共查询到20条相似文献,搜索用时 31 毫秒
1.
Ando H Oshima Y Yanagihara H Hayashi Y Takamura T Kaneko S Fujimura A 《Biochemical and biophysical research communications》2006,346(4):1297-1302
Although a number of genes expressed in most tissues, including the liver, exhibit circadian regulation, gene expression profiles are usually examined only at one scheduled time each day. In this study, we investigated the effects of obese diabetes on the hepatic mRNA levels of various genes at 6-h intervals over a single 24-h period. Microarray analysis revealed that many genes are expressed rhythmically, not only in control KK mice but also in obese diabetic KK-A(y) mice. Real-time quantitative PCR verified that 19 of 23 putative circadianly expressed genes showed significant 24-h rhythmicity in both strains. However, obese diabetes attenuated these expression rhythms in 10 of 19 genes. More importantly, the effects of obese diabetes were observed throughout the day in only two genes. These results suggest that observation time influences the results of gene expression analyses of genes expressed circadianly. 相似文献
2.
Sakakibara S Yamauchi T Oshima Y Tsukamoto Y Kadowaki T 《Biochemical and biophysical research communications》2006,344(2):597-604
Acetic acid (AcOH), which is a short-chain fatty acid, is reported to have some beneficial effects on metabolism. To test the hypothesis that feeding of AcOH exerts beneficial effects on glucose homeostasis in type 2 diabetes, we fed either a standard diet or one containing 0.3% AcOH to KK-A(y) mice for 8 weeks. Fasting plasma glucose and HbA1c levels were lower in mice fed AcOH for 8 weeks than in control mice. AcOH also reduced the expression of genes involved in gluconeogenesis and lipogenesis, which is in part regulated by 5'-AMP-activated protein kinase (AMPK) in the liver. Finally, sodium acetate, in the form of neutralized AcOH, directly activated AMPK and lowered the expression of genes such as for glucose-6-phosphatase and sterol regulatory element binding protein-1 in rat hepatocytes. These results indicate that the hypoglycemic effect of AcOH might be due to activation of AMPK in the liver. 相似文献
3.
《The Journal of nutritional biochemistry》2014,25(2):136-143
Daidzein shows estrogenic, antioxidant and antiandrogenic properties as well as cell cycle regulatory activity. However, the antihyperglycemic effect of daidzein remains to be elucidated. In this study, we investigated the in vitro effect of daidzein on glucose uptake, AMPK phosphorylation and GLUT4 translocation on plasma membrane in L6 myotubes and its in vivo antihyperglycmic effect in obese–diabetic model db/db mice. Daidzein was found to promote glucose uptake, AMPK phosphorylation and GLUT4 translocation by Western blotting analyses in L6 myotubes under a condition of insulin absence. Promotion by daidzein of glucose uptake as well as GLUT4 translocation to plasma membrane by immunocytochemistry was also demonstrated in L6 myoblasts transfected with a GLUT4 cDNA-coding vector. Daidzein (0.1% in the diet) suppressed the rises in the fasting blood glucose, serum total cholesterol levels and homeostasis model assessment index of db/db mice. In addition, daidzein supplementation markedly improved the AMPK phosphorylation in gastrocnemius muscle of db/db mice. Daidzein also suppressed increases in blood glucose levels and urinary glucose excretion in KK-Ay mice, another Type 2 diabetic animal model. These in vitro and in vivo findings suggest that daidzein is preventive for Type 2 diabetes and an antidiabetic phytochemical. 相似文献
4.
Effects of rexinoids on glucose transport and insulin-mediated signaling in skeletal muscles of diabetic (db/db) mice 总被引:1,自引:0,他引:1
Shen Q Cline GW Shulman GI Leibowitz MD Davies PJ 《The Journal of biological chemistry》2004,279(19):19721-19731
Rexinoids and thiazolidinediones (TZDs) are two classes of nuclear receptor ligands that induce insulin sensitization in diabetic rodents. TZDs are peroxisome proliferator-activated receptor gamma (PPARgamma) activators, whereas rexinoids are selective ligands for the retinoid X receptors (RXRs). Activation of both the insulin receptor substrates (IRSs)/Akt and the c-Cbl-associated protein (CAP)/c-Cbl pathways are important in regulating insulin-stimulated glucose transport. We have compared the effects of a rexinoid (LG268) and a TZD (rosiglitazone) on these two signal pathways in skeletal muscle of diabetic (db/db) mice. The results we have obtained show that treatment of db/db mice with either LG268 or rosiglitazone for 2 weeks results in a significant increase in insulin-stimulated glucose transport activity in skeletal muscle. Treatment with LG268 increases insulin-stimulated IRS-1 tyrosine phosphorylation and Akt phosphorylation in skeletal muscle without affecting the activity of the CAP/c-Cbl pathway. In contrast, rosiglitazone increases the levels of CAP expression and insulin-stimulated c-Cbl phosphorylation without affecting the IRS-1/Akt pathway. The effects of LG268 on the IRS-1/Akt pathway were associated with a decrease in the level of IRS-1 Ser(307) phosphorylation. Taken together, these data suggest that rexinoids improve insulin sensitivity via changes in skeletal muscle metabolism that are distinct from those induced by TZDs. Rexinoids represent a novel class of insulin sensitizers with potential applications in the treatment of insulin resistance. 相似文献
5.
Exercise training increases glucose transporter protein GLUT-4 in skeletal muscle of obese Zucker (fa/fa) rats 总被引:7,自引:0,他引:7
The present study examined the level of GLUT-4 glucose transporter protein in gastrocnemius muscles of 36 week old genetically obese Zucker (fa/fa) rats and their lean (Fa/-) littermates, and in obese Zucker rats following 18 or 30 weeks of treadmill exercise training. Despite skeletal muscle insulin resistance, the level of GLUT-4 glucose transporter protein was similar in lean and obese Zucker rats. In contrast, exercise training increased GLUT-4 protein levels by 1.7 and 2.3 fold above sedentary obese rats. These findings suggest endurance training stimulates expression of skeletal muscle GLUT-4 protein which may be responsible for the previously observed increase in insulin sensitivity with training. 相似文献
6.
Leucine promotes glucose uptake in skeletal muscles of rats 总被引:2,自引:0,他引:2
Nishitani S Matsumura T Fujitani S Sonaka I Miura Y Yagasaki K 《Biochemical and biophysical research communications》2002,299(5):693-696
Soleus muscles isolated from normal rats were incubated to evaluate whether or not leucine promotes glucose uptake under insulin-free conditions, using a labeled 2-deoxyglucose uptake assay. Glucose uptake was promoted by 2mM leucine. A metabolite of leucine, alpha-ketoisocaproic acid (alpha-KIC), also exhibited a similar stimulatory effect, although this was not as potent as leucine. Stimulation of glucose uptake by leucine was completely canceled by pre-treatment with either 10 microM LY294002, a specific inhibitor of phosphatidylinositol 3-kinase (PI3-kinase), or 6 microM GF109203X, a specific inhibitor of protein kinase C (PKC). No significant change was observed by pre-treatment with 1 microM rapamycin, a specific inhibitor of mammalian target of rapamycin (mTOR). These results suggest that leucine stimulates glucose transport in skeletal muscle via PI3-kinase and PKC pathways independently of the mammalian target of mTOR. They also suggest that leucine stimulates glucose transport by an insulin-independent mechanism. 相似文献
7.
Masashi Hosokawa Tatsuya Miyashita Sho Nishikawa Shingo Emi Takayuki Tsukui Fumiaki Beppu Tomoko Okada Kazuo Miyashita 《Archives of biochemistry and biophysics》2010,504(1):17-25
Fucoxanthin, a marine carotenoid found in edible brown seaweeds, attenuates white adipose tissue (WAT) weight gain and hyperglycemia in diabetic/obese KK-Ay mice, although it does not affect these parameters in lean C57BL/6J mice. In perigonadal and mesenteric WATs of KK-Ay mice fed fucoxanthin, mRNA expression levels of monocyte chemoattractant protein-1 (MCP-1) and tumor necrosis factor-α (TNF-α), which are considered to induce insulin resistance, were markedly reduced compared to control mice. In contrast to KK-Ay mice, fucoxanthin did not alter MCP-1 and TNF-α mRNA expression levels in the WAT of lean C57BL/6J mice. Interleukin-6 (IL-6) and plasminogen activator inhibitor-1 mRNA expression levels in WAT were also decreased by fucoxanthin in KK-Ay mice. In differentiating 3T3-F442A adipocytes, fucoxanthinol, which is a fucoxanthin metabolite found in WAT, attenuated TNF-α-induced MCP-1 and IL-6 mRNA overexpression and protein secretion into the culture medium. In addition, fucoxanthinol decreased TNF-α, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) mRNA expression in RAW264.7 macrophage-like cells stimulated by palmitic acid. These findings indicate that fucoxanthin regulates mRNA expression of inflammatory adipocytokines involved in insulin resistance, iNOS, and COX-2 in WAT and has specific effects on diabetic/obese KK-Ay mice, but not on lean C57BL/6J mice. 相似文献
8.
Yoshikawa Y Ueda E Miyake H Sakurai H Kojima Y 《Biochemical and biophysical research communications》2001,281(5):1190-1193
High blood glucose levels of KK-A(y) mice with type 2 diabetes mellitus were normalized by daily intraperitoneal (ip) administration of a zinc(II) complex, bis(maltolato)zinc(II) (Zn(Mal)(2)) with a Zn(O(4)) coordination mode, following the finding of strong in vitro insulinomimetic activity in isolated rat adipocytes treated with epinephrine in terms of the inhibition of free fatty acid release. The blood glucose level was maintained in the normal range during administration of the Zn(Mal)(2) complex for 14 days and improvements in the glucose tolerance were confirmed by an oral glucose tolerance test. 相似文献
9.
Takahiro Sasagawa Yutaka Yoshikawa Kenji Kawabe Hiromu Sakurai Yoshitane Kojima 《Journal of inorganic biochemistry》2002,88(1):108-112
A novel bis(6-ethylpicolinato)(H(2)O)oxovanadium(IV) complex (VO(6epa)(2) x (H(2)O)) was prepared and its structure was revealed by X-ray analysis (space group Pc(#7), a=10.838(2), b=11.148(5), c=16.642(3) A, and Z=2). Because VO(6epa)(2) x (H(2)O) exhibited higher in vitro insulinomimetic activity compared to that of vanadyl sulfate in terms of inhibition of free fatty acid (FFA) release from isolated rat adipocytes in the presence of epinephrine, its in vivo effect on whether the complex has a blood glucose normalizing effect was examined in KK-A(y) mice, a model animal of type 2 diabetes mellitus. VO(6epa)(2) x (H(2)O) was found to normalize the high blood glucose levels of KK-A(y) mice when given intraperitoneally at doses of 49 micromol/kg body weight for the first 4 days and then 39 micromol/kg body weight for 10 days. In addition, VO(6epa)(2) x (H(2)O) improved glucose tolerance ability as examined by the oral glucose test and seemed to have little toxicity in terms of serum parameters. VO(6epa)(2) x (H(2)O) showed higher normoglycemic activity than bis(6-methylpicolinato)oxovanadium(IV) (VO(6mpa)(2)) at the same dose. These results indicated that greater enhancement of the blood glucose normalizing effect in KK-A(y) mice by ethyl substitution compared to methyl substitution may be due to its being more strongly lipophilic. 相似文献
10.
《Bioorganic & medicinal chemistry letters》2019,29(14):1785-1790
We report herein the synthesis and structure-activity relationships (SAR) of a series of pyridazine derivatives with the activation of glucose transporter type 4 (GLUT4) translocation. Through a cell-based phenotype screening in L6-GLUT4-myc myoblasts and functional glucose uptake assays, lead compound 1a was identified as a functional small molecule. After further derivatization, the thienopyridazine scaffold as the central ring (B-part) was revealed to have potent GLUT4 translocation activities. Consequently, we obtained promising compound 26b, which showed a significant blood glucose lowering effect in the severe diabetic mice model (10-week aged db/db mice) after oral dosing even at 10 mg/kg, implying that our pyridazine derivatives have potential to become novel therapeutic agents for diabetes mellitus. 相似文献
11.
Kuroda M Mimaki Y Sashida Y Mae T Kishida H Nishiyama T Tsukagawa M Konishi E Takahashi K Kawada T Nakagawa K Kitahara M 《Bioorganic & medicinal chemistry letters》2003,13(24):4267-4272
The EtOAc extract of licorice (Glycyrrhiza uralensis roots) exhibited considerable PPAR-gamma ligand-binding activity. Bioassay-guided fractionation of the extract using a GAL-4-PPAR-gamma chimera assay method resulted in the isolation of two isoflavenes, one of which is a new compound named dehydroglyasperin D, an isoflavan, two 3-arylcoumarins, and an isoflavanone as the PPAR-gamma ligand-binding active ingredients of licorice. The isoprenyl group at C-6 and the C-2' hydroxyl group in the aromatic ring-C part in the isoflavan, isoflavene, or arylcoumarin skeleton were found to be the structural requirements for PPAR-gamma ligand-binding activity. Glycyrin, one of the main PPAR-gamma ligands of licorice, significantly decreased the blood glucose levels of genetically diabetic KK-A(y) mice. 相似文献
12.
Omata W Shibata H Nagasawa M Kojima I Kikuchi H Oshima Y Hosaka K Kubohara Y 《The FEBS journal》2007,274(13):3392-3404
The differentiation-inducing factor-1 (DIF-1) is a signal molecule that induces stalk cell formation in the cellular slime mold Dictyostelium discoideum, while DIF-1 and its analogs have been shown to possess antiproliferative activity in vitro in mammalian tumor cells. In the present study, we investigated the effects of DIF-1 and its analogs on normal (nontransformed) mammalian cells. Without affecting the cell morphology and cell number, DIF-1 at micromolar levels dose-dependently promoted the glucose uptake in confluent 3T3-L1 fibroblasts, which was not inhibited with wortmannin or LY294002 (inhibitors for phosphatidylinositol 3-kinase). DIF-1 affected neither the expression level of glucose transporter 1 nor the activities of four key enzymes involved in glucose metabolism, such as hexokinase, fluctose 6-phosphate kinase, pyruvate kinase, and glucose 6-phosphate dehydrogenase. Most importantly, stimulation with DIF-1 was found to induce the translocation of glucose transporter 1 from intracellular vesicles to the plasma membranes in the cells. In differentiated 3T3-L1 adipocytes, DIF-1 induced the translocation of glucose trasporter 1 (but not of glucose transporter 4) and promoted glucose uptake, which was not inhibited with wortmannin. These results indicate that DIF-1 induces glucose transporter 1 translocation and thereby promotes glucose uptake, at least in part, via a inhibitors for phosphatidylinositol 3-kinase/Akt-independent pathway in mammalian cells. Furthermore, analogs of DIF-1 that possess stronger antitumor activity than DIF-1 were less effective in promoting glucose consumption, suggesting that the mechanism of the action of DIF-1 for stimulating glucose uptake should be different from that for suppressing tumor cell growth. 相似文献
13.
Liver and muscle-fat type glucose transporter gene expression in obese and diabetic rats 总被引:2,自引:0,他引:2
T Yamamoto H Fukumoto G Koh H Yano K Yasuda K Masuda H Ikeda H Imura Y Seino 《Biochemical and biophysical research communications》1991,175(3):995-1002
In order to investigate the regulation of glucose transporter gene expression in the altered metabolic conditions of obesity and diabetes, we have measured mRNA levels encoding GLUT2 in the liver and GLUT4 in the gastrocnemius muscle from various insulin resistant animal models, including Zucker fatty, Wistar fatty, and streptozocin(STZ)-treated diabetic rats. Northern blot analysis revealed that GLUT2 mRNA levels were significantly (P less than 0.001) elevated in 14 wk Zucker fatty and Wistar fatty rats relative to lean littermates but were similar in these two groups at 5 wk of age. Furthermore, there was significant increase (P less than 0.01) in GLUT2 mRNA levels in STZ diabetic rats at 3 wk after treatment. GLUT4 mRNA levels were not significantly different between control and insulin resistant rats in all animal models. These results indicate that neither hyperinsulinemia nor hyperglycemia affects GLUT4 mRNA levels in the muscle. However, GLUT2 mRNA levels in the liver were elevated in obesity and diabetes, although this regulatory event occurred independently from circulating insulin or glucose concentrations. 相似文献
14.
Jun-ichi Suto Kazumasa Wakamatsu Harumichi Yamanaka Shosuke Ito Kenji Sekikawa 《Mammalian genome》2000,11(8):639-644
Compared with C57BL/6J-A
y
/a, KK-A
y
/a mice have yellow fur that is markedly darker. Furthermore, there is a considerable variation in the tone of color with a
continuous range in F2 progeny produced from C57BL/6J females and KK-A
y
/a males. The aims of this study are to reveal the phenotypic differences between the two A
y
congenic strains and to elucidate the genetic factors responsible for the sooty yellow pigmentation in the KK background.
On the basis of a chemical analysis, the sootiness in KK-A
y
/a was the result of increased eumelanin (PTCA) and decreased pheomelanin (AHP). A statistically significant QTL was identified
on Chromosome (Chr) 15, responsible for the AHP content. No significant loci responsible for PTCA were identified. On the
other hand, on the basis of an optical analysis for color difference and overall sootiness, significant evidence of linkage
was identified on the proximal part of Chr 15, in the region similar to AHP QTL. The overall sootiness is thus controlled
solely by the locus on Chr 15 in F2 progeny; however, the KK allele at this locus significantly increased the AHP content.
Received: 8 September 1999 / Accepted: 18 April 2000 相似文献
15.
葡萄糖是大部分细胞主要能量来源,它进入细胞的过程在生命的维持中无疑成为一个重要的步骤。而葡萄糖进入细胞是依赖于这些细胞上的葡萄糖转运子和相应的对其进行调节的因子。葡萄糖转运子4(GLUT4)在糖进入细胞维持血糖平衡中起了重要的作用。近年有关GLUT4的研究文献很多,但却总给人不系统的感觉。本文对GLUT4转位的胰岛素依赖和非胰岛素依赖的信号途径以及其远端过程及机制作一综述,同时分析了GLUT4转位的信号途径的研究中存在的问题和将来研究的方向。 相似文献
16.
S Nagamatsu Y Nakamichi M Ohara-Imaizumi S Ozawa H Katahira T Watanabe H Ishida 《FEBS letters》2001,509(1):106-110
We investigated whether adenovirus-mediated preproinsulin gene transfer into insulin target tissues (adipocytes) ameliorates hyperglycemia in diabetic mice. KKA(y) mice, a genetically obese type 2 diabetic animal model, were treated with a single subcutaneous injection of recombinant adenovirus, Adex1CA-human preproinsulin (Adex1CA-pchi), into the epididymal fat pads. pchi mRNA was expressed only in adipose tissue in which mature insulin was produced. Three days after virus injection these mice showed a marked decrease of blood glucose levels (from about 400 to 200 mg/dl), and an intraperitoneal glucose tolerance test revealed the markedly improved glucose tolerance. There was no significant difference in serum insulin levels between control and recombinant adenovirus-treated KKA(y) mice. The normalized glucose levels in diabetic mice were maintained for at least 2 weeks after the virus injection. This strategy could provide a novel and, most importantly, a simple and convenient gene therapy for obese type 2 diabetes patients. 相似文献
17.
Adrenalectomy in young obese (ob/ob) and the diabetic (db/db) mouse slowed body weight gain. Treatment of adrenalectomized ob/ob mice with cortisone or deoxycorticosterone acetate (DOCA) significantly increased weight gain in a dose-related manner. Cortisone had no effect on weight gain on lean mice and treatment with dehydroepiandrosterone sulfate was without effect on either ob/ob or lean mice. The increment in body weight of adrenalectomized ob/ob mice treated with corticosterone and DOCA was associated with an increase in body weight and an increase in food intake. When adrenalectomy was performed at twenty-three days of age (five days before weaning), animals carrying the (db/db) genotype remained lighter than their normal littermates. These data document the importance of the adrenal gland and its steroids for the development and maintenance of many features of the obese or diabetes mouse. 相似文献
18.
Moon JY Tanimoto M Gohda T Hagiwara S Yamazaki T Ohara I Murakoshi M Aoki T Ishikawa Y Lee SH Jeong KH Lee TW Ihm CG Lim SJ Tomino Y 《American journal of physiology. Renal physiology》2011,300(6):F1271-F1282
ANG-(1-7) is associated with vasodilation and nitric oxide synthase stimulation. However, the role of ANG-(1-7) in type 2 diabetes mellitus is unknown. In this study, we examined the hypothesis that ANG-(1-7) attenuates ANG II-induced reactive oxygen species stress (ROS)-mediated injury in type 2 diabetic nephropathy of KK-A(y)/Ta mice. KK-A(y)/Ta mice were divided into four groups: 1) a control group; 2) ANG II infusion group; 3) ANG II+ANG-(1-7) coinfusion group; and 4) ANG II+ANG-(1-7)+d-Ala(7)-ANG-(1-7) (A779) coinfusion group. In addition, primary mesangial cells were cultured and then stimulated with 25 mM glucose with or without ANG II, ANG-(1-7), and A779. The ANG II+ANG-(1-7) coinfusion group showed a lower urinary albumin/creatinine ratio increase than the ANG II group. ANG-(1-7) attenuated ANG II-mediated NAD(P)H oxidase activation and ROS production in diabetic glomeruli and mesangial cells. ANG II-induced NF-κB and MAPK signaling activation was also attenuated by ANG-(1-7) in the mesangial cells. These findings were related to improved mesangial expansion and to fibronectin and transforming growth factor-β1 production in response to ANG II and suggest that ANG-(1-7) may attenuate ANG II-stimulated ROS-mediated injury in type 2 diabetic nephropathy. The ACE2-ANG-(1-7)-Mas receptor axis should be investigated as a novel target for treatment of type 2 diabetic nephropathy. 相似文献
19.
Effect of training and detraining on skeletal muscle glucose transporter (GLUT4) content in rats. 总被引:1,自引:0,他引:1
P D Neufer M H Shinebarger G L Dohm 《Canadian journal of physiology and pharmacology》1992,70(9):1286-1290
The aim of the present study was to examine the effects of treadmill exercise training and detraining on the skeletal muscle fiber type specific expression of the insulin-regulated glucose transporter protein (GLUT4) in rats. GLUT4 protein content was determined by Western and dot-blot analysis, using a polyclonal antibody raised against the carboxy-terminal peptide. Rats were sacrificed 24 h after the last training session. There were no significant changes in muscle GLUT4 after 1 day or 1 week of training. Six weeks of training increased GLUT4 protein content 1.4- to 1.7-fold (p < 0.05) over controls in the soleus and red vastus lateralis, whereas no significant change was evident in the white vastus lateralis muscle. GLUT4 protein content in both soleus and red vastus lateralis muscle returned to near control values after 7 days of detraining. Similar to GLUT4, citrate synthase activity showed no change after 1 day or 1 week of training, increased 1.8-fold over controls after 6 weeks of training, but returned to control values after 7 days detraining. These findings demonstrate that muscle GLUT4 protein is increased in rats with as little as 6 weeks of treadmill exercise training but that the adaptation is lost within 1 week of detraining. It is suggested that expression of the GLUT4 protein is coordinated with the well-documented adaptations in oxidative enzyme activity with endurance training and detraining. 相似文献
20.
Suárez E Bach D Cadefau J Palacin M Zorzano A Gumá A 《The Journal of biological chemistry》2001,276(21):18257-18264
Neuregulins regulate the expression of acetylcholine receptor genes and induce development of the neuromuscular junction in muscle. In studying whether neuregulins regulate glucose uptake in muscle, we analyzed the effect of a recombinant neuregulin, (r)heregulin-beta1-(177-244) (HRG), on L6E9 muscle cells, which express the neuregulin receptors ErbB2 and ErbB3. L6E9 responded acutely to HRG by a time- and concentration-dependent stimulation of 2-deoxyglucose uptake. HRG-induced stimulation of glucose transport was additive to the effect of insulin. The acute stimulation of the glucose transport induced by HRG was a consequence of the translocation of GLUT4, GLUT1, and GLUT3 glucose carriers to the cell surface. The effect of HRG on glucose transport was dependent on phosphatidylinositol 3-kinase activity. HRG also stimulated glucose transport in the incubated soleus muscle and was additive to the effect of insulin. Chronic exposure of L6E9 cells to HRG potentiated myogenic differentiation, and under these conditions, glucose transport was also stimulated. The activation of glucose transport after chronic HRG exposure was due to enhanced cell content of GLUT1 and GLUT3 and to increased abundance of these carriers at the plasma membrane. However, under these conditions, GLUT4 expression was markedly down-regulated. Muscle denervation is associated with GLUT1 induction and GLUT4 repression. In this connection, muscle denervation caused a marked increase in the content of ErbB2 and ErbB3 receptors, which occurred in the absence of alterations in neuregulin mRNA levels. This fact suggests that neuregulins regulate glucose transporter expression in denervated muscle. We conclude that neuregulins regulate glucose uptake in L6E9 muscle cells by mechanisms involving the recruitment of glucose transporters to the cell surface and modulation of their expression. Neuregulins may also participate in the adaptations in glucose transport that take place in the muscle fiber after denervation. 相似文献