has not been clarified. In this study, the thermal behavior of glycine (Gly) adsorbed on montmorillonite was observed during heating experiments conducted at 150 °C for 336 h under dry, wet, and dry–wet conditions to clarify the mechanism. Approximately 13.9 % of the Gly monomers became peptides on montmorillonite under dry conditions, with diketopiperazine (cyclic dimer) being the main product. On the other hand, peptides were not synthesized in the absence of montmorillonite. Results of IR analysis showed that the Gly monomer was mainly adsorbed via hydrogen bonding between the positively charged amino groups and negatively charged surface sites (i.e., Lewis base sites) on the montmorillonite surface, indicating that the Lewis base site acts as a catalyst for peptide formation. In contrast, peptides were not detected on montmorillonite heated under wet conditions, since excess water shifted the equilibrium towards hydrolysis of the peptides. The presence of water is likely to control thermodynamic peptide production, and clay minerals, especially those with electrophilic defect sites, seem to act as a kinetic catalyst for the peptide formation reaction.  相似文献   

8.
I Schvartz  O Ittoop  E Hazum 《Biochemistry》1991,30(21):5325-5327
Competition binding experiments and peptide mapping techniques were employed in order to directly address the possible existence of endothelin (ET) receptor subtypes in the atria. Competition binding assays for 125I-labeled ET-1 or 125I-labeled ET-3 to bovine atrial membrane preparations suggest the existence of two ET receptor subtypes, one of which binds ET-1 and ET-3 with a similar affinity while the other shows preference for ET-3. However, cross-linking experiments of both peptides to this tissue resulted in the identification of a single 50-kDa protein. To identify directly the existence of multiple ET receptors, peptide mapping of cross-linked 125I-labeled ET-1 or 125I-labeled ET-3 receptors was conducted. Different peptide maps were obtained only under conditions that preferentially label one receptor subtype. These results indicate, for the first time, the existence of two ET receptor subtypes in the atria which differ from each other in both their binding characteristics and primary structure.  相似文献   

9.
We tested whether a short model peptide derived from a group 3 late embryogenesis abundant (G3LEA) protein is able to maintain the fluorescence activity of a red fluorescent protein, mKate2, in the dry state. The fluorescence intensity of mKate2 alone decreased gradually through repeated dehydration-rehydration treatments. However, in the presence of the LEA model peptide, the peak intensity was maintained almost perfectly during such stress treatments, which implies that the three dimensional structure of the active site of mKate2 was protected even under severe desiccation conditions. For comparison, similar experiments were performed with other additives such as a native G3LEA protein, trehalose and BSA, all of whose protective abilities were lower than that of the LEA model peptide.  相似文献   

10.
The amphipathic antimicrobial peptide piscidin 1 was studied in magnetically aligned phospholipid bilayers by oriented-sample solid-state NMR spectroscopy. 31P NMR and double-resonance 1H/15N NMR experiments performed between 25°C and 61°C enabled the lipid headgroups as well as the peptide amide sites to be monitored over a range of temperatures. The α-helical peptide dramatically affects the phase behavior and structure of anionic bilayers but not those of zwitterionic bilayers. Piscidin 1 stabilizes anionic bilayers, which remain well aligned up to 61°C when piscidin 1 is on the membrane surface. Two-dimensional separated-local-field experiments show that the tilt angle of the peptide is 80 ± 5°, in agreement with previous results on mechanically aligned bilayers. The peptide undergoes fast rotational diffusion about the bilayer normal under these conditions, and these studies demonstrate that magnetically aligned bilayers are well suited for structural studies of amphipathic peptides.  相似文献   

11.
Overexpression of inducible nitric oxide synthase causes the production of high levels of nitric oxide, which, under pathological conditions, leads to immunosuppression and tissue damage. The results recently obtained using peptide nucleic acids, rather than traditional oligonucleotides as antigen and antisense molecules, prompted us to test their efficacy in the regulation of nitric oxide production, thereby overcoming the obstacle of cellular internalization. The cellular permeability of four inducible nitric oxide synthase antisense peptide nucleic acids of different lengths was evaluated. These peptide nucleic acids were covalently linked to a hydrophobic peptide moiety to increase internalization and to a tyrosine to allow selective 125I radiolabelling. Internalization experiments showed a 3-25-fold increase in the membrane permeability of the modified peptide nucleic acids with respect to controls. Inducible nitric oxide synthase inhibition experiments on intact stimulated macrophages RAW 264.7 after passive permeation of the two antisense peptide nucleic acids 3 and 4 demonstrated a significant decrease (43-44%) in protein enzymatic activity with respect to the controls. These data offer a basis for developing a good alternative to conventional drugs directed against inducible nitric oxide synthase overexpression.  相似文献   

12.
Labeling with (18)O is currently one of the most commonly used methods for incorporating a stable isotopic label into samples for comparative proteomic studies. In this approach, isotopic labeling involves the enzymatic digestion, typically performed with trypsin, of a protein population in (18)O-water, which incorporates the stable isotope into the C termini of the newly formed peptides. Although trypsin is often used to facilitate isotopic incorporation after digestion, it is typically overlooked that this same mechanism can lead to isotopic loss even under conditions such as low pH where it is assumed that trypsin is inactive. To examine the role that trypsin plays in isotopic loss, several experiments were performed on the rate of delabeling under conditions relevant to multidimensional proteomic experiments. Results from these studies demonstrate that enzyme-facilitated exchange of (18)O in the peptide with (16)O in the aqueous solvent was the major process by which the label is removed from the peptides, even under conditions of low pH and temperature where trypsin is thought to be inactive. This study brings the rapid, tryptic-facilitated exchange to the attention of laboratories using this scheme to prevent inaccuracies in quantitative labeling due to loss of the isotopic label.  相似文献   

13.
To understand the molecular mechanisms of amphiphilic membrane-active peptides, one needs to study their interactions with lipid bilayers under ambient conditions. However, it is difficult to control the pH of the sample in biophysical experiments that make use of mechanically aligned multilamellar membrane stacks on solid supports. HPLC-purified peptides tend to be acidic and can change the pH in the sample significantly. Here, we have systematically studied the influence of pH on the lipid interactions of the antimicrobial peptide PGLa embedded in oriented DMPC/DMPG bilayers. Using solid-state NMR (31P, 2H, 19F), both the lipid and peptide components were characterized independently, though in the same oriented samples under typical conditions of maximum hydration. The observed changes in lipid polymorphism were supported by DSC on multilamellar liposome suspensions. On this basis, we can present an optimized sample preparation protocol and discuss the challenges of performing solid-state NMR experiments under controlled pH. DMPC/DMPG bilayers show a significant up-field shift and broadening of the main lipid phase transition temperature when lowering the pH from 10.0 to 2.6. Both, strongly acidic and basic pH, cause a significant degree of lipid hydrolysis, which is exacerbated by the presence of PGLa. The characteristic re-alignment of PGLa from a surface-bound to a tilted state is not affected between pH of 7 to 4 in fluid bilayers. On the other hand, in gel-phase bilayers the peptide remains isotropically mobile under acidic conditions, displays various co-existing orientational states at pH 7, and adopts an unknown structural state at basic pH.  相似文献   

14.
15.
A conformational analysis of the fragment 110–121 of VP3 coating protein of the hepatitis A virus was carried out using circular dichroism spectroscopy and computational studies. The latter studies indicate the tendency of the peptide to adopt hairpin-type structures. Circular dichroism experiments indicate that, in spite of the fact that the isolated peptide exhibits no structure under different experimental conditions, negatively charged liposomes induce a secondary structure that agrees with the results of the computational study.  相似文献   

16.
Peptides that induce apoptosis have potential as anticancer therapeutics. The design of safe, effective cancer therapeutic peptides requires characterization of the physical and chemical properties that influence activation of cell death in neoplastic cells. NTR365 is a synthetic pro-apoptotic peptide with an amino acid sequence derived from the death domain of p75(NTR). These studies were initiated to identify a potential mechanism for the apoptotic activity of NTR365 identified by Rabizadeh et al. We examined the interactions of this synthetic pro-apoptotic peptide with phospholipid vesicles. Fluorescence experiments demonstrate that the peptide induces leakage from large unilamellar vesicles. Leakage activity is transient and dependent on the presence of anionic lipid in the vesicles. Circular dichroism studies show that the NTR365 adopts a different conformation and may have altered vesicle affinity under conditions conducive to leakage. The active conformation of NTR365 differs from that of the NMR derived conformation. A related peptide with a single substitution is not apoptotically active, does not form a helical structure in the presence of vesicles and does not induce appreciable vesicle leakage under the same conditions as NTR365. These studies suggest that the demonstrated apoptotic activity of a closely related NTR364 peptide is linked to disruption of a membrane barrier and to the ability of the peptide to form a helical structure.  相似文献   

17.
Summary A conformational analysis of the fragment 110–121 of VP3 coating protein of the hepatitis A virus was carried out using circular dichroism spectroscopy and computational studies. The latter studies indicate the tendency of the peptide to adopt hairpin-type structures. Circular dichroism experiments indicate that, in spite of the fact that the isolated peptide exhibits no structure under different experimental conditions, negatively charged liposomes induce a secondary structure that agrees with the results of the computational study.  相似文献   

18.
19.
Sample preparation prior to analysis by liquid chromatography electrospray ionization mass spectrometry (LC–ESI–MS) usually involves the storage of frozen peptide samples in an acidic environment for variable time periods. Questions arose in our laboratory regarding the stability of peptides in acid under medium- to long-term storage. Thus, a 10-month longitudinal study was designed to assess the effect on storage of tryptic peptides at −20 and −80 °C under acidic conditions. Our conclusion and proposal from this evaluation is that the optimal storage conditions of peptide samples in acid for proteomic experiments is at −80 °C and, ideally, as separate aliquots.  相似文献   

20.
The dihydropyridine receptor purified from rabbit skeletal muscle yields in the presence of dithiothreitol and sodium dodecyl sulfate on polyacrylamide gels bands of apparent molecular mass 165 +/- 5, 130 +/- 5, 55 +/- 3, 32 +/- 2 and 28 +/- 1 kDa (chi +/- SEM, n = 12). Under nonreducing conditions, the 130 kDa and 28-kDa peptides migrate as a single peptide of 165 kDa. These peptides were separated on a HPLC size-exclusion column. The specific absorption coefficients of the isolated peptides were determined. From these a stoichiometry of 1:1.7 +/- 0.2:1.4 +/- 0.3 (chi +/- SEM of 12 experiments with three different preparations) was calculated for the 165-kDa, 55-kDa and 32-kDa peptides. The relative amount of the 130/28-kDa peptide varied with different preparations. Tryptic, chymotryptic and V-8 protease peptides of the isolated proteins suggested that the 130/28-kDa peptide was not related to the 165-kDa peptide. The dihydropyridine photoaffinity analog (+/-)-azidopine was specifically incorporated only into the 165-kDa peptide with an efficiency of about 2.4%. The azido analog of desmethoxyverapamil, LU 49888, was specifically incorporated into the same peptide with an efficiency of 1.5%. These results suggest that only the 165-kDa peptide contains the regulatory sites detected so far in the voltage-operated L-type calcium channel. They suggest further that the 130/28-kDa peptide, which migrates as a 165-kDa peptide under nonreducing conditions, does not contain high-affinity binding sites for the calcium channel blockers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号