共查询到20条相似文献,搜索用时 0 毫秒
1.
《Free radical research》2013,47(4):554-564
AbstractEvidence for the association of DNA damage with cardiovascular disease has been obtained from in vitro cell culture models, experimental cardiovascular disease and analysis of samples obtained from humans with disease. There is general acceptance that several factors associated with the risk of developing cardiovascular disease cause oxidative damage to DNA in cell culture models with both nuclear and mitochondrial DNA as targets. Moreover, evidence obtained over the past 10 years points to a possible mechanistic role for DNA damage in experimental atherosclerosis culminating in recent studies challenging the assumption that DNA damage is merely a biomarker of the disease process. This kind of mechanistic insight provides a renewed impetus for further studies in this area. 相似文献
2.
3.
4.
Oxidative DNA damage in mild cognitive impairment and late-stage Alzheimer's disease 总被引:6,自引:0,他引:6
Increasing evidence supports a role for oxidative DNA damage in aging and several neurodegenerative diseases including Alzheimer's disease (AD). Attack of DNA by reactive oxygen species (ROS), particularly hydroxyl radicals, can lead to strand breaks, DNA–DNA and DNA–protein cross-linking, and formation of at least 20 modified bases adducts. In addition, α,β-unsaturated aldehydic by-products of lipid peroxidation including 4-hydroxynonenal and acrolein can interact with DNA bases leading to the formation of bulky exocyclic adducts. Modification of DNA bases by direct interaction with ROS or aldehydes can lead to mutations and altered protein synthesis. Several studies of DNA base adducts in late-stage AD (LAD) brain show elevations of 8-hydroxyguanine (8-OHG), 8-hydroxyadenine (8-OHA), 5-hydroxycytosine (5-OHC), and 5-hydroxyuracil, a chemical degradation product of cytosine, in both nuclear and mitochondrial DNA (mtDNA) isolated from vulnerable regions of LAD brain compared to age-matched normal control subjects. Previous studies also show elevations of acrolein/guanine adducts in the hippocampus of LAD subjects compared to age-matched controls. In addition, studies of base excision repair show a decline in repair of 8-OHG in vulnerable regions of LAD brain. Our recent studies show elevated 8-OHG, 8-OHA, and 5,6-diamino-5-formamidopyrimidine in both nuclear and mtDNA isolated from vulnerable brain regions in amnestic mild cognitive impairment, the earliest clinical manifestation of AD, suggesting that oxidative DNA damage is an early event in AD and is not merely a secondary phenomenon. 相似文献
5.
Martinez GR Loureiro AP Marques SA Miyamoto S Yamaguchi LF Onuki J Almeida EA Garcia CC Barbosa LF Medeiros MH Di Mascio P 《Mutation research》2003,544(2-3):115-127
Modification of cellular DNA upon exposure to reactive oxygen and nitrogen species is the likely initial event involved in the induction of the mutagenic and lethal effects of various oxidative stress agents. Evidence has been accumulated for the significant implication of singlet oxygen (1O(2)), generated as the result of UVA activation of endogenous photosensitizers as porphyrins and flavins. 7,8-Dihydro-8-oxo-2'-deoxyguanosine (8-oxodGuo) has been shown to be the exclusive product of the reaction of 1O(2) with the guanine moiety of cellular DNA, in contrast to the hydroxyl radical, which reacts almost indifferently with all the nucleobases and the sugar moiety of DNA. Furthermore 8-oxodGuo is also produced by other oxidants and can be used as an ubiquitous biomarker of DNA oxidation but can not be a specific marker of any particular species. The role of DNA etheno adducts in mutagenic and carcinogenic processes triggered by known occupational and environmental carcinogens has also been studied. Much interest in etheno adducts resulted from the detection of increased levels of 1,N(6)-etheno-2'-deoxyadenosine and 3,N(4)-etheno-2'-deoxycytidine in DNA from human, rat and mouse tissues under pathophysiological conditions associated with oxidative stress. A method involving on-line HPLC with electrospray tandem mass spectrometry detection has been developed for the analysis of 1,N(2)-etheno-2'-deoxyguanosine (1,N(2)-epsilondGuo) in DNA. This methodology permits direct quantification of 20 fmol (7.4 adducts/10(8) dGuo) of the etheno adduct from approximately 350 microg of crude DNA hydrolysates. This method provides the first evidence of the occurrence of 1,N(2)-epsilondGuo as a basal endogenous lesion and may be utilized to better assess the biological consequences of etheno DNA damage under normal and pathological conditions. This work addresses the importance of isotope labeling associated with mass spectrometry technique for biomolecule damage studies. 相似文献
6.
Oxidative DNA damage processing in nuclear and mitochondrial DNA 总被引:5,自引:0,他引:5
Living organisms are constantly exposed to oxidative stress from environmental agents and from endogenous metabolic processes. The resulting oxidative modifications occur in proteins, lipids and DNA. Since proteins and lipids are readily degraded and resynthesized, the most significant consequence of the oxidative stress is thought to be the DNA modifications, which can become permanent via the formation of mutations and other types of genomic instability. Many different DNA base changes have been seen following some form of oxidative stress, and these lesions are widely considered as instigators for the development of cancer and are also implicated in the process of aging. Several studies have documented that oxidative DNA lesions accumulate with aging, and it appears that the major site of this accumulation is mitochondrial DNA rather than nuclear DNA. The DNA repair mechanisms involved in the removal of oxidative DNA lesions are much more complex than previously considered. They involve base excision repair (BER) pathways and nucleotide excision repair (NER) pathways, and there is currently a great deal of interest in clarification of the pathways and their interactions. We have used a number of different approaches to explore the mechanism of the repair processes, to examine the repair of different types of oxidative lesions and to measure different steps of the repair processes. Furthermore, we can measure the DNA damage processing in the nuclear DNA and separately, in the mitochondrial DNA. Contrary to widely held notions, mitochondria have efficient DNA repair of oxidative DNA damage. 相似文献
7.
Gao D Wei C Chen L Huang J Yang S Diehl AM 《American journal of physiology. Gastrointestinal and liver physiology》2004,287(5):G1070-G1077
Mitochondrial generation of reactive oxygen species (ROS) is increased in mice with fatty livers induced by genetic obesity, chronic consumption of ethanol, or methionine/choline-deficient diets. Both nuclear and mitochondrial (mt) DNA are targets for ROS-induced damage and accumulate hydroxylated bases, such as 8-hydroxy-2'-deoxyguanosine (8-oxoG) and base substitution of adenine with 8-oxoG (A*8-oxoG), that introduce mutations that promote cancer as well as cell death. The mammalian homolog of the bacterial DNA mismatch repair enzyme MutY (MYH) removes A*8-oxoG from nuclear and mtDNA, reduces 8-oxoG accumulation, and restores genomic stability after ROS exposure. Cumulative damage to mtDNA occurs as fatty liver disease progresses. Therefore, differences in hepatic MYH activity may influence the severity of fatty liver disease. To evaluate this hypothesis, we compared mtH2O2 production, MYH expression, oxidative DNA damage, and hepatocyte death in healthy mice and different mouse models of fatty liver disease. The results show that diverse causes of steatohepatitis increase mtROS production, limit repair of mtDNA, and oxidatively damage DNA. However, there are important differences in the DNA repair response to oxidant stress among mouse models of fatty liver disease. Independent of the degree of mtROS generation, models with the least MYH exhibit the greatest accumulation of 8-oxoG and the most hepatocyte death. These findings raise the intriguing possibility that inherited or acquired differences in DNA repair enzyme activity may underlie some of the interindividual differences in fatty liver disease outcomes. 相似文献
8.
9.
Oxidative damage to DNA in mammalian chromatin. 总被引:18,自引:0,他引:18
M Dizdaroglu 《Mutation research》1992,275(3-6):331-342
Efforts have been made to characterize and measure DNA modifications produced in mammalian chromatin in vitro and in vivo by a variety of free radical-producing systems. Methodologies incorporating the technique of gas chromatography/mass spectrometry have been used for this purpose. A number of products from all four DNA bases and several DNA-protein cross-links in isolated chromatin have been identified and quantitated. Product formation has been shown to depend on the free radical-producing system and the presence or absence of oxygen. A similar pattern of DNA modifications has also been observed in chromatin of cultured mammalian cells treated with ionizing radiation or H2O2 and in chromatin of organs of animals treated with carcinogenic metal salts. 相似文献
10.
Exposure of pyrimidines of DNA to ionizing radiation under aerobic conditions or oxidizing agents results in attack on the 5,6 double bond of the pyrimidine ring or on the exocyclic 5-methyl group. The primary product of oxidation of the 5,6 double bond of thymine is thymine glycol, while oxidation of the 5-methyl group yields 5-hydroxymethyluracil. Oxidation of the 5,6 double bond of cytosine yields cytosine glycol, which decomposes to 5-hydroxycytosine, 5-hydroxyuracil and uracil glycol, all of which are repaired in DNA by Escherichia coli endonuclease III. We now describe the products of oxidation of 5-methylcytosine in DNA. Poly(dG-[3H]dmC) was gamma-irradiated or oxidized with hydrogen peroxide in the presence of Fe3+ and ascorbic acid. The oxidized co-polymer was incubated with endonuclease III or 5-hydroxymethyluracil-DNA glycosylase, to determine whether repairable products were formed, or digested to 2'-deoxyribonucleosides, to determine the total complement of oxidative products. Oxidative attack on 5-methylcytosine resulted primarily in formation of thymine glycol. The radiogenic yield of thymine glycol in poly(dG-dmC) was the same as that in poly(dA-dT), demonstrating that 5-methylcytosine residues in DNA were equally susceptible to radiation-induced oxidation as were thymine residues. 相似文献
11.
Oxidative stress-induced DNA damage by particulate air pollution 总被引:14,自引:0,他引:14
Exposure to ambient air particulate matter (PM) is associated with pulmonary and cardiovascular diseases and cancer. The mechanisms of PM-induced health effects are believed to involve inflammation and oxidative stress. The oxidative stress mediated by PM may arise from direct generation of reactive oxygen species from the surface of particles, soluble compounds such as transition metals or organic compounds, altered function of mitochondria or NADPH-oxidase, and activation of inflammatory cells capable of generating ROS and reactive nitrogen species. Resulting oxidative DNA damage may be implicated in cancer risk and may serve as marker for oxidative stress relevant for other ailments caused by particulate air pollution. There is overwhelming evidence from animal experimental models, cell culture experiments, and cell free systems that exposure to diesel exhaust and diesel exhaust particles causes oxidative DNA damage. Similarly, various preparations of ambient air PM induce oxidative DNA damage in in vitro systems, whereas in vivo studies are scarce. Studies with various model/surrogate particle preparations, such as carbon black, suggest that the surface area is the most important determinant of effect for ultrafine particles (diameter less than 100 nm), whereas chemical composition may be more important for larger particles. The knowledge concerning mechanisms of action of PM has prompted the use of markers of oxidative stress and DNA damage for human biomonitoring in relation to ambient air. By means of personal monitoring and biomarkers a few studies have attempted to characterize individual exposure, explore mechanisms and identify significant sources to size fractions of ambient air PM with respect to relevant biological effects. In these studies guanine oxidation in DNA has been correlated with exposure to PM(2.5) and ultrafine particles outdoor and indoor. Oxidative stress-induced DNA damage appears to an important mechanism of action of urban particulate air pollution. Related biomarkers and personal monitoring may be useful tools for risk characterization. 相似文献
12.
A series of naturally occurring isoquinoline alkaloids, besides their distribution in the environment and presence in certain food stuffs, have been detected in human tissues including particular regions of brain. An example is salsolinol (1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline) that not only induces neuronal cell death, but also causes DNA damage and genotoxicity. Tetrahydropapaveroline [THP; 6,7-dihydroxy-1-(3',4'-dihydroxybenzyl)-1,2,3,4-tetrahydroisoquinoline], a dopamine-derived tetrahydroisoquinoline alkaloid, has been reported to inhibit mitochondrial respiration and is considered to contribute to neurodegeneration implicated in Parkinson's disease. Since THP bears two catechol moieties, the compound may readily undergo redox cycling to produce reactive oxygen species (ROS) as well as toxic quinoids. In the present study, we have examined the capability of THP to cause oxidative DNA damage and cell death. Incubation of THP with phiX174 supercoiled DNA or calf thymus DNA in the presence of cupric ion caused substantial DNA damage as determined by strand scission or formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo), respectively. THP plus copper-induced DNA damage was ameliorated by some ROS scavengers/antioxidants and catalase. Treatment of C6 glioma cells with THP led to a concentration-dependent reduction in cell viability, which was prevented by the antioxidant N-acetyl-L-cysteine. When these cells were treated with 10microM THP, c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) were rapidly activated via phosphorylation, whereas activation of extracellular signal-regulated protein kinase (ERK) was inhibited. Furthermore, pretreatment with inhibitors of JNK and p38 MAPK rescued the glioma cells from THP-induced cytotoxicity, suggestive of the involvement of these kinases in THP-induced C6 glioma cell damage. 相似文献
13.
The present study aimed at assessing the role of histone H1 in activating macrophages. Histone H1, injected intraperitoneally at a dose of 1 mg/kg body weight as multiple regimens weekly, significantly increased the number of peritoneal macrophages post 21 days of injection. The oxidative and non-oxidative activation of peritoneal macrophages by histone H1 was assessed. For the assessment of oxidative activation the levels of superoxide radical and nitric oxide radical were assessed. The oxidative activation was evident from release of significantly high levels of superoxide and nitric oxide radicals liberated by macrophages of animals treated with histone H1 (P < 0.001) than in untreated animals. In addition, the higher activities of superoxide dismutase indicated protective effect of histone H1, to keep away the macrophages from noxious effects of superoxide. The catalase activity was decreased significantly in macrophages of histone H1 treated animals. The levels of reduced glutathione were significantly (P < 0.001) lowered in treated animals, whereas the levels of lipid peroxides generated were non-significant. The non-oxidative activation was assessed from the activities of lysosomal enzymes released and also from cytolysis of NO-insensitive L929 cells. The activities of lysosomal enzymes-acid phosphatase and beta-glucuronidase released were significantly high in treated animals than in untreated animals (P < 0.001). Histone H1 stimulated the cytolysis of macrophages in L929 cells than in untreated animals. These results suggest that histone H1 stimulates macrophages by oxidative and non-oxidative mechanisms, which favor its future therapeutic prospects. 相似文献
14.
15.
Oxidative damage of albumin in advanced liver disease 总被引:1,自引:0,他引:1
Oettl K Stadlbauer V Petter F Greilberger J Putz-Bankuti C Hallström S Lackner C Stauber RE 《Biochimica et biophysica acta》2008,1782(7-8):469-473
Albumin has a number of biological functions and the serum albumin level is related to prognosis in advanced liver disease. Oxidative stress is believed to play an important role in the pathogenesis of liver failure. The aim of the present study was to characterize oxidative modification of albumin in patients with various degrees of liver failure and to investigate implications for its binding function. Patients with liver cirrhosis (n=10), acute-on-chronic liver failure (n=8) and healthy controls (n=15) were included in the study. Three fractions of albumin were separated by HPLC according to the redox state of cysteine-34 and detected by fluorescence as well as UV absorption. Carbonyl groups were measured as a marker of oxidative modification in plasma proteins and, by western blotting, on albumin. Progressive oxidative modification of albumin was found with increasing severity of liver failure indicated by an increased content of carbonyl groups and oxidation of cysteine-34. Fluorescence properties of albumin were altered by oxidation and, in patients with acute-on-chronic liver failure, by high plasma levels of bilirubin. This alteration of albumin fluorescence by bilirubin provides evidence for a preferred binding of bilirubin to the fully reduced form of albumin. 相似文献
16.
17.
Emphasis is placed in the first part of this survey on mechanistic aspects of the formation of 8-oxo-7,8-dihydroguanine (8-oxoGua) as the result of exposure to z.rad;OH radical, one-electron oxidants and singlet oxygen (1O(2)) oxidation. It was found that 8-oxoGua, which is generated by either hydration of the guanine radical cation or .OH addition at C8 of the imidazole ring, is a preferential target for further reactions with 1O(2) and one-electron oxidants, including the highly oxidizing oxyl-type guanine radical. Interestingly, tandem base lesions that involve 8-oxoGua and a vicinal formylamine residue were found to be generated within DNA as the result of a single .OH radical hit. The likely mechanism of formation of the latter lesions involves the transient generation of 5-(6)-peroxy-6-(5)-hydroxy-5,6-dihydropyrimidyl radicals that may add to the C8 of a vicinal guanine base before undergoing rearrangement. Another major topic which is addressed deals with recent developments in the measurement of oxidative base damage to cellular DNA. This was mostly achieved using the accurate and highly specific HPLC method coupled with the tandem mass spectrometry detection technique. Interestingly, optimized conditions of DNA extraction and subsequent work-up allow the accurate measurement of 11 modified nucleosides and bases within cellular DNA upon exposure to oxidizing agents including UVA and ionizing radiations. Finally, recently available data on the substrate specificity of DNA repair enzymes belonging to the base excision and nucleotide excision pathways are briefly reviewed. For this purpose modified oligonucleotides in which cyclopurine, and cyclopyrimidine nucleosides were site-specifically inserted were synthesized. 相似文献
18.
19.
Chronic inflammation induced by liver fluke (Opisthorchis viverrini) infection is the major risk factor for cholangiocarcinoma (CCA) in Northeastern Thailand. Increased levels of proinflammatory cytokines and nuclear factor kappa B that control cyclooxygenase-2 and inducible nitric oxide activities, disturb the homeostasis of oxidants/anti-oxidants and DNA repair enzymes, all of which appear to be involved in O. viverrini-associated inflammatory processes and CCA. Consequently oxidative and nitrative stress-related cellular damage occurs due to the over production of reactive oxygen and nitrogen species in inflamed target cells. This is supported by the detection of high levels of oxidized DNA and DNA bases modified by lipid peroxidation products in both animal and human tissues affected by O. viverrini-infection. Treatment of opisthorchiasis patients with praziquantel, an anti- trematode drug was shown to reduce inflammation-mediated tissue damage and carcinogenesis. The principal mechanisms that govern the effects of inflammation and immunity in liver fluke-associated cholangiocarcinogenesis are reviewed. The validity of inflammation-related biomolecules and DNA damage products to serve as predictive biomarkers for disease risk evaluation and intervention is discussed. 相似文献
20.
《Free radical research》2013,47(5):346-356
AbstractOxidative response regulates many physiological response in human health, but if not properly regulated it could also lead to a number of deleterious effects. The importance of oxidative stress injury depends on the molecular target, the severity of the stress, and the mechanism by which the oxidative stress is imposed: it has been implicated in several diseases including cancer, neurodegenerative diseases, malaria, rheumatoid arthritis and cardiovascular and kidney disease. Most of the common diseases, such as hypertension, atherosclerosis, heart failure, and renal dysfunction, are associated with vascular functional and structural alterations including endothelial dysfunction, altered contractility, and vascular remodeling. Common to these processes is increased bioavailability of reactive oxygen species (ROS), decreased nitric oxide (NO) levels, and reduced antioxidant capacity. Oxidative processes are up-regulated also in patients with chronic renal failure (CRF) and seem to be a cause of elevated risk of morbidity and mortality in these patients.In this review, we highlight the role of oxidative stress in cardiovascular and renal disease. 相似文献