首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Fission yeast has two TOR (target of rapamycin) kinases, namely Tor1 and Tor2. Tor1 is required for survival under stressed conditions, proper G(1) arrest, and sexual development. In contrast, Tor2 is essential for growth. To analyze the functions of Tor2, we constructed two temperature-sensitive tor2 mutants. Interestingly, at the restrictive temperature, these mutants mimicked nitrogen starvation by arresting the cell cycle in G(1) phase and initiating sexual development. Microarray analysis indicated that expression of nitrogen starvation-responsive genes was induced extensively when Tor2 function was suppressed, suggesting that Tor2 normally mediates a signal from the nitrogen source. As with mammalian and budding yeast TOR, we find that fission yeast TOR also forms multiprotein complexes analogous to TORC1 and TORC2. The raptor homologue, Mip1, likely forms a complex predominantly with Tor2, producing TORC1. The rictor/Avo3 homologue, Ste20, and the Avo1 homologue, Sin1, appear to form TORC2 mainly with Tor1 but may also bind Tor2. The Lst8 homologue, Wat1, binds to both Tor1 and Tor2. Our analysis shows, with respect to promotion of G(1) arrest and sexual development, that the loss of Tor1 (TORC2) and the loss of Tor2 (TORC1) exhibit opposite effects. This highlights an intriguing functional relationship among TOR kinase complexes in the fission yeast Schizosaccharomyces pombe.  相似文献   

3.
The evolutionarily conserved serine/threonine protein kinase target-of-rapamycin (TOR) controls cell growth as a core component of TOR complexes 1 (TORC1) and 2 (TORC2). Although TORC1 is the more central growth regulator, TORC2 has also been shown to affect cell growth. Here, we demonstrate that Drosophila LST8, the only conserved TOR-binding protein present in both TORC1 and TORC2, functions exclusively in TORC2 and is not required for TORC1 activity. In mutants lacking LST8, expression of TOR and RAPTOR, together with their upstream activator Rheb, was sufficient to provide TORC1 activity and stimulate cell and organ growth. Furthermore, using an lst8 knockout mutation, we show that TORC2 regulates cell growth cell autonomously. Surprisingly, however, TORC2 does not regulate cell growth via its best-characterized target, AKT. Our findings support the possible application of TORC2-specific drugs in cancer therapy.  相似文献   

4.
The target of rapamycin (TOR) protein kinases, Tor1 and Tor2, form two distinct complexes (TOR complex 1 and 2) in the yeast Saccharomyces cerevisiae. TOR complex 2 (TORC2) contains Tor2 but not Tor1 and controls polarity of the actin cytoskeleton via the Rho1/Pkc1/MAPK cell integrity cascade. Substrates of TORC2 and how TORC2 regulates the cell integrity pathway are not well understood. Screening for multicopy suppressors of tor2, we obtained a plasmid expressing an N-terminally truncated Ypk2 protein kinase. This truncation appears to partially disrupt an autoinhibitory domain in Ypk2, and a point mutation in this region (Ypk2(D239A)) conferred upon full-length Ypk2 the ability to rescue growth of cells compromised in TORC2, but not TORC1, function. YPK2(D239A) also suppressed the lethality of tor2Delta cells, suggesting that Ypks play an essential role in TORC2 signaling. Ypk2 is phosphorylated directly by Tor2 in vitro, and Ypk2 activity is largely reduced in tor2Delta cells. In contrast, Ypk2(D239A) has increased and TOR2-independent activity in vivo. Thus, we propose that Ypk protein kinases are direct and essential targets of TORC2, coupling TORC2 to the cell integrity cascade.  相似文献   

5.
Target of rapamycin signaling is a conserved, essential pathway integrating nutritional cues with cell growth and proliferation. The target of rapamycin kinase exists in two distinct complexes, TORC1 and TORC2. It has been reported that protein phosphatase 2A (PP2A) and the Far3-7-8-9-10-11 complex (Far complex) negatively regulate TORC2 signaling in yeast. The Far complex, originally identified as factors required for pheromone-induced cell cycle arrest, and PP2A form the yeast counterpart of the STRIPAK complex, which was first isolated in mammals. The cellular localization of the Far complex has yet to be fully characterized. Here, we show that the Far complex localizes to the endoplasmic reticulum (ER) by analyzing functional GFP-tagged Far proteins in vivo. We found that Far9 and Far10, two homologous proteins each with a tail-anchor domain, localize to the ER in mutant cells lacking the other Far complex components. Far3, Far7, and Far8 form a subcomplex, which is recruited to the ER by Far9/10. The Far3-7-8- complex in turn recruits Far11 to the ER. Finally, we show that the tail-anchor domain of Far9 is required for its optimal function in TORC2 signaling. Our study reveals tiered assembly of the yeast Far complex at the ER and a function for Far complex''s ER localization in TORC2 signaling.  相似文献   

6.
Mammalian Lst8 interacts with the kinase domain of mTOR and stabilizes its interaction with Raptor regulating cell growth through the mTOR-S6K1 signalling pathway. Fission yeast Wat1, an ortholog of mammalian Lst8 is also an essential component of TOR complex 1 (TORC1) and TOR Complex 2 (TORC2) that control protein kinases essential for metabolic pathways. Here, we show that in response to osmotic stress, the Wat1 protein undergoes hyper-phosphorylation at S116 position. Wat1 interacts with the C-terminal region of Tor1 that also contain kinase domain. Co-immunoprecipitation and molecular modelling studies suggest that Wat1-Tor1 interaction is stabilized by FATC domain of Tor1 protein present at the C-terminal region. We have also demonstrated a physical interaction of Wat1 with Gad8, an AGC family protein kinase that is dependent on phosphorylation of Wat1 at S116 residue. Wat1 phosphorylation is required for the maintenance of vacuolar integrity and sexual differentiation. Collectively, our study reveals Wat1 phosphorylation regulates Gad8 function in a manner dependent on Tor1 interaction.  相似文献   

7.
Ho HL  Lee HY  Liao HC  Chen MY 《Eukaryotic cell》2008,7(8):1328-1343
Target-of-rapamycin proteins (TORs) are Ser/Thr kinases serving a central role in cell growth control. TORs function in two conserved multiprotein complexes, TOR complex 1 (TORC1) and TORC2; the mechanisms underlying their actions and regulation are not fully elucidated. Saccharomyces TORC2, containing Tor2p, Avo1p, Avo2p, Avo3p/Tsc11p, Bit61p, and Lst8p, regulates cell integrity and actin organization. Two classes of avo3 temperature-sensitive (avo3(ts)) mutants that we previously identified display cell integrity and actin defects, yet one is suppressed by AVO1 while the other is suppressed by AVO2 or SLM1, defining two TORC2 downstream signaling mechanisms, one mediated by Avo1p and the other by Avo2p/Slm1p. Employing these mutants, we explored Avo3p functions in TORC2 structure and signaling. By observing binary protein interactions using coimmunoprecipitation, we discovered that the composition of TORC2 and its recruitment of the downstream effectors Slm1p and Slm2p were differentially affected in different avo3(ts) mutants. These molecular defects can be corrected only by expressing AVO3, not by expressing suppressors, highlighting the role of Avo3p as a structural and signaling scaffold for TORC2. Phenotypic modifications of avo3(ts) mutants by deletion of individual Rho1p-GTPase-activating proteins indicate that two TORC2 downstream signaling branches converge on Rho1p activation. Our results also suggest that Avo2p/Slm1p-mediated signaling, but not Avo1p-mediated signaling, links to Rho1p activation specifically through the Rho1p-guanine nucleotide exchange factor Tus1p.  相似文献   

8.
The Tor1p and Tor2p kinases, targets of the therapeutically important antibiotic rapamycin, function as components of two distinct protein complexes in yeast, termed TOR complex 1 (TORC1) and TORC2. TORC1 is responsible for a wide range of rapamycin-sensitive cellular activities and contains, in addition to Tor1p or Tor2p, two highly conserved proteins, Lst8p and Kog1p. By identifying proteins that co-purify with Tor1p, Tor2p, Lst8p, and Kog1p, we have characterized a comprehensive set of protein-protein interactions that define further the composition of TORC1 as well as TORC2. In particular, we have identified Tco89p (YPL180w) and Bit61p (YJL058c) as novel components of TORC1 and TORC2, respectively. Deletion of TOR1 or TCO89 results in two specific and distinct phenotypes, (i) rapamycin-hypersensitivity and (ii) decreased cellular integrity, both of which correlate with the presence of SSD1-d, an allele of SSD1 previously associated with defects in cellular integrity. Furthermore, we link Ssd1p to Tap42p, a component of the TOR pathway that is believed to act uniquely downstream of TORC1. Together, these results define a novel connection between TORC1 and Ssd1p-mediated maintenance of cellular integrity.  相似文献   

9.
The TOR (Target of Rapamycin) protein kinase pathway plays a central role in sensing and responding to nutrients, stress, and intracellular energy state. TOR complex 1 (TORC1) is comprised of TOR, Raptor, and Lst8 and its activity is sensitive to inhibition by the macrolide antibiotic rapamycin. TORC1 regulates protein synthesis, ribosome biogenesis, autophagy, and ultimately cell growth through the phosphorylation of S6 K, 4E-BP, and other substrates. As TORC1 activity is positively or negatively modulated in response to upstream regulators, cellular growth rate is, respectively, enhanced or suppressed. A separate multiprotein TOR complex, TORC2, is insensitive to direct inhibition by rapamycin and does not regulate growth patterns directly; TORC2 can, however, impact certain aspects of TORC1 signaling and cell survival. TOR signaling is an ancient pathway, conserved among the yeasts, Dictyostelium, C. elegans, Drosophila, mammals, and Arabidopsis. This review will focus on the regulation of TORC1 in mammalian cells in the context of amino acid sensing/regulation and intracellular ATP homeostasis, but will also include comparisons among other organisms.  相似文献   

10.
Glucose controls the phosphorylation of silent information regulator 2 (Sir2), a NAD+‐dependent protein deacetylase, which regulates the expression of the ATP‐dependent proton pump Pma1 and replicative lifespan (RLS) in yeast. TORC1 signaling, which is a central regulator of cell growth and lifespan, is regulated by glucose as well as nitrogen sources. In this study, we demonstrate that TORC1 signaling controls Sir2 phosphorylation through casein kinase 2 (CK2) to regulate PMA1 expression and cytoplasmic pH (pHc) in yeast. Inhibition of TORC1 signaling by either TOR1 deletion or rapamycin treatment decreased PMA1 expression, pHc, and vacuolar pH, whereas activation of TORC1 signaling by expressing constitutively active GTR1 (GTR1Q65L) resulted in the opposite phenotypes. Deletion of SIR2 or expression of a phospho‐mutant form of SIR2 increased PMA1 expression, pHc, and vacuolar pH in the tor1Δ mutant, suggesting a functional interaction between Sir2 and TORC1 signaling. Furthermore, deletion of TOR1 or KNS1 encoding a LAMMER kinase decreased the phosphorylation level of Sir2, suggesting that TORC1 signaling controls Sir2 phosphorylation. It was also found that Sit4, a protein phosphatase 2A (PP2A)‐like phosphatase, and Kns1 are required for TORC1 signaling to regulate PMA1 expression and that TORC1 signaling and the cyclic AMP (cAMP)/protein kinase A (PKA) pathway converge on CK2 to regulate PMA1 expression through Sir2. Taken together, these findings suggest that TORC1 signaling regulates PMA1 expression and pHc through the CK2–Sir2 axis, which is also controlled by cAMP/PKA signaling in yeast.  相似文献   

11.
Target of rapamycin complexes (TORCs), which are vital for nutrient utilization, contain a catalytic subunit with the phosphatidyl inositol kinase-related kinase (PIKK) motif. TORC1 is required for cell growth, while the functions of TORC2 are less well understood. We show here that the fission yeast Schizosaccharomyces pombe TORC2 has a cell cycle role through determining the proper timing of Cdc2 Tyr15 dephosphorylation and the cell size under limited glucose, whereas TORC1 restrains mitosis and opposes securin-separase, which are essential for chromosome segregation. These results were obtained using the previously isolated TORC1 mutant tor2-L2048S in the phosphatidyl inositol kinase (PIK) domain and a new TORC2 mutant tor1-L2045D, which harbours a mutation in the same site. While mutated TORC1 and TORC2 displayed diminished kinase activity and FKBP12/Fkh1-dependent rapamycin sensitivity, their phenotypes were nearly opposite in mitosis. Premature mitosis and the G2-M delay occurred in TORC1 and TORC2 mutants, respectively. Surprisingly, separase/cut1-securin/cut2 mutants were rescued by TORC1/tor2-L2048S mutation or rapamycin addition or even Fkh1 deletion, whereas these mutants showed synthetic defect with TORC2/tor1-L2045D. TORC1 and TORC2 coordinate growth, mitosis and cell size control, such as Wee1 and Cdc25 do for the entry into mitosis.  相似文献   

12.
The highly conserved target of rapamycin (TOR) kinase is a central controller of cell growth in all eukaryotes. TOR exists in two functionally and structurally distinct complexes, termed TOR complex 1 (TORC1) and TORC2. LST8 is a TOR-interacting protein that is present in both TORC1 and TORC2. Here we report the identification and characterization of TOR and LST8 in large protein complexes in the model photosynthetic green alga Chlamydomonas reinhardtii. We demonstrate that Chlamydomonas LST8 is part of a rapamycin-sensitive TOR complex in this green alga. Biochemical fractionation and indirect immunofluorescence microscopy studies indicate that TOR and LST8 exist in high-molecular-mass complexes that associate with microsomal membranes and are particularly abundant in the peri-basal body region in Chlamydomonas cells. A Saccharomyces cerevisiae complementation assay demonstrates that Chlamydomonas LST8 is able to functionally and structurally replace endogenous yeast LST8 and allows us to propose that binding of LST8 to TOR is essential for cell growth.  相似文献   

13.
Molecular organization of target of rapamycin complex 2   总被引:10,自引:0,他引:10  
  相似文献   

14.
ABSTRACT: BACKGROUND: Yeast has numerous mechanisms to survive stress. Deletion of myosin type II (myo1Delta) in Saccharomyces cerevisiae results in a cell that has defective cytokinesis. To survive this genetically induced stress, this budding yeast up regulates the PKC1 cell wall integrity pathway (CWIP). More recently, our work indicated that TOR, another stress signaling pathway, was down regulated in myo1Delta strains. Since negative signaling by TOR is known to regulate PKC1, our objectives in this study were to understand the cross-talk between the TOR and PKC1 signaling pathways and to determine if they share upstream regulators for mounting the stress response in myo1Delta strains RESULTS: Here we proved that TORC1 signaling was down regulated in the myo1Delta strain. While a tor1Delta mutant strain had increased viability relative to myo1Delta, a combined myo1Deltator1Delta mutant strain showed significantly reduced cell viability. Synthetic rescue of the tor2-21ts lethal phenotype was observed in the myo1Delta strain in contrast to the chs2Delta strain, a chitin synthase II null mutant that also activates the PKC1 CWIP and exhibits cytokinesis defects very similar to myo1Delta, where the rescue effect was not observed. We observed two pools of Slt2p, the final Mitogen Activated Protein Kinase (MAPK) of the PKC1 CWIP; one pool that is up regulated by heat shock and one that is up regulated by the myo1Delta stress. The cell wall stress sensor WSC1 that activates PKC1 CWIP under other stress conditions was shown to act as a negative regulator of TORC1 in the myo1Delta mutant. Finally, the repression of TORC1 was inversely correlated with the activation of PKC1 in the myo1Delta strain. CONCLUSIONS: Regulated expression of TOR1 was important in the activation of the PKC1 CWIP in a myo1Delta strain and hence its survival. We found evidence that the PKC1 and TORC1 pathways share a common upstream regulator associated with the cell wall stress sensor WSC1. Surprisingly, essential TORC2 functions were not required in the myo1Delta strain. By understanding how yeast mounts a concerted stress response, one can further design pharmacological cocktails to undermine their ability to adapt and to survive.  相似文献   

15.
Size and weight control is a tightly regulated process, involving the highly conserved Insulin receptor/target of rapamycin (InR/TOR) signaling cascade. We recently identified Cyclin G (CycG) as an important modulator of InR/TOR signaling activity in Drosophila. cycG mutant flies are underweight and show a disturbed fat metabolism resembling TOR mutants. In fact, InR/TOR signaling activity is disturbed in cycG mutants at the level of Akt1, the central kinase linking InR and TORC1. Akt1 is negatively regulated by protein phosphatase PP2A. Notably the binding of the PP2A B′-regulatory subunit Widerborst (Wdb) to Akt1 is differentially regulated in cycG mutants, presumably by a direct interaction of CycG and Wdb. Since the metabolic defects of cycG mutant animals are abrogated by a concomitant loss of Wdb, CycG presumably influences Akt1 activity at the PP2A nexus. Here we show that Well rounded (Wrd), another B' subunit of PP2A in Drosophila, binds CycG similar to Wdb, and that its loss ameliorates some, but not all, of the metabolic defects of cycG mutants. We propose a model, whereby the binding of CycG to a particular B′-regulatory subunit influences the tissue specific activity of PP2A, required for the fine tuning of the InR/TOR signaling cascade in Drosophila.  相似文献   

16.
The conserved Ser/Thr kinase target of rapamycin (TOR) serves as a central regulator in controlling cell growth-related functions. There exist two distinct TOR complexes, TORC1 and TORC2, each coupling to specific downstream effectors and signaling pathways. In Saccharomyces cerevisiae, TORC2 is involved in regulating actin organization and maintaining cell wall integrity. Ypk2 (yeast protein kinase 2), a member of the cAMP-dependent, cGMP-dependent, and PKC (AGC) kinase family, is a TORC2 substrate known to participate in actin and cell wall regulation. Employing avo3(ts) mutants with defects in TORC2 functions that are suppressible by active Ypk2, we investigated the molecular interactions involved in mediating TORC2 signaling to Ypk2. GST pulldown assays in yeast lysates demonstrated physical interactions between Ypk2 and components of TORC2. In vitro binding assays revealed that Avo1 directly binds to Ypk2. In avo3(ts) mutants, the TORC2-Ypk2 interaction was reduced and could be restored by AVO1 overexpression, highlighting the important role of Avo1 in coupling TORC2 to Ypk2. The interaction was mapped to an internal region (amino acids 600-840) of Avo1 and a C-terminal region of Ypk2. Ypk2(334-677), a truncated form of Ypk2 containing the Avo1-interacting region, was able to interfere with Avo1-Ypk2 interaction in vitro. Overexpressing Ypk2(334-677) in yeast cells resulted in a perturbation of TORC2 functions, causing defective cell wall integrity, aberrant actin organization, and diminished TORC2-dependent Ypk2 phosphorylation evidenced by the loss of an electrophoretic mobility shift. Together, our data support the conclusion that the direct Avo1-Ypk2 interaction is crucial for TORC2 signaling to the downstream Ypk2 pathway.  相似文献   

17.
The target of rapamycin (TOR) is a highly conserved protein kinase and a central controller of cell growth. In budding yeast, TOR is found in structurally and functionally distinct protein complexes: TORC1 and TORC2. A mammalian counterpart of TORC1 (mTORC1) has been described, but it is not known whether TORC2 is conserved in mammals. Here, we report that a mammalian counterpart of TORC2 (mTORC2) also exists. mTORC2 contains mTOR, mLST8 and mAVO3, but not raptor. Like yeast TORC2, mTORC2 is rapamycin insensitive and seems to function upstream of Rho GTPases to regulate the actin cytoskeleton. mTORC2 is not upstream of the mTORC1 effector S6K. Thus, two distinct TOR complexes constitute a primordial signalling network conserved in eukaryotic evolution to control the fundamental process of cell growth.  相似文献   

18.
TOR (target of rapamycin) signaling coordinates cell growth, metabolism, and cell division through tight control of signaling via two complexes, TORC1 and TORC2. Here, we show that fission yeast TOR kinases and mTOR are phosphorylated on an evolutionarily conserved residue of their ATP-binding domain. The Gad8 kinase (AKT homologue) phosphorylates fission yeast Tor1 at this threonine (T1972) to reduce activity. A T1972A mutation that blocked phosphorylation increased Tor1 activity and stress resistance. Nitrogen starvation of fission yeast inhibited TOR signaling to arrest cell cycle progression in G1 phase and promoted sexual differentiation. Starvation and a Gad8/T1972-dependent decrease in Tor1 (TORC2) activity was essential for efficient cell cycle arrest and differentiation. Experiments in human cell lines recapitulated these yeast observations, as mTOR was phosphorylated on T2173 in an AKT-dependent manner. In addition, a T2173A mutation increased mTOR activity. Thus, TOR kinase activity can be reduced through AGC kinase–controlled phosphorylation to generate physiologically significant changes in TOR signaling.  相似文献   

19.
Weisman R  Roitburg I  Schonbrun M  Harari R  Kupiec M 《Genetics》2007,175(3):1153-1162
The TOR protein kinases exhibit a conserved role in regulating cellular growth and proliferation. In the fission yeast two TOR homologs are present. tor1(+) is required for starvation and stress responses, while tor2(+) is essential. We report here that Tor2 depleted cells show a phenotype very similar to that of wild-type cells starved for nitrogen, including arrest at the G(1) phase of the cell cycle, induction of nitrogen-starvation-specific genes, and entrance into the sexual development pathway. The phenotype of tor2 mutants is in a striking contrast to the failure of tor1 mutants to initiate sexual development or arrest in G(1) under nitrogen starvation conditions. Tsc1 and Tsc2, the genes mutated in the human tuberous sclerosis complex syndrome, negatively regulate the mammalian TOR via inactivation of the GTPase Rheb. We analyzed the genetic relationship between the two TOR genes and the Schizosaccharomyces pombe orthologs of TSC1, TSC2, and Rheb. Our data suggest that like in higher eukaryotes, the Tsc1-2 complex negatively regulates Tor2. In contrast, the Tsc1-2 complex and Tor1 appear to work in parallel, both positively regulating amino acid uptake through the control of expression of amino acid permeases. Additionally, either Tsc1/2 or Tor1 are required for growth on a poor nitrogen source such as proline. Mutants lacking Tsc1 or Tsc2 are highly sensitive to rapamycin under poor nitrogen conditions, suggesting that the function of Tor1 under such conditions is sensitive to rapamycin. We discuss the complex genetic interactions between tor1(+), tor2(+), and tsc1/2(+) and the implications for rapamycin sensitivity in tsc1 or tsc2 mutants.  相似文献   

20.
The conserved target of rapamycin (TOR) kinases regulate many aspects of cellular physiology. They exist in two distinct complexes, termed TOR complex 1 (TORC1) and TOR complex 2 (TORC2), that posses both overlapping and distinct components. TORC1 and TORC2 respond differently to the drug rapamycin and have different cellular functions: whereas the rapamycin-sensitive TORC1 controls many aspects of cell growth and has been characterized in great detail, the TOR complex 2 is less understood and regulates actin polymerization, cell polarity, and ceramide metabolism. How signaling specificity and discrimination between different input signals for the two kinase complexes is achieved is not understood. Here, we show that TORC1 and TORC2 have different localizations in Saccharomyces cerevisiae. TORC1 is localized exclusively to the vacuolar membrane, whereas TORC2 is localized dynamically in a previously unrecognized plasma membrane domain, which we term membrane compartment containing TORC2 (MCT). We find that plasma membrane localization of TORC2 is essential for viability and mediated by lipid binding of the C-terminal domain of the Avo1 subunit. From these data, we suggest that the TOR complexes are spatially separated to determine downstream signaling specificity and their responsiveness to different inputs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号