首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The binding of the Bacillus anthracis protective antigen (PA) to the host cell receptor is the first step toward the formation of the anthrax toxin, a tripartite set of proteins that include the enzymatic moieties edema factor (EF), and lethal factor (LF). PA is cleaved by a furin‐like protease on the cell surface followed by the formation of a donut‐shaped heptameric prepore. The prepore undergoes a major structural transition at acidic pH that results in the formation of a membrane spanning pore, an event which is dictated by interactions with the receptor and necessary for entry of EF and LF into the cell. We provide direct evidence using 1‐dimensional 13C‐edited 1H NMR that low pH induces dissociation of the Von‐Willebrand factor A domain of the receptor capillary morphogenesis protein 2 (CMG2) from the prepore, but not the monomeric full length PA. Receptor dissociation is also observed using a carbon‐13 labeled, 2‐fluorohistidine labeled CMG2, consistent with studies showing that protonation of His‐121 in CMG2 is not a mechanism for receptor release. Dissociation is likely caused by the structural transition upon formation of a pore from the prepore state rather than protonation of residues at the receptor PA or prepore interface.  相似文献   

2.
The protective antigen (PA) moiety of anthrax toxin binds to cellular receptors and mediates entry of the two enzymatic moieties of the toxin into the cytosol. Two PA receptors, anthrax toxin receptor (ATR)/tumor endothelial marker 8 (TEM8) and capillary morphogenesis protein 2 (CMG2), have been identified. We expressed and purified the von Willebrand A (VWA) domain of CMG2 and examined its interactions with monomeric and heptameric forms of PA. Monomeric PA bound a stoichiometric equivalent of CMG2, whereas the heptameric prepore form bound 7 eq. The Kd of the VWA domain-PA interaction is 170 pm when liganded by Mg2+, reflecting a 1000-fold tighter interaction than most VWA domains with their endogenous ligands. The dissociation rate constant is extremely slow, indicating a 30-h lifetime for the CMG2.PA monomer complex. CMG2 metal ion-dependent adhesion site (MIDAS) was studied kinetically and thermodynamically. The association rate constant (approximately 10(5) m(-1) s(-1)) is virtually identical in the presence or absence of Mg2+ or Ca2+ , but the dissociation rate of metal ion liganded complex is up to 4 orders of magnitude slower than metal ion free complex. Residual affinity (Kd approximately 960 nm) in the absence of divalent metal ions allowed the free energy for the contribution of the metal ion to be calculated as 5 kcal mol(-1), demonstrating that the metal ion-dependent adhesion site is directly coordinated by CMG2 and PA in the binding interface. The high affinity of the VWA domain for PA supports its potency in neutralizing anthrax toxin, demonstrating its potential utility as a novel therapeutic for anthrax.  相似文献   

3.
The secreted protein toxin produced by Bacillus anthracis contributes to virulence of this pathogen and can cause many of the symptoms seen during an anthrax infection, including shock and sudden death. The cell-binding component of anthrax toxin, protective antigen, mediates entry of the toxin into cells by first binding directly to the extracellular integrin-like inserted (I) domain of the cellular anthrax toxin receptor, ATR. Here we report that this interaction requires an intact metal ion-dependent adhesion site (MIDAS) in the receptor as well as the presence of specific divalent cations. Also, we demonstrate that the toxin-receptor interaction is critically dependent on the Asp-683 carboxylate group of protective antigen, which projects from the receptor binding surface. We propose that this carboxylate group completes the coordination of the MIDAS metal of ATR, mimicking integrin-ligand interactions.  相似文献   

4.
Interactions between anthrax toxin receptors and protective antigen   总被引:8,自引:0,他引:8  
Since the anthrax mail attacks of 2001, much has been learned about the interactions between anthrax toxin and its receptors. Two distinct cellular receptors for anthrax toxin have been identified and are designated capillary morphogenesis protein 2 (CMG2) and anthrax toxin receptor/tumor endothelial marker 8 (ATR/TEM8). The molecular details of the toxin-receptor interactions have been revealed through crystallographic, biochemical and genetic studies. In addition, a novel pathway by which anthrax toxin enters cells is starting to be uncovered.  相似文献   

5.
Bacillus anthracis, a spore-forming infectious bacterium, produces a toxin consisting of three proteins: lethal factor (LF), edema factor (EF), and protective antigen (PA). LF and EF possess intracellular enzymatic functions, the net effect of which is to severely compromise host innate immunity. During an anthrax infection PA plays the critical role of facilitating entry of both EF and LF toxins into host cell cytoplasm. Crystal structures of all three of the anthrax toxins have been determined, as well as the crystal structure of the (human) von Willebrand factor A (integrin VWA/I domain) -- an anthrax toxin receptor. A theoretical structure of the complex between VWA/I and PA has also been reported. Here we report on the results of 1,000 psec molecular dynamics (MD) simulations carried out on complexes between the Anthrax Protective Antigen Domain 4 (PA-D4) and the von Willebrand Factor A (VWA/I). MD simulations (using Insight II software) were carried out for complexes containing wild-type (WT) PA-D4, as well as for complexes containing three different mutants of PA-D4, one containing three substitutions in the PA-D4 "small loop" (residues 679-693) (D683A/L685E/Y688C), one containing a single substitution at a key site at the PA-D4 -- receptor interface (K679A) and another containing a deletion of eleven residues at the C-terminus of PA (Delta724-735). All three sets of PA mutations have been shown experimentally to result in serious deficiencies in PA function. Our MD results are consistent with these findings. Major disruptions in interactions were observed between the mutant PA-D4 domains and the anthrax receptor during the MD simulations. Many secondary structural features in PA-D4 are also severely compromised when VWA complexes with mutant variants of PA-D4 are subjected to MD simulations. These MD simulation results clearly indicate the importance of the mutated PA-D4 residues in both the "small loop" and at the carboxyl terminus in maintaining a PA conformation that is capable of effective interaction with the anthrax toxin receptor.  相似文献   

6.
Anthrax toxin consists of three components: the enzymatic moieties edema factor (EF) and the lethal factor (LF) and the receptor-binding moiety protective antigen (PA). These toxin components are released from Bacillus anthracis as unassociated proteins and form complexes on the surface of host cells after proteolytic processing of PA into PA20 and PA63. The sequential order of PA heptamerization and ligand binding, as well as the exact mechanism of anthrax toxin entry into cells, are still unclear. In the present study, we provide direct evidence that PA63 monomers are sufficient for binding to the full length LF or its LF-N domain, though with lower affinity with the latter. Therefore, PA oligomerization is not a necessary condition for LF/PA complex formation. In addition, we demonstrated that the PA20 directly interacts with the LF-N domain. Our data points to an alternative process of self-assembly of anthrax toxin on the surface of host cells.  相似文献   

7.
Anthrax toxin consists of three separate proteins produced by Bacillus anthracis: protective antigen (PA), lethal factor (LF), and edema factor (EF). Previous work showed that the process by which these proteins damage eukaryotic cells begins with binding of PA (83 kDa) to cell surface receptors. PA is then cleaved by a cell surface protease so as to expose a high-affinity binding site for LF or EF on the COOH-terminal, receptor-bound, 63-kilodalton fragment. In this report we more closely define a region of PA involved in receptor binding. The gene encoding PA was mutagenized so as to delete 3, 5, 7, 12, or 14 amino acids from the carboxyl terminus of the protein, and the truncated PA variants were purified from Bacillus subtilis or Escherichia coli. Deletion of 3, 5, or 7 amino acids reduced the binding of PA to cells and the subsequent toxicity of the PA.LF complex to J774A.1 cells and also the ability to cause EF binding to cells. Deletion of 12 or 14 amino acids completely eliminated all these activities. These results show that the carboxy terminus comprises or is part of the receptor-binding domain of PA.  相似文献   

8.
The informational spectrum method (ISM) is a virtual spectroscopy method for the fast analysis of potential protein-protein relationships. By applying the ISM approach to the GeneBank protein database the vascular proteins EMILIN1 (Elastin Microfibril Interface Located ProteIN), EMILIN2, MMN1, and MMN2 were identified as additional anthrax PA antigen interacting molecules. This virtual molecular interaction was formally proven by solid phase assays using recombinant proteins. The interaction is independent of the presence of divalent cations and does not involve PA aspartic residue at 683, a critical residue in receptor binding. In fact, the D683A point mutation fully prevented the cell intoxication ability of PA in the presence of Lethal Factor, but it was fully ineffective on the binding of mutated PA to EMILIN1 and EMILIN2. The ISM approach also led to the identification of the potential interaction sites between PA and EMILINs. A PA mutant with a deletion at residue D425 and solid phase protein-protein interaction studies as well as deletion mutant of EMILIN2 confirmed the hypothesized interaction site. Our findings imply that the PA-cell surface receptor interaction is not likely to provide the full explanation for the vascular lesions and prominent hemorrhages that follow Bacillus anthracis infection and spreading and call into play vascular associated proteins such as EMILINs as potential inhibitory proteins.  相似文献   

9.
The three protein components of anthrax toxin are nontoxic individually, but they form active holotoxin complexes upon assembly. The role of the protective antigen (PA) component of the toxin is to deliver two other enzyme components, lethal factor and edema factor, across the plasma membrane and into the cytoplasm of target cells. PA is produced as a proprotein, which must be proteolytically activated; generally, cell surface activation is mediated by a furin family protease. Activated PA can then assemble into one of two noninterconverting oligomers, a homoheptamer and a homooctamer, which have unique properties. Herein we describe molecular determinants that influence the stoichiometry of PA in toxin complexes. By tethering PA domain 4 (D4) to domain 2 with two different-length cross-links, we can control the relative proportions of PA heptamers and octamers. The longer cross-link favors octamer formation, whereas the shorter one favors formation of the heptamer. X-ray crystal structures of PA (up to 1.45 Å resolution), including these cross-linked PA constructs, reveal that a hinge-like movement of D4 correlates with the relative preference for each oligomeric architecture. Furthermore, we report the conformation of the flexible loop containing the furin cleavage site and show that, for efficient processing, the furin site cannot be moved ~ 5 or 6 residues within the loop. We propose that there are different orientations of D4 relative to the main body of PA that favor the formation of either the heptamer or the octamer.  相似文献   

10.
11.
Protective antigen (PA), a component of anthrax toxin, binds receptors on mammalian cells and is activated by a cell surface protease. The resulting active fragment, PA(63), forms ring-shaped heptamers, binds the enzymic moieties of the toxin, and translocates them to the cytosol. Of the four crystallographic domains of PA, domain 1 has been implicated in binding the enzymic moieties; domain 2 is involved in membrane insertion and oligomerization; and domain 4 binds receptor. To determine the function of domain 3, we developed a screen that allowed us to isolate random mutations that cause defects in the activity of PA. We identified several mutations in domain 3 that affect monomer-monomer interactions in the PA(63) heptamer, indicating that this may be the primary function of this domain.  相似文献   

12.
Acidic pH plays an important role in the membrane insertion of protective antigen (PA) of anthrax toxin leading to the translocation of the catalytic moieties. The structural transitions occurring in PA as a consequence of change in pH were investigated by fluorescence and circular dichroism measurements. Our studies revealed the presence of two intermediates on-pathway of acid induced unfolding; one at pH 2.0 and other at pH 4-5. Intrinsic fluorescence measurements of these intermediates showed a red shift in the wavelength of emission maximum with a concomitant decrease in fluorescence intensity, indicative of the exposure of tryptophan residues to the bulk solvent. Furthermore, no significant change was seen in the secondary structure of PA at a pH of 2.0, as indicated by far UV-CD spectra. The low pH intermediate of PA was characterized using the hydrophobic dye, 8-anilino-1-naphthalenesulfonate, and was found to have properties similar to those of a molten globule state.  相似文献   

13.
An asporogenic recombinant strain Bacillus anthracis 55ΔTPA-1(Spo) producing anthrax protective antigen (PA) was obtained. The strain contains structural gene pag as a part of a hybrid replicon pUB110PA-1 and lacks determinants encoding the synthesis of main factors of anthrax pathogenicity. The level of PA production by asporogenic genetically engineered strain is approximately 80 μg/ml that is 4–5 times more than the values determined for vaccine strains B. anthracis STI-1 and B. anthracis 55. The strain preserves asporogenicity and ability to replicate the hybrid plasmid after in vitro passages. Biologically active PA was isolated from the constructed strain B. anthracis 55ΔTPA-1(Spo). Double immunization of rabbits with 50 μg of the purified recombinant product provides their 100% protection from infection with 50 LD50 of a highly virulent anthrax strain.  相似文献   

14.
PA63, a proteolytically activated 63-kDa form of anthrax protective antigen (PA), forms heptameric oligomers and has the ability to bind and translocate the catalytic moieties, lethal factor (LF), and edema factor (EF) into the cytosol of mammalian cells. Acidic pH triggers oligomerization and membrane insertion by PA63. A disordered amphipathic loop in domain II of PA (2beta2-2beta3 loop) is involved in membrane insertion by PA63. Because conditions required for membrane insertion coincide with those for oligomerization of PA63 in mammalian cells, residues constituting the 2beta2-2beta3 loop were replaced with the residues of the amphipathic membrane-inserting loop of its homologue iota-b toxin secreted by Clostridium perfringens. It was hypothesized that such a molecule might assemble into hetero-heptameric structures with wild-type PA ultimately leading to the inhibition of cellular intoxication. The mutation blocked the ability of PA to mediate membrane insertion and translocation of LF into the cytosol but had no effect on proteolytic activation, oligomerization, or binding LF. Moreover, an equimolar mixture of purified mutant PA (PA-I) and wild-type PA showed complete inhibition of toxin activity both in vitro on J774A.1 cells and in vivo in Fischer 344 rats thereby exhibiting a dominant negative effect. In addition, PA-I inhibited the channel-forming ability of wild-type PA on the plasma membrane of CHO-K1 cells thereby indicating protein-protein interactions between the two proteins resulting in the formation of mixed oligomers with defective functional activity. Our findings provide a basis for understanding the mechanism of translocation and exploring the possibility of the use of this PA molecule as a therapeutic agent against anthrax toxin action in vivo.  相似文献   

15.
The anthrax toxin complex is primarily responsible for most of the symptoms of anthrax. This complex is composed of three proteins, anthrax protective antigen, anthrax edema factor, and anthrax lethal factor. The three proteins act in binary combination of protective antigen plus edema factor (edema toxin) and protective antigen plus lethal factor (lethal toxin) that paralyze the host defenses and eventually kill the host. Both edema factor and lethal factor are intracellularly acting proteins that require protective antigen for their delivery into the host cell. In this study, we show that deletion of certain residues of protective antigen results in variants of protective antigen that inhibit the action of anthrax toxin both in vitro and in vivo. These mutants protected mice against both lethal toxin and edema toxin challenge, even when injected at a 1:8 ratio relative to the wild-type protein. Thus, these mutant proteins are promising candidates that may be used to neutralize the action of anthrax toxin.  相似文献   

16.
Protective antigen (PA), the receptor-binding component of anthrax toxin, heptamerizes and inserts into the endosomal membrane at acidic pH, forming a pore that mediates translocation of the enzymic components of the toxin to the cytosol. When the heptameric pre-insertion form of PA (the prepore) is acidified in solution, it rapidly loses the ability to insert into membranes. To maximize insertion into model membranes, we examined two ways to bind the protein to large unilamellar vesicles (LUV). One involved attaching a His tag to the von Willebrand factor A domain of one of the PA receptors, ANTXR2, and using this protein as a bridge to bind PA to LUV containing a nickel-chelating lipid. The other involved using a His tag fused to the C terminus of PA to bind the protein directly to LUV containing the same lipid. Both ways enhanced pore formation at pH 5.0 strongly and about equally, as measured by the release of K+. Controls showed that pore formation in this system faithfully reproduced that in vivo. We also showed that binding unmodified ANTXR2 von Willebrand factor A to the prepore in solution enhanced its pore forming activity by slowing its inactivation at acidic pH. These findings indicate that an important role of PA receptors is to promote partitioning of PA into the bilayer by maintaining the prepore close to the target membrane and presumably in the optimal orientation as it undergoes the acidic pH-dependent conformational transition to the pore.  相似文献   

17.
Proteolytic activation of receptor-bound protective antigen (PA) at the cell surface removes PA20, allowing PA63 to oligomerize and form a ring-shaped heptameric prepore. The prepore binds edema factor (EF) and lethal factor (LF) and, after endocytosis and trafficking of the complex to an acidic, vesicular compartment, it undergoes membrane insertion and mediates translocation of EF/LF to the cytosol. Data from membrane conductance experiments support a model of membrane insertion in which the 2β2–2β3 loop of PA, which is disordered in native PA and the prepore, forms a 14-stranded transmembrane β-barrel. Recent studies on the process of prepore-to-pore conversion and our current understanding of the mechanism of pH-dependent translocation will be described.  相似文献   

18.
Immunofluorescence and other methods have been used to probe the self-assembly and internalization of the binary toxin, anthrax lethal toxin (LeTx), in primary murine macrophages. Proteolytic activation of protective antigen (PA; 83 kDa, the B moiety of the toxin) by furin was the rate-limiting step in internalization of LeTx and promoted clearance of PA from the cell surface. A furin-resistant form of PA remained at the cell surface for at least 90 min. Oligomerization of receptor-bound PA63, the 63 kDa active fragment of PA, was manifested by its conversion to a pronase-resistant state, characteristic of the heptameric prepore form in solution. That oligomerization of PA63 triggers toxin internalization is supported by the observation that PA20, the complementary 20 kDa fragment of PA, inhibited clearance of nicked PA. The PA63 prepore, with or without lethal factor (LF), cleared slowly from the cell surface. These studies show that proteolytic cleavage of PA, in addition to permitting oligomerization and LF binding, also promotes internalization of the protein. The relatively long period of activation and internalization of PA at the cell surface may reflect adaptation of this binary toxin that maximizes self-assembly.  相似文献   

19.
Protective antigen (PA), the receptor-binding moiety of anthrax toxin, contains two calcium atoms buried within domain 1(') (amino acid residues 168-258). We showed that these ions are stably bound and exchange with free 45Ca(2+) only slowly (t(1/2) approximately 4.0 h). Dissociation is the rate-limiting step. PA(63), the heptameric prepore form of PA, showed a slightly higher exchange rate than the monomeric intact protein. Exchange by this form was retarded by binding of the enzymatic moieties of the toxin, but was unaffected by reducing the pH to 5.0, a condition known to trigger conversion of the prepore to the pore form. These results are consistent with the hypothesis that bound Ca(2+) within PA plays primarily a structural role, maintaining domain 1(') in a conformation that allows PA(63) to oligomerize and bind the enzymatic moieties of the toxin.  相似文献   

20.
A panel of variants with alanine substitutions in the small loop of anthrax toxin protective antigen domain 4 was created to determine individual amino acid residues critical for interactions with the cellular receptor and with a neutralizing monoclonal antibody, 14B7. Substituted protective antigen proteins were analyzed by cellular cytotoxicity assays, and their interactions with antibody were measured by plasmon surface resonance and analytical ultracentrifugation. Residue Asp683 was the most critical for cell binding and toxicity, causing an approximately 1000-fold reduction in toxicity, but was not a large factor for interactions with 14B7. Substitutions in residues Tyr681, Asn682, and Pro686 also reduced toxicity significantly, by 10-100-fold. Of these, only Asn682 and Pro686 were also critical for interactions with 14B7. However, residues Lys684, Leu685, Leu687, and Tyr688 were critical for 14B7 binding without greatly affecting toxicity. The K684A and L685A variants exhibited wild type levels of toxicity in cell culture assays; the L687A and Y688A variants were reduced only 1.5- and 5-fold, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号