首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The human skin is an exceedingly complex and multi-layered material. This paper aims to introduce the application of the finite element analysis (FEA) to the in vivo characterization of the non-linear mechanical behaviour of three human skin layers. Indentation tests combined with magnetic resonance imaging (MRI) technique have been performed on the left dorsal forearm of a young man in order to reveal the mechanical behaviour of all skin layers. Using MRI images processing and a pre and post processor allows to make numerically individualized 2D model which consists of three skin layers and the muscles. FEA has been applied to simulate indentation tests. Neo-Hookean slightly compressible material model of two material constants (C(10), K) has been used to model the mechanical behaviour of the three skin layers and the muscles. The identification of material model parameters was done by applying Levenberg-Marquardt algorithm (LMA). Our methodology of identification provides a range of values for each constant. Range of values of different material properties of epidermis, dermis, hypodermis are respectively, C10(E)=0.12+/-0.06 MPa, C10(D)=1.11+/-0.09 MPa, C10(H)=0.42+/-0.05 KPa, K(E)=5.45+/-1.7 MPa, K(D)=29.6+/-1,28 MPa, K(H)=36.0+/-0.9 KPa.  相似文献   

3.
The human skin is an exceedingly complex and multi-layered material. This paper aims to introduce the application of the finite element analysis (FEA) to the in vivo characterization of the non-linear mechanical behaviour of three human skin layers. Indentation tests combined with magnetic resonance imaging (MRI) technique have been performed on the left dorsal forearm of a young man in order to reveal the mechanical behaviour of all skin layers. Using MRI images processing and a pre and post processor allows to make numerically individualized 2D model which consists of three skin layers and the muscles. FEA has been applied to simulate indentation tests. Neo-Hookean slightly compressible material model of two material constants (C10, K) has been used to model the mechanical behaviour of the three skin layers and the muscles. The identification of material model parameters was done by applying Levenberg–Marquardt algorithm (LMA). Our methodology of identification provides a range of values for each constant. Range of values of different material properties of epidermis, dermis, hypodermis are respectively, C10E = 0.12 ± 0.06 MPa, C10D = 1.11 ± 0.09 MPa, C10H = 0.42 ± 0.05 KPa, K E = 5.45 ± 1.7 MPa, K D = 29.6 ± 1,28 MPa, K H = 36.0 ± O.9 KPa.  相似文献   

4.
The lack of understanding of the mechanical behavior of the human skin layers makes the development of drug delivery using microneedles or microjets a challenging task. In particular, the key mechanical properties of the epidermis composed of stratum corneum and viable epidermis should be better understood. Micro-indentation experiments were applied, using a spherical tip with a large diameter to the sample thickness ratio. The Young's moduli were derived via an analytical and a numerical method. The tests showed that the analytical method was not appropriate to assess the Young's moduli. That is why a numerical model was used to obtain the correct stiffness. When loaded perpendicularly, the stiffness of both the epidermis and stratum corneum vary between 1 and 2MPa. No significant differences in stiffness between the stratum corneum and viable epidermis were observed.  相似文献   

5.
Indentation using the atomic force microscope (AFM) has potential to measure detailed micromechanical properties of soft biological samples. However, interpretation of the results is complicated by the tapered shape of the AFM probe tip, and its small size relative to the depth of indentation. Finite element models (FEMs) were used to examine effects of indentation depth, tip geometry, and material nonlinearity and heterogeneity on the finite indentation response. Widely applied infinitesimal strain models agreed with FEM results for linear elastic materials, but yielded substantial errors in the estimated properties for nonlinear elastic materials. By accounting for the indenter geometry to compute an apparent elastic modulus as a function of indentation depth, nonlinearity and heterogeneity of material properties may be identified. Furthermore, combined finite indentation and biaxial stretch may reveal the specific functional form of the constitutive law--a requirement for quantitative estimates of material constants to be extracted from AFM indentation data.  相似文献   

6.
A numerical-experimental approach has been developed to characterize heel-pad deformation at the material level. Left and right heels of 20 diabetic subjects and 20 nondiabetic subjects matched for age, gender and body mass index were indented using force-controlled ultrasound. Initial tissue thickness and deformation were measured using M-mode ultrasound; indentation forces were recorded simultaneously. An inverse finite-element analysis of the indentation protocol using axisymmetric models adjusted to reflect individual heel thickness was used to extract nonlinear material properties describing the hyperelastic behavior of each heel. Student's t-tests revealed that heel pads of diabetic subjects were not significantly different in initial thickness nor were they stiffer than those from nondiabetic subjects. Another heel-pad model with anatomically realistic surface representations of the calcaneus and soft tissue was developed to estimate peak pressure prediction errors when average rather than individualized material properties were used. Root-mean-square errors of up to 7% were calculated, indicating the importance of subject-specific modeling of the nonlinear elastic behavior of the heel pad. Indentation systems combined with the presented numerical approach can provide this information for further analysis of patient-specific foot pathologies and therapeutic footwear designs.  相似文献   

7.
In-vivo indentation of human skin   总被引:1,自引:0,他引:1  
Indentation tests were carried out on the forehead skin of volunteers under loading pressures of 0-5 KPa. The indentation was found to increase asymptomatically with loading pressure. In an attempt to develop a quantitative index for aging of the skin, its response to indentation loading was analyzed in reference to its glycosaminoglycan (GAG) containing ground substance and fibers' network microstructure. An analytic model that considers the skin as an incompressible solid-fluid mixture was developed and utilized to simulate the skin's indentation response. Following parameter fitting, the predicted results are in close agreement with the data. The model can thus serve as a tool for evaluating the effect of changes in the dermis components which accompany aging.  相似文献   

8.
9.
Stress relaxation tests using a custom designed microindentation device were performed on ten anatomic regions of fresh porcine brain (postmortem time <3 h). Using linear viscoelastic theory, a Prony series representation was used to describe the shear relaxation modulus for each anatomic region tested. Prony series parameters fit to load data from indentations performed to ~10% strain differed significantly by anatomic region. The gray and white matter of the cerebellum along with corpus callosum and brainstem were the softest regions measured. The cortex and hippocampal CA1/CA3 were found to be the stiffest. To examine the large strain behavior of the tissue, multistep indentations were performed in the corona radiata to strains of 10%, 20%, and 30%. Reduced relaxation functions were not significantly different for each step, suggesting that quasi-linear viscoelastic theory may be appropriate for representing the nonlinear behavior of this anatomic region of porcine brain tissue. These data, for the first time, describe the dynamic and short time scale behavior of multiple anatomic regions of the porcine brain which will be useful for understanding porcine brain injury biomechanics at a finer spatial resolution than previously possible.  相似文献   

10.
11.
The role of elastin in the mechanical properties of skin   总被引:4,自引:0,他引:4  
The elastin fibers of rat skin samples were degraded by the use of a purified preparation of elastase to which soybean inhibitor was added, preventing the collagenolytic activity of the elastase on collagen. Control experiments ascertained degradation of elastin and no effect on collagen. The mechanical properties of the skin samples were studied before and after the enzymatic treatment and differences ascribed to the degraded elastin fibers. Elastin plays a role in the mechanical behaviour of rat skin at small stress values and small deformations. Especially, the elastin fibers are responsible for the recoiling mechanism after a stress or deformation has been applied.  相似文献   

12.
The triphasic mixture theory has been used to describe the mechanical and physicochemical behaviors of articular cartilage under some specialized loading conditions. However, the mathematical complexities of this theory have limited its applications for theoretical analyses of experimental studies and models for predicting cartilage and other biological tissues' deformational behaviors. A generalized correspondence principle has been established in the present study, and this principle shows that the equilibrium deformational behavior of a charged-hydrated material under loading is identical to that of an elastic medium without charge. A set of explicit formulas has been derived to correlate the mechanical properties of an equivalent material with the intrinsic elastic moduli, fixed charge density and free-ion concentration within the cartilage tissue. The validity of these formulas is independent of the deformation state of the elastic solid matrix under an infinitesimal strain. Therefore they can be employed for any loading conditions, such as confined or unconfined compression, tension, and indentation tests, etc. In the current study, the fixed charge density of bovine cartilage is determined from the indentation creep data using this generalized correspondence principle. The proteoglycan content results were then compared with those from biochemical assay, yielding a linear regression slope of 1.034. Additionally a correspondence principle within a framework of cubic symmetry and a bilinear response in tension-compression (the conewise linear elasticity model) has also been developed to demonstrate the potential application of current methodology for inhomogeneous, anisotropic and nonlinear situations.  相似文献   

13.

Background

Red blood cells (RBCs) deform significantly and repeatedly when passing through narrow capillaries and delivering dioxygen throughout the body. Deformability of RBCs is a key characteristic, largely governed by the mechanical properties of the cell membrane. This study investigated RBC mechanical properties using atomic force microscopy (AFM) with the aim to develop a coarse-grained particle method model to study for the first time RBC indentation in both 2D and 3D. This new model has the potential to be applied to further investigate the local deformability of RBCs, with accurate control over adhesion, probe geometry and position of applied force.

Results

The model considers the linear stretch capacity of the cytoskeleton, bending resistance and areal incompressibility of the bilayer, and volumetric incompressibility of the internal fluid. The model’s performance was validated against force–deformation experiments performed on RBCs under spherical AFM indentation. The model was then used to investigate the mechanisms which absorbed energy through the indentation stroke, and the impact of varying stiffness coefficients on the measured deformability. This study found the membrane’s bending stiffness was most influential in controlling RBC physical behaviour for indentations of up to 200 nm.

Conclusions

As the bilayer provides bending resistance, this infers that structural changes within the bilayer are responsible for the deformability changes experienced by deteriorating RBCs. The numerical model presented here established a foundation for future investigations into changes within the membrane that cause differences in stiffness between healthy and deteriorating RBCs, which have already been measured experimentally with AFM.
  相似文献   

14.
Current knowledge of the functional properties of mammalian cutaneous mechanoreceptors is reviewed with special reference to receptors associated with the glabrous skin of the raccoon and squirrel monkey hand. Four physiologically defined mechanoreceptor types are recognized: Pacinian afferents, rapidly adapting (RA), and slowly adapting type I (SAI), and slowly adapting type II (SAII). The SAI category is divided into moderately slowly adapting and very slowly adapting (VSA) types in terms of the duration of their response to a prolonged mechanical displacement of skin. Although both RA and SA units are capable of signaling displacement ramp velocity, the pattern of discharge during ramp stimulation may vary widely among units. SAI units also code the depth of skin displacement, but there is no best-fitting function describing the relationship. Static discharge is also markedly influenced by prior ramp velocity. Both raccoon and squirrel monkey VSA units show wide variation in the regularity of their discharge during static displacement. The rate of adaptation of SAI units is less when constant force stimuli are applied to the skin than when constant displacement stimuli are applied. This is partly attributable to mechanical properties of the skin. When either constant force or constant displacement stimuli are spaced too closely in time, there is a progressive (trial-to-trial) decrement in response rate, accounted for in part by failure of the skin to recover to its initial resting level.  相似文献   

15.
Knowledge about mechanical tissue properties is required for functional modelling and simulating of tissue and organ responses to external mechanical stress. To get the right properties especially for functional modelling of organs, tissue properties have to be determined in vivo. There are only few described methods for characterization of internal organ's tissue mechanics that can be applied in vivo. We introduce and evaluate a method to determine mechanical tissue properties, especially those of lung tissue, endoscopically. Inverse finite element analysis (utilizing a Neo-Hookean model for hyperelastic materials) and image processing algorithms are used to determine the shear modulus of a soft tissue. The resulting values for shear moduli were normally distributed. The shear modulus of the artificial tissue sample was determined with a relative error of 0.47% compared to the value obtained by uniaxial tensile test.  相似文献   

16.
The elastic behaviors of stratum corneum, viable epidermis, dermis, and whole skin were investigated by nano/microindentation techniques. Insignificant differences in reduced elastic modulus of skin samples obtained from three different porcine breeds revealed breed type independent measurements. The reduced elastic modulus of stratum corneum is shown to be about three orders of magnitude higher than that of dermis. As a result, for relatively shallow and deep indentations, skin elasticity is controlled by that of stratum corneum and dermis, respectively. Skin deformation is interpreted in the context of a layered structure model consisting of a stiff and hard surface layer on a compliant and soft substrate, supported by microscopy observations and indentation measurements.  相似文献   

17.
We have already found that the in vivo skin comet assay is useful for the evaluation of primary DNA damage induced by genotoxic chemicals in epidermal skin cells. The aim of the present study was to evaluate the sensitivity and specificity of the combined in vivo skin comet assay and in vivo skin micronucleus (MN) test using the same animal to explore the usefulness of the new test method. The combined alkaline comet assay and MN test was carried out with three chemicals: 4-nitroquinoline-1-oxide (4NQO), N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) and benzo[a]pyrene (B[a]P). In the first experiment, we compared DNA- and chromosome-damaging effects of 3 [72, 24 and 3 hours (h) before sacrifice] and 4 applications (72, 48, 24 and 3h before sacrifice) of 4NQO, which induces dermal irritancy. The animals were euthanized and their skin was sampled for the combination test. As a result, the 4-application method was able to detect both DNA- and chromosome-damaging potential with a lower concentration; therefore, in the second experiment, MNNG and B[a]P were topically applied four times, respectively. The animals were euthanized, and then their skins were sampled for combination tests. In the alkaline comet assay, significant differences in the percent of DNA (%DNA) in the tail were observed in epidermal skin cells treated with MNNG and B[a]P. In the MN test, an increased frequency of MN cells (%MN) cells was observed by treatment with MNNG; however, there were no significant increases. In contrast, significant differences in %MN were observed by treatment with B[a]P. From these results, we conclude that the combined in vivo skin comet assay and in vivo MN test was useful because it can detect different genotoxicity with the same sampling time and reduce the number of animals used.  相似文献   

18.
Passive mechanical properties differ between muscle groups within a species. Altered functional demands can also shift the passive force-length relationship. The extent that passive mechanical properties differ within a muscle group (e.g. spine extensors) or between homologous muscles of different species is unknown. It was hypothesized that multifidus, believed to specialize in spine stabilization, would generate greater passive tensile stresses under isometric conditions than erector spinae, which have more generalized functions of moving and stabilizing the spine; observing greater multifidus moduli in different species would strengthen this hypothesis. Permeabilized fibre bundles (n = 337) from the multifidus and erector spinae of mice, rats, and rabbits were mechanically tested. A novel logistic function was fit to the experimental data to fully characterize passive stress and modulus. Species had the greatest effect on passive muscle parameters with mice having the largest moduli at all lengths. Rats generated less passive stress than rabbits due to a shift of the passive force-length relationship towards longer muscle lengths. Rat multifidus generated slightly greater stresses than erector spinae, but no differences were observed between mouse muscles. The secondary objective was to determine the parameters required to simulate the passive force-length relationship. Experimental data were compared to the passive muscle model in OpenSim. The default OpenSim model, optimized for hindlimb muscles, did not fit any of the spine muscles tested; however, the model could accurately simulate experimental data after adjusting the input parameters. The optimal parameters for modelling the passive force-length relationships of spine muscles in OpenSim are presented.  相似文献   

19.
Over the past decade chemical processing and engineering of musculoskeletal tissue (tendon and bone) has improved dramatically. The use of bone allograft and xenograft in reconstructive orthopedic and maxillofacial surgeries is increasing, yet severe complications can occur if the material is contaminated in any way. A novel tissue sterilization process, BioCleanse®, has been developed to clean and sterilize musculoskeletal tissue for implantation. The present study was designed to determine the effect of this novel cleaning process on the biomechanical properties of bovine cortical bone prior to implantation. The mechanical properties of treated bovine bone material were compared to human samples with respect to failure under compression, shear and three-point bending. The data demonstrate that bovine bone treated with the novel sterilization procedure has favorable biomechanical properties compared to that of human bone treated in a similar fashion.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号