首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The C. elegans dystroglycan (DG) homolog DGN-1 is expressed in epithelia and neurons, and localizes to basement membrane (BM) surfaces. Unlike vertebrate DG, DGN-1 is not expressed in muscle or required for muscle function. dgn-1 null mutants are viable but sterile owing to severe disorganization of the somatic gonad epithelium, and show defects in vulval and excretory cell epithelia and in motoneuron axon guidance. The defects resemble those of epi-1 laminin alphaB mutants, suggesting that DGN-1 serves as a receptor for laminin. dgn-1(0)/+ animals are fertile but show gonad migration defects in addition to the defects seen in homozygotes, indicating that DGN-1 function is dosage sensitive. Phenotypic analyses show that DGN-1 and dystrophin-associated protein complex (DAPC) components have distinct and independent functions, in contrast to the situation in vertebrate muscle. The DAPC-independent functions of DGN-1 in epithelia and neurons suggest that vertebrate DG may also act independently of dystrophin/utrophin in non-muscle tissues.  相似文献   

2.
The Caenorhabditis elegans teneurin ortholog, ten-1, plays an important role in gonad and pharynx development. We found that lack of TEN-1 does not affect germline proliferation but leads to local basement membrane deficiency and early gonad disruption. Teneurin is expressed in the somatic precursor cells of the gonad that appear to be crucial for gonad epithelialization and basement membrane integrity. Ten-1 null mutants also arrest as L1 larvae with malformed pharynges and disorganized pharyngeal basement membranes. The pleiotropic phenotype of ten-1 mutant worms is similar to defects found in basement membrane receptor mutants ina-1 and dgn-1 as well as in the mutants of the extracellular matrix component laminin, epi-1. We show that the ten-1 mutation is synthetic lethal with mutations of genes encoding basement membrane components and receptors due to pharyngeal or hypodermal defects. This indicates that TEN-1 could act redundantly with integrin INA-1, dystroglycan DGN-1, and laminin EPI-1 in C. elegans development. Moreover, ten-1 deletion sensitizes worms to loss of nidogen nid-1 causing a pharynx unattached phenotype in ten-1;nid-1 double mutants. We conclude that TEN-1 is important for basement membrane maintenance and/or adhesion in particular organs and affects the function of somatic gonad precursor cells.  相似文献   

3.
Members of the HES subfamily of bHLH proteins play crucial roles in neural patterning via repression of neurogenesis. In C. elegans, loss-of-function mutations in ref-1, a distant nematode-specific member of this subfamily, were previously shown to cause ectopic neurogenesis from postembryonic lineages. However, while the vast majority of the nervous system in C. elegans is generated embryonically, the role of REF-1 in regulating these neural lineage decisions is unknown. Here, we show that mutations in ref-1 result in the generation of multiple ectopic neuron types derived from an embryonic neuroblast. In wild-type animals, neurons derived from this sublineage are present in a left/right symmetrical manner. However, in ref-1 mutants, while the ectopically generated neurons exhibit gene expression profiles characteristic of neurons on the left, they are present only on the right side. REF-1 functions in a Notch-independent manner to regulate this ectopic lineage decision. We also demonstrate that loss of REF-1 function results in defective differentiation of an embryonically generated serotonergic neuron type. These results indicate that REF-1 functions in both Notch-dependent and independent pathways to regulate multiple developmental decisions in different neuronal sublineages.  相似文献   

4.
Nishida Y  Sugi T  Nonomura M  Mori I 《EMBO reports》2011,12(8):855-862
Behaviour is a consequence of computation in neural circuits composed of massive synaptic connections among sensory neurons and interneurons. The cyclic AMP response element-binding protein (CREB) responsible for learning and memory is expressed in almost all neurons. Nevertheless, we find that the Caenorhabditis elegans CREB orthologue, CRH-1, is only required in the single bilateral thermosensory neuron AFD, for a memory-related behaviour. Restoration of CRH-1 in AFD of CREB-depleted crh-1 mutants rescues its thermotactic defect, whereas restorations in other neurons do not. In calcium-imaging analyses, the AFD neurons of CREB-depleted crh-1 mutants exhibit an abnormal response to temperature increase. We present a new platform for analysing the mechanism of behavioural memory at single-cellular resolution within the neural circuit.  相似文献   

5.
Agrin is a basement membrane protein crucial for development and maintenance of the neuromuscular junction in vertebrates. The C. elegans genome harbors a putative agrin gene agr-1. We have cloned the corresponding cDNA to determine the primary structure of the protein and expressed its recombinant fragments to raise specific antibodies. The domain organization of AGR-1 is very similar to the vertebrate orthologues. C. elegans agrin contains a signal sequence for secretion, seven follistatin domains, three EGF-like repeats and two laminin G domains. AGR-1 loss of function mutants did not exhibit any overt phenotypes and did not acquire resistance to the acetylcholine receptor agonist levamisole. Furthermore, crossing them with various mutants for components of the dystrophin-glycoprotein complex with impaired muscle function did not lead to an aggravation of the phenotypes. Promoter-GFP translational fusion as well as immunostaining of worms revealed expression of agrin in buccal epithelium and the protein deposition in the basal lamina of the pharynx. Furthermore, dorsal and ventral IL1 head neurons and distal tip cells of the gonad arms are sources of agrin production, but no expression was detectable in body muscles or in the motoneurons innervating them. Recombinant worm AGR-1 fragment is able to cluster vertebrate dystroglycan in cultured cells, implying a conservation of this interaction, but since neither of these proteins is expressed in muscle of C. elegans, this interaction may be required in different tissues. The connections between muscle cells and the basement membrane, as well as neuromuscular junctions, are structurally distinct between vertebrates and nematodes.  相似文献   

6.
The adhesion of growing neurites into appropriate bundles or fascicles is important for the development of correct synaptic connectivity in the nervous system. We describe fasciculation defects of animals with mutations in the C. elegans gene dig-1 and show that dig-1 encodes a giant molecule (13,100 amino acids) of the immunoglobulin superfamily. Five new alleles of dig-1 were isolated in a screen for mutations affecting the morphology or function of several classes of head sensory neurons. Mutants showed process defasciculation of several classes of neurons. Analysis of a temperature-sensitive allele revealed that dig-1 is required during embryogenesis for normal process fasciculation of one class of head sensory neuron. Partial sequencing of two alleles, RNA interference (RNAi) and rescuing experiments showed that dig-1 encodes a giant molecule of the immunoglobulin superfamily. DIG-1 protein contains many domains associated with adhesion, is likely secreted, and has some features of proteoglycans. dig-1 mutants were originally isolated due to their displaced gonads [Thomas, J.H., Stern, M.J., Horvitz, H.R., 1990. Cell interactions coordinate the development of the C. elegans egg-laying system. Cell 62, 1041-52]; thus, dig-1 alleles were also characterized for their effects on gonad placement. Mutant phenotypes suggest that DIG-1 may mediate cell movement as well as process fasciculation and that different regions of the protein may mediate these functions.  相似文献   

7.
Neural development in metazoans is characterized by the establishment of initial process tracts by pioneer axons and the subsequent extension of follower axons along these pioneer processes. Mechanisms governing the fidelity of follower extension along pioneered routes are largely unknown. In C. elegans, formation of the right angle‐shaped lumbar commissure connecting the lumbar and preanal ganglia is an example of pioneer/follower dynamics. We find that the dystroglycan ortholog DGN‐1 mediates the fidelity of follower lumbar commissure axon extension along the pioneer axon route. In dgn‐1 mutants, the axon of the pioneer PVQ neuron faithfully establishes the lumbar commissure, but axons of follower lumbar neurons, such as PVC, frequently bypass the lumbar commissure and extend along an oblique trajectory directly toward the preanal ganglion. In contrast, disruption of the UNC‐6/netrin guidance pathway principally perturbs PVQ ventral guidance to pioneer the lumbar commissure. Loss of DGN‐1 in unc‐6 mutants has a quantitatively similar effect on follower axon guidance regardless of PVQ axon route, indicating that DGN‐1 does not mediate follower/pioneer adhesion. Instead, DGN‐1 appears to block premature responsiveness of follower axons to a preanal ganglion‐directed guidance cue, which mediates ventral‐to‐anterior reorientation of lumbar commissure axons. Deletion analysis shows that only the most N‐terminal DGN‐1 domain is required for these activities. These studies suggest that dystroglycan modulation of growth cone responsiveness to conflicting guidance cues is important for restricting follower axon extension to the tracts laid down by pioneers. © 2011 Wiley Periodicals, Inc. Develop Neurobiol, 2012  相似文献   

8.
Dedicated mechanisms exist to maintain the architecture of an animal's nervous system after development is completed. To date, three immunoglobulin superfamily members have been implicated in this process in the nematode Caenorhabditis elegans: the secreted two-Ig domain protein ZIG-4, the FGF receptor EGL-15 and the L1-like SAX-7 protein. These proteins provide crucial information for neuronal structures, such as axons, that allows them to maintain the precise position they acquired during development. Yet, how widespread this mechanism is throughout the nervous system, and what other types of factors underlie such a maintenance mechanism, remains poorly understood. Here, we describe a new maintenance gene, dig-1, that encodes a predicted giant secreted protein containing a large number of protein interaction domains. With 13,100 amino acids, the DIG-1 protein is the largest secreted protein identifiable in any genome database. dig-1 functions post-developmentally to maintain axons and cell bodies in place within axonal fascicles and ganglia. The failure to maintain axon and cell body position is accompanied by defects in basement membrane structure, as evidenced by electron microscopy analysis of dig-1 mutants. Expression pattern and mosaic analysis reveals that dig-1 is produced by muscles to maintain nervous system architecture, demonstrating that dig-1 functions non-autonomously to preserve the proper layout of neural structures. We propose that DIG-1 is a component of the basement membrane that mediates specific contacts between cellular surfaces and their environment through the interaction with a cell-type specific set of other maintenance factors.  相似文献   

9.
Singhvi A  Frank CA  Garriga G 《Genetics》2008,179(2):887-898
Understanding how neurons adopt particular fates is a fundamental challenge in developmental neurobiology. To address this issue, we have been studying a Caenorhabditis elegans lineage that produces the HSN motor neuron and the PHB sensory neuron, sister cells produced by the HSN/PHB precursor. We have previously shown that the novel protein HAM-1 controls the asymmetric neuroblast division in this lineage. In this study we examine tbx-2 and egl-5, genes that act in concert with ham-1 to regulate HSN and PHB fate. In screens for mutants with abnormal HSN development, we identified the T-box protein TBX-2 as being important for both HSN and PHB differentiation. TBX-2, along with HAM-1, regulates the migrations of the HSNs and prevents the PHB neurons from adopting an apoptotic fate. The homeobox gene egl-5 has been shown to regulate the migration and later differentiation of the HSN. While mutations that disrupt its function show no obvious role for EGL-5 in PHB development, loss of egl-5 in a ham-1 mutant background leads to PHB differentiation defects. Expression of EGL-5 in the HSN/PHB precursor but not in the PHB neuron suggests that EGL-5 specifies precursor fate. These observations reveal a role for both EGL-5 and TBX-2 in neural fate specification in the HSN/PHB lineage.  相似文献   

10.
11.
L Avery  H R Horvitz 《Neuron》1989,3(4):473-485
Using a laser microbeam to kill specific subsets of the pharyngeal nervous system of C. elegans, we found that feeding was accomplished by two separately controlled muscle motions, isthmus peristalsis and pumping. The single neuron M4 was necessary and sufficient for isthmus peristalsis. The MC neurons were necessary for normal stimulation of pumping in response to food, but pumping continued and was functional in MC- worms. The remaining 12 neuron types were also unnecessary for functional pumping. No operation we did, including destruction of the entire pharyngeal nervous system, abolished pumping altogether. When we killed all pharyngeal neurons except M4, the worms were viable and fertile, although retarded and starved. Since feeding is one of the few known essential actions controlled by the nervous system, we suggest that most of the C. elegans nervous system is dispensable in hermaphrodites under laboratory conditions. This may explain the ease with which nervous system mutants are isolated and handled in C. elegans.  相似文献   

12.
Gallegos ME  Bargmann CI 《Neuron》2004,44(2):239-249
Mechanosensory neurons provide accurate information about stimulus location by restricting their sensory dendrites to nonoverlapping regions, a pattern called tiling. Here, we show that C. elegans sax-1 and sax-2 regulate mechanosensory tiling by controlling the termination point of sensory dendrites. During development, the posterior PLM mechanosensory dendrite overlaps transiently with the anterior ALM mechanosensory neuron. This overlap is eliminated during a discrete period of paused or slowed PLM process growth, between an early period of rapid outgrowth and a later period of maintenance growth. In sax-2 mutants, the PLM sensory dendrite fails to slow between the active growth and maintenance growth phases, leading to sustained overlap of anterior and posterior mechanosensory processes. sax-2 encodes a large conserved protein with HEAT/Armadillo repeats that functions with sax-1, an NDR cell morphology-regulating kinase. High-level expression of sax-2 leads to premature neurite termination, suggesting that SAX-2 can directly inhibit neurite growth.  相似文献   

13.
14.
Allen AT  Maher KN  Wani KA  Betts KE  Chase DL 《Genetics》2011,188(3):579-590
Dopamine acts through two classes of G protein-coupled receptor (D1-like and D2-like) to modulate neuron activity in the brain. While subtypes of D1- and D2-like receptors are coexpressed in many neurons of the mammalian brain, it is unclear how signaling by these coexpressed receptors interacts to modulate the activity of the neuron in which they are expressed. D1- and D2-like dopamine receptors are also coexpressed in the cholinergic ventral-cord motor neurons of Caenorhabditis elegans. To begin to understand how coexpressed dopamine receptors interact to modulate neuron activity, we performed a genetic screen in C. elegans and isolated mutants defective in dopamine response. These mutants were also defective in behaviors mediated by endogenous dopamine signaling, including basal slowing and swimming-induced paralysis. We used transgene rescue experiments to show that defects in these dopamine-specific behaviors were caused by abnormal signaling in the cholinergic motor neurons. To investigate the interaction between the D1- and D2-like receptors specifically in these cholinergic motor neurons, we measured the sensitivity of dopamine-signaling mutants and transgenic animals to the acetylcholinesterase inhibitor aldicarb. We found that D2 signaling inhibited acetylcholine release from the cholinergic motor neurons while D1 signaling stimulated release from these same cells. Thus, coexpressed D1- and D2-like dopamine receptors act antagonistically in vivo to modulate acetylcholine release from the cholinergic motor neurons of C. elegans.  相似文献   

15.
16.
Bacaj T  Lu Y  Shaham S 《Genetics》2008,178(2):989-1002
Sensory neuron cilia are evolutionarily conserved dendritic appendages that convert environmental stimuli into neuronal activity. Although several cilia components are known, the functions of many remain uncharacterized. Furthermore, the basis of morphological and functional differences between cilia remains largely unexplored. To understand the molecular basis of cilia morphogenesis and function, we studied the Caenorhabditis elegans mutants che-12 and dyf-11. These mutants fail to concentrate lipophilic dyes from their surroundings in sensory neurons and are chemotaxis defective. In che-12 mutants, sensory neuron cilia lack distal segments, while in dyf-11 animals, medial and distal segments are absent. CHE-12 and DYF-11 are conserved ciliary proteins that function cell-autonomously and are continuously required for maintenance of cilium morphology and function. CHE-12, composed primarily of HEAT repeats, may not be part of the intraflagellar transport (IFT) complex and is not required for the localization of some IFT components. DYF-11 undergoes IFT-like movement and may function at an early stage of IFT-B particle assembly. Intriguingly, while DYF-11 is expressed in all C. elegans ciliated neurons, CHE-12 expression is restricted to some amphid sensory neurons, suggesting a specific role in these neurons. Our results provide insight into general and neuron-specific aspects of cilium development and function.  相似文献   

17.
The L1 family of cell adhesion molecules is predominantly expressed in the nervous system. Mutations in human L1 cause neuronal diseases such as HSAS, MASA, and SPG1. Here we show that sax-7 gene encodes an L1 homologue in Caenorhabditis elegans. In sax-7 mutants, the organization of ganglia and positioning of neurons are abnormal in the adult stage, but these abnormalities are not observed in early larval stage. Misplacement of neurons in sax-7 mutants is triggered by mechanical force linked to body movement. Short and long forms of SAX-7 exhibited strong and weak homophilic adhesion activities in in vitro aggregation assay, respectively, which correlated with their different activities in vivo. SAX-7 was localized on plasma membranes of neurons in vivo. Expression of SAX-7 only in a single neuron in sax-7 mutants cell-autonomously restored its normal neuronal position. Expression of SAX-7 in two different head neurons in sax-7 mutants led to the forced attachment of these neurons. We propose that both homophilic and heterophilic interactions of SAX-7 are essential for maintenance of neuronal positions in organized ganglia.  相似文献   

18.
Achaete-Scute basic helix-loop-helix (bHLH) proteins promote neurogenesis during metazoan development. In this study, we characterize a C. elegans Achaete-Scute homolog, HLH-14. We find that a number of neuroblasts express HLH-14 in the C. elegans embryo, including the PVQ/HSN/PHB neuroblast, a cell that generates the PVQ interneuron, the HSN motoneuron and the PHB sensory neuron. hlh-14 mutants lack all three of these neurons. The fact that HLH-14 promotes all three classes of neuron indicates that C. elegans proneural bHLH factors may act less specifically than their fly and mammalian homologs. Furthermore, neural loss in hlh-14 mutants results from a defect in an asymmetric cell division: the PVQ/HSN/PHB neuroblast inappropriately assumes characteristics of its sister cell, the hyp7/T blast cell. We argue that bHLH proteins, which control various aspects of metazoan development, can control cell fate choices in C. elegans by regulating asymmetric cell divisions. Finally, a reduction in the function of hlh-2, which encodes the C. elegans E/Daughterless bHLH homolog, results in similar neuron loss as hlh-14 mutants and enhances the effects of partially reducing hlh-14 function. We propose that HLH-14 and HLH-2 act together to specify neuroblast lineages and promote neuronal fate.  相似文献   

19.
Neural signals are processed in nervous systems of animals responding to variable environmental stimuli. This study shows that a novel and highly conserved protein, macoilin (MACO-1), plays an essential role in diverse neural functions in Caenorhabditis elegans. maco-1 mutants showed abnormal behaviors, including defective locomotion, thermotaxis, and chemotaxis. Expression of human macoilin in the C. elegans nervous system weakly rescued the abnormal thermotactic phenotype of the maco-1 mutants, suggesting that macoilin is functionally conserved across species. Abnormal thermotaxis may have been caused by impaired locomotion of maco-1 mutants. However, calcium imaging of AFD thermosensory neurons and AIY postsynaptic interneurons of maco-1 mutants suggest that macoilin is required for appropriate responses of AFD and AIY neurons to thermal stimuli. Studies on localization of MACO-1 showed that C. elegans and human macoilins are localized mainly to the rough endoplasmic reticulum. Our results suggest that macoilin is required for various neural events, such as the regulation of neuronal activity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号