首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aquilegia ecalcarata Maxim. is the only spurless species within the genus Aquilegia and comprises a monophyletic clade with A. yabeana Kitag., A. kansuensis Brühl, and A. rockii Munz. Our previous study on the genetic diversity of those four species revealed that the populations of A. ecalcarata can be divided into two groups, indicating possible genetic difference within A. ecalcarata. However, it is not clear whether the genetic difference is related to the morphological variation among species and groups of A. ecalcarata populations. To answer that question, the morphological variation patterns based on 22 floral and 19 vegetative traits from 42 populations, covering the entire distribution of A. ecalcarata and its relatives, were analyzed in the present study. The result showed that: (i) the differences among the four species were reflected in the floral rather than the vegetative traits; (ii) populations of A. yabeana and A. rockii fell into one cluster each, and each of the six clusters occupied its own distribution range; (iii) one of two A. ecalcarata clusters fell into a subgroup and shared common floral traits with A. rockii; (iv) the individuals of A. ecalcarata form. ecalcarata and form. semicalcarata were often mixed in the same population; and (v) the populations of A. kansuensis were split into two clusters, which differed obviously in floral traits. These results will provide an important morphological basis for the redefinition of species and lay a foundation for the further exploration of the “spurless” A. ecalcarata.  相似文献   

2.
Studies of the North American columbines (Aquilegia, Ranunculaceae) have supported the view that adaptive radiations in animal-pollinated plants proceed through pollinator specialisation and floral differentiation. However, although the diversity of pollinators and floral morphology is much lower in Europe and Asia than in North America, the number of columbine species is similar in the three continents. This supports the hypothesis that habitat and pollinator specialisation have contributed differently to the radiation of columbines in different continents. To establish the basic background to test this hypothesis, we expanded the molecular phylogeny of the genus to include a representative set of species from each continent. Our results suggest that the diversity of the genus is the result of two independent events of radiation, one involving Asiatic and North American species and the other involving Asiatic and European species. The ancestors of both lineages probably occupied the mountains of south-central Siberia. North American and European columbines are monophyletic within their respective lineages. The genus originated between 6.18 and 6.57 million years (Myr) ago, with the main pulses of diversification starting around 3 Myr ago both in Europe (1.25–3.96 Myr ago) and North America (1.42–5.01 Myr ago). The type of habitat occupied shifted more often in the Euroasiatic lineage, while pollination vectors shifted more often in the Asiatic-North American lineage. Moreover, while allopatric speciation predominated in the European lineage, sympatric speciation acted in the North American one. In conclusion, the radiation of columbines in Europe and North America involved similar rates of diversification and took place simultaneously and independently. However, the ecological drivers of radiation were different: geographic isolation and shifts in habitat use were more important in Europe while reproductive isolation linked to shifts in pollinator specialisation additionally acted in North America.  相似文献   

3.
Shifts in pollen vectors favour diversification of floral traits, and differences in pollination strategies between congeneric sympatric species can contribute to reproductive isolation. Divergence in flowering phenology and selfing could also reduce interspecific crossing between self‐compatible species. We investigated floral traits and visitation rates of pollinators of two sympatric Encholirium species on rocky outcrops to evaluate whether prior knowledge of floral characters could indicate actual pollinators. Data on flowering phenology, visitation rates and breeding system were used to evaluate reproductive isolation. Flowering phenology overlapped between species, but there were differences in floral characters, nectar volume and concentration. Several hummingbird species visited flowers of both Encholirium spp., but the endemic bat Lonchophylla bokermanni and an unidentified sphingid only visited E. vogelii. Pollination treatments demonstrated that E. heloisae and E. vogelii were partially self‐compatible, with weak pollen limitation to seed set. Herbivores feeding on inflorescences decreased reproductive output of both species, but for E. vogelii the damage was higher. Our results indicate that actual pollinators can be known beforehand through floral traits, in agreement with pollination syndromes stating that a set of floral traits can be associated with the attraction of specific groups of pollinators. Divergence on floral traits and pollinator assemblage indicate that shifts in pollination strategies contribute to reproductive isolation between these Encholirium species, not divergence on flowering phenology or selfing. We suggest that hummingbird pollination might be the ancestral condition in Encholirium and that evolution of bat pollination made a substantial contribution to the diversification of this clade.  相似文献   

4.
Spurs have played an important role in the radiation of the genus Aquilegia,but little is known about how the spurless state arose in A.ecalcarata.Here we aim to characterize the genetic divergence within A.ecalcarata and gain insights into the origin of this species.A total of 19 populations from A.ecalcarata and 23 populations from three of its closest relatives(Aquilegia kansuensis,Aquilegia rockii and Aquilegia yabeana) were sampled in this study.We sequenced fifteen nuclear gene fragments a...  相似文献   

5.
The Pyrola picta species complex of western North America comprises four species (P. picta, P. dentata, P. aphylla and P. crypta) that grow sympatrically in some parts of their collective ranges, have remarkably similar flowers and share pollinators. These species do not exhibit the genetic signatures typical of random or heterospecific mating, but instead show genetic divergence patterns indicating that they maintain surprising levels of reproductive isolation. To better understand how species boundaries are maintained, the current study uses statistical ordination analyses to determine whether species isolation across shared geographical ranges might be achieved through subtle differences in floral characters among species. The possible contribution of differences in flowering phenology (e.g. temporal reproductive isolation) to reproductive isolation was also evaluated for the small subset of populations in which two or more species occur in direct sympatry. Among species in the P. picta complex, there are both phylogenetic and geographical trends in some floral characteristics, whereas other characters do not covary with either geography or species identity. In several sympatric populations, differences in flowering phenology among species suggest that timing plays a major role in non‐random (i.e. mainly conspecific) mating. The conclusions of this study are that reproductive isolation in the P. picta species complex is reinforced by differences in the timing of floral maturation and the morphologies of androecium and floral display characters. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 00 , 000–000.  相似文献   

6.
The extent of isolation among closely related sympatric plant species engaged in obligate pollination mutualisms depends on the fitness consequences of interspecies floral visitation. In figs (Ficus), interspecific gene flow may occur when pollinating wasps (Agaonidae) visit species other than their natal fig species. We studied reproductive isolation in a clade of six sympatric dioecious fig species in New Guinea. Microsatellite genotyping and Bayesian clustering analysis of the fig community indicated strong reproductive barriers among sympatric species. A total of 1–2% of fig populations consisted of hybrid individuals. A new experimental method of manipulating fig wasps investigated the reproductive consequences of conspecific and heterospecific pollinator visitation for both mutualists. Fig wasps introduced to Ficus hispidioides pollinated and oviposited in receptive figs. Seed development and seedling growth were largely comparable between conspecific and heterospecific crosses. Heterospecific pollinator fitness, however, was significantly less than that of conspecific pollinators. Heterospecific pollinators induced gall formation but offspring did not develop to maturity in the new host. Selection on pollinators maintaining host specificity appears to be an important mechanism of contemporary reproductive isolation among these taxa that could potentially influence their diversification.  相似文献   

7.
Zhu  Qing-Qing  Xue  Cheng  Sun  Li  Zhong  Xin  Zhu  Xin-Xin  Ren  Yi  Zhang  Xiao-Hui 《Protoplasma》2023,260(2):437-451

Elaborate petals are highly diverse in morphology, structure, and epidermal differentiation and play a key role in attracting pollinators. There have been few studies on the elaborate structure of petals in the tribe Isopyreae (Ranunculaceae). Seven genera in Isopyreae (Aquilegia, Semiaquilegia, Urophysa, Isopyrum, Paraquilegia, Dichocarpum, and Leptopyrum) have petals that vary in morphology, and two genera (Enemion and Thalictrum) have no petals. The petals of nine species belonged to 7 genera in the tribe were studied to reveal their nectary structure, epidermal micromorphology and ancestral traits. The petal nectaries of Isopyreae examined in this study were located at the tip of spurs (Aquilegia yabeana and A. rockii), or the bottom of shallow sacs (Semiaquilegia adoxoides, Urophysa henryi, Isopyrum manshuricum, and Paraquilegia microphylla), a cup-shaped structure (Dichocarpum fargesii) and a bilabiate structure (Leptopyrum fumarioides). The petal nectary of eight species in Isopyreae (except A. ecalcarata) was composed of secretory epidermis, nectary parenchyma, and vascular tissues, and some sieve tubes reached the secretory parenchyma cells. Among the eight species with nectaries examined in the present study, A. yabeana had the most developed nectaries, with 10–15 layers of secretory parenchyma cells. The epidermal cells of mature petals of the nine species were divided into 11 types. Among these 11 types, there were two types of secretory cells and two types of trichomes. Aquilegia yabeana and A. rockii had the highest number of cell types (eight types), and I. manshuricum and L. fumarioides had the lowest number of cell types (three types). Aquilegia ecalcarata had no secretory cells, and the papillose conical polygonal secretory cells of D. fargesii were different from those of the other seven species with nectaries. Trichomes were found only in Aquilegia, Semiaquilegia, Urophysa, and Paraquilegia. The ancestral mode of nectar presentation in Isopyreae was petals with hidden nectar (70.58%). The different modes of nectar presentation in petals may reflect adaptations to different pollinators in Isopyreae.

  相似文献   

8.
Background and AimsInterspecific difference in pollinators (pollinator isolation) is important for reproductive isolation in flowering plants. Species-specific pollination by fungus gnats has been discovered in several plant taxa, suggesting that they can contribute to reproductive isolation. Nevertheless, their contribution has not been studied in detail, partly because they are too small for field observations during flower visitation. To quantify their flower visitation, we used the genus Arisaema (Araceae) because the pitcher-like spathe of Arisaema can trap all floral visitors.MethodsWe evaluated floral visitor assemblage in an altitudinal gradient including five Arisaema species. We also examined interspecific differences in altitudinal distribution (geographic isolation) and flowering phenology (phenological isolation). To exclude the effect of interspecific differences in altitudinal distribution on floral visitor assemblage, we established ten experimental plots including the five Arisaema species in high- and low-altitude areas and collected floral visitors. We also collected floral visitors in three additional sites. Finally, we estimated the strength and contribution of these three reproductive barriers using a unified formula for reproductive isolation.Key ResultsEach Arisaema species selectively attracted different fungus gnats in the altitudinal gradient, experimental plots and additional sites. Altitudinal distribution and flowering phenology differed among the five Arisaema species, whereas the strength of geographic and phenological isolations were distinctly weaker than those in pollinator isolation. Nevertheless, the absolute contribution of pollinator isolation to total reproductive isolation was weaker than geographic and phenological isolations, because pollinator isolation functions after the two early-acting barriers in plant life history.ConclusionsOur results suggest that selective pollination by fungus gnats potentially contributes to reproductive isolation. Since geographic and phenological isolations can be disrupted by habitat disturbance and interannual climate change, the strong and stable pollinator isolation might compensate for the weakened early-acting barriers as an alternative reproductive isolation among the five Arisaema species.  相似文献   

9.
Traits are basic attributes of organisms that form the basis for speciation and diversity. The floral nectar spur is a classic example of a key innovative trait. Differences in nectar spur morphology can lead to pollinator specialization and thereby promote reproductive isolation between species. Despite its importance, the nectar spur has been lost in some members of the columbine genus (Aquilegia), resulting in a new spurless trait, and the evolutionary influence of this trait has become a topic of scientific interest. Aquilegia ecalcarata is an important representative columbine species that lacks spurs. Here, we resequenced the genomes of 324 individuals from A. ecalcarata and four related species. We found that A. ecalcarata was divided into three groups based on the phylogenetic relationships and population genetic structures. Topology weighting analysis revealed that A. ecalcarata has multiple origins, and Patterson′s D statistic showed that the spurless trait may have one origin. Floral morphological analysis revealed significant differences between A. ecalcarata and its spurred sister groups, and the floral phenotypes of the three A. ecalcarata groups have identical or similar floral phenotypes. Our results confirmed that the spurless trait not only produced the phenotype of A. ecalcarata but also contributed to the emergence of the A. rockii phenotype. Moreover, the spurless trait promoted the divergence between A. ecalcarata and its close, spurred relatives. Our research shows that the loss of key innovative traits can play a very important role in speciation and species diversity.  相似文献   

10.
The acquisition of floral nectar spurs is correlated with increased species diversity across multiple clades. We tested whether variation in nectar spurs influences reproductive isolation and, thus, can potentially promote species diversity using two species of Aquilegia, Aquilegia formosa and Aquilegia pubescens, which form narrow hybrid zones. Floral visitors strongly discriminated between the two species both in natural populations and at mixed-species arrays of individual flowers. Bees and hummingbirds visited flowers of A. formosa at a much greater rate than flowers of A. pubescens. Hawkmoths, however, nearly exclusively visited flowers of A. pubescens. We found that altering the orientation of A. pubescens flowers from upright to pendent, like the flowers of A. formosa, reduced hawkmoth visitation by an order of magnitude. In contrast, shortening the length of the nectar spurs of A. pubescens flowers to a length similar to A. formosa flowers did not affect hawkmoth visitation. However, pollen removal was significantly reduced in flowers with shortened nectar spurs. These data indicate that floral traits promote floral isolation between these species and that specific floral traits affect floral isolation via ethological isolation while others affect floral isolation via mechanical isolation.  相似文献   

11.
Floral divergence among congeners may relate to differential utilization of pollinators and contribute to reducing overlap in pollination niches. To investigate whether and how floral differences are associated with differential utilization of pollinators in three sympatric Adenophora species, we analyzed floral traits and evaluated the contribution of different visitors to pollination. We compared visitation rates of different pollinator categories in different years and sites. A suite of floral traits differed among the three Adenophora species, suggesting adaptation to diurnal versus nocturnal pollination and an intermediate condition. However, many visitor species were shared among the three plant species, suggesting that floral traits did not rigorously filter visitors. Effective pollinators were large bees and moths. The importance of large bees as pollinators decreased whereas that of moths increased along the gradient from typically bee-pollinated to moth-pollinated flowers. The intermediate species (A. khasiana) differed substantially from the other two species in pollinator species but not in pollinator categories. The principal pollinator category of each species was constant across years and sites except in the intermediate species where it differed between two sites. Overall, the three sympatric species of Adenophora partition pollinators by floral divergence and the principal pollinators coincide with the predictions based on floral syndromes.  相似文献   

12.
Polyploidy has played a key role in plant evolution and diversification. Despite this, the processes governing reproductive isolation among cytotypes growing in mixed-ploidy populations are still largely unknown. Theoretically, coexistence of diploid and polyploid individuals in sympatric populations is unlikely unless cytotypes are prezygotically isolated through assortative pollination. Here, we investigated the pre-mating barriers involved in the maintenance of three co-occurring cytotypes from the genus Gymnadenia (Orchidaceae): tetraploid and octoploid G. conopsea and tetraploid G. densiflora. We assessed differences in flowering phenology, floral morphology, and visual and olfactory cues, which could lead to assortative mating. Gas chromatography coupled with electroantennographic detection was used to identify scent compounds with physiological activity in the two main pollinators, Deilephila porcellus and Autographa gamma. The importance of olfactory cues was also assessed in the field by analysing the moths’ responses to the olfactory display of the plants, and by following the pollinator’s behaviour on artificial arrays. Our complex approach demonstrated that the coexistence of Gymnadenia cytotypes in mixed-ploidy populations was only partly explained by differences in floral phenology, as cytotypes with overlapping flowering (i.e., octoploid G. conopsea and tetraploid G. densiflora) might freely exchange pollen due to only 1 mm differences in spur lengths and the lack of assortative behaviour of pollinators. While floral colour among the cytotypes was similar, floral scent differed significantly. Though both pollinator species seemed to physiologically detect these differences, and the floral scent alone was sufficient to attract them, pollinators did not use this cue to discriminate the cytotypes in the field. The absence of pre-mating barriers among cytotypes, except partial temporal segregation, suggests the existence of other mechanisms involved in the cytotypes’ coexistence. The genetic differences in ITS sequences among cytotypes were used to discuss the cytotype’s origin.  相似文献   

13.
Sympatric and taxonomically related species may present pre- and/or postzygotic mechanisms for reproductive isolation. We compared the phenology and reproductive biology of Byrsonima intermedia and B. pachyphylla, two sympatric Malpighiaceae species, growing in a remnant of Cerrado in Central Brazil. Both species are evergreens and do not have an overlapping flowering period. In both species, dispersal occurs during the rainy season with low and intermediate overlap in the production of immature and mature fruits, respectively. Both species exhibit self-incompatibility (SI), or, in the case of B. intermedia, facultative SI, and, hence, depend on pollinators to compensate for the lack of spontaneous self-pollination. The flowers of the Byrsonima species were visited by fifteen species of bees that collected pollen and/or oil. Based on their more appropriate intrafloral posture, Epicharis flava and Centris varia were the main pollinators of both species, presenting more frequent visits and/or exhibiting trapline foraging behavior, tending to promote outcrossing. Temporal variation in flowering period and total or partial self-incompatibility seem to function as prezygotic isolation mechanisms that form barriers to gene flow between the studied species and probably avoid competition among pollinators. Both species make oil and pollen available to flower visitors and pollinators almost the entire year, but since Byrsonima intermedia has a long flowering time and is very abundant in the study area, it seems to be more important in maintaining flower-visiting bees.  相似文献   

14.
马先蒿属植物花冠分化与繁殖适应的研究进展   总被引:2,自引:0,他引:2  
结合已有的研究报道和作者近年来的工作,对马先蒿属(Pedicularis)植物的花冠多样化成因与繁殖适应特性进行了总结和探讨。通过对该属4种进化花冠型的花器官发生和分化的研究发现,花部各器官在发生和发育初期基本一致,后期上唇形态的分化是导致成熟花形态结构产生较大差异的重要阶段。孢粉学研究认为,花冠类型与花粉萌发孔类型之间具有显著相关性;萌发沟的演化可能与繁殖适应有一定的关系。分子系统学研究表明,多样化的花冠类型在不同的谱系内经过若干次的独立进化而表现出了高度的平行演化(parallelism)。传粉生物学研究证实,该属植物花冠多样化与其主要传粉者熊蜂属(Bombus)昆虫的传粉行为存在较为密切的关系。具有相同(似)花冠类型的马先蒿可能被同种或不同种的熊蜂以相同的方式访问,但在花粉落置位置上存在显著差异,这可能有助于同域分布重叠的物种间在生殖上的机械隔离,而花冠的分化在一定程度上促进了新的物种形成。  相似文献   

15.
Orchid species of Mediterranean genus Serapias often live in sympatry, exhibit similar floral morphology, bloom in the same period and share the same pollinators. Previous studies on Serapias species have ascertained that reproductive isolation is based on pre-pollination barriers, that secretory cells and trichomes are typically distributed on the floral labellum and that flowers produce aliphatic compounds. In this study we compare the floral scent composition of four widespread, co-occurring Serapias species, namely Serapias lingua, Serapias parviflora, Serapias vomeracea and Serapias cordigera. Our goals are to assess if differences in floral scent may act as interspecific pre-pollination barriers and if these olfactory signals may be involved in the pollination strategy of Serapias. We find that all the selected species produce C20–C29 alkanes and alkenes and, in addition, have detected the presence in S.?cordigera of large amounts of oleate and stearate ethyl ester. Our findings help to clarify that the sympatric Serapias species have slightly different floral scent signatures that may account for their relevant role as pre-pollination barriers. Therefore, the pollination strategy of Serapias relies not only on the tubular shape of their floral corolla but also on the production of olfactory signals that may lure potential pollinators and even assure a sufficient degree of pollinator fidelity.  相似文献   

16.

Background and Aims

Pollinator specificity facilitates reproductive isolation among plants, and mechanisms that generate specificity influence species boundaries. Long-range volatile attractants, in combination with morphological co-adaptations, are generally regarded as being responsible for maintaining extreme host specificity among the fig wasps that pollinate fig trees, but increasing evidence for breakdowns in specificity is accumulating. The basis of host specificity was examined among two host-specific Ceratosolen fig wasps that pollinate two sympatric varieties of Ficus semicordata, together with the consequences for the plants when pollinators entered the alternative host variety.

Methods

The compositions of floral scents from receptive figs of the two varieties and responses of their pollinators to these volatiles were compared. The behaviour of the wasps once on the surface of the figs was also recorded, together with the reproductive success of figs entered by the two Ceratosolen species.

Key Results

The receptive-phase floral scents of the two varieties had different chemical compositions, but only one Ceratosolen species displayed a preference between them in Y-tube trials. Specificity was reinforced at a later stage, once pollinators were walking on the figs, because both species preferred to enter figs of their normal hosts. Both pollinators could enter figs of both varieties and pollinate them, but figs with extra-varietal pollen were more likely to abort and contained fewer seeds. Hybrid seeds germinated at normal rates.

Conclusions

Contact cues on the surface of figs have been largely ignored in previous studies of fig wasp host preferences, but together with floral scents they maintain host specificity among the pollinators of sympatric F. semicordata varieties. When pollinators enter atypical hosts, post-zygotic factors reduce but do not prevent the production of hybrid offspring, suggesting there may be gene flow between these varieties.  相似文献   

17.
Closely related species often differ in traits that influence reproductive success, suggesting that divergent selection on such traits contribute to the maintenance of species boundaries. Gymnadenia conopsea ss. and Gymnadenia densiflora are two closely related, perennial orchid species that differ in (a) floral traits important for pollination, including flowering phenology, floral display, and spur length, and (b) dominant pollinators. If plant–pollinator interactions contribute to the maintenance of trait differences between these two taxa, we expect current divergent selection on flowering phenology and floral morphology between the two species. We quantified phenotypic selection via female fitness in one year on flowering start, three floral display traits (plant height, number of flowers, and corolla size) and spur length, in six populations of G. conopsea s.s. and in four populations of G. densiflora. There was indication of divergent selection on flowering start in the expected direction, with selection for earlier flowering in two populations of the early‐flowering G. conopsea s.s. and for later flowering in one population of the late‐flowering G. densiflora. No divergent selection on floral morphology was detected, and there was no significant stabilizing selection on any trait in the two species. The results suggest ongoing adaptive differentiation of flowering phenology, strengthening this premating reproductive barrier between the two species. Synthesis: This study is among the first to test whether divergent selection on floral traits contribute to the maintenance of species differences between closely related plants. Phenological isolation confers a substantial potential for reproductive isolation, and divergent selection on flowering time can thus greatly influence reproductive isolation and adaptive differentiation.  相似文献   

18.
Geographic differences in floral traits may reflect geographic differences in effective pollinator assemblages. Independent local adaptation to pollinator assemblages in multiple regions would be expected to cause parallel floral trait evolution, although sufficient evidence for this is still lacking. Knowing the intraspecific evolutionary history of floral traits will reveal events that occur in the early stages of trait diversification. In this study, we investigated the relationship between flower spur length and pollinator size in 16 populations of Aquilegia buergeriana var. buergeriana distributed in four mountain regions in the Japanese Alps. We also examined the genetic relationship between yellow‐ and red‐flowered individuals, to see if color differences caused genetic differentiation by pollinator isolation. Genetic relationships among 16 populations were analyzed based on genome‐wide single‐nucleotide polymorphisms. Even among populations within the same mountain region, pollinator size varied widely, and the average spur length of A. buergeriana var. buergeriana in each population was strongly related to the average visitor size of that population. Genetic relatedness between populations was not related to the similarity of spur length between populations; rather, it was related to the geographic proximity of populations in each mountain region. Our results indicate that spur length in each population evolved independently of the population genetic structure but in parallel in response to local flower visitor size in different mountain regions. Further, yellow‐ and red‐flowered individuals of A. buergeriana var. buergeriana were not genetically differentiated. Unlike other Aquilegia species in Europe and America visited by hummingbirds and hawkmoths, the Japanese Aquilegia species is consistently visited by bumblebees. As a result, genetic isolation by flower color may not have occurred.  相似文献   

19.
We studied the reproductive biology of three sympatric Araceae species, Anthurium sagittatum, A. thrinax and Spathiphyllum humboldtii in French Guiana. The plants flowered simultaneously and were visited by scent‐collecting male euglossine bees, which were apparently their major pollinators. In total, each species was visited by 3–7 euglossine species, and 2–3 euglossine species accounted for at least 80% of all flower visits, with visits being plant species‐specific. Floral scent consisted of 6–10 main compounds, which made up 76–94% of the total amount of volatiles and were specific in these high amounts to each plant species. We suggest that the different floral scents lead to clear separation of the main pollinating euglossine species, providing a directed and efficient intraspecific pollen flow that results in high reproductive success. Since the simple floral (inflorescence) morphology of the studied plants does not support any morphological mechanisms to exclude visitors, as for example in euglossine‐pollinated perfume orchids, floral scent might be of major importance for the reproductive isolation and sympatric occurrence of these plants.  相似文献   

20.
Hybrid speciation represents a relatively rapid form of diversification. Early models of homoploid hybrid speciation suggested that reproductive isolation between the hybrid species and progenitors primarily resulted from karyotypic differences between the species. However, genic incompatibilities and ecological divergence may also be responsible for isolation. Iris nelsonii is an example of a homoploid hybrid species that is likely isolated from its progenitors primarily by strong prezygotic isolation, including habitat divergence, floral isolation and post-pollination prezygotic barriers. Here, we used linkage mapping and quantitative trait locus (QTL) mapping approaches to investigate genomic collinearity and the genetic architecture of floral differences between I. nelsonii and one of its progenitor species I. hexagona. The linkage map produced from this cross is highly collinear with another linkage map produced between I. fulva and I. brevicaulis (the two other species shown to have contributed to the genomic makeup of I. nelsonii), suggesting that karyotypic differences do not contribute substantially to isolation in this homoploid hybrid species. Similar to other studies of the genetic architecture of floral characteristics, at least one QTL was found that explained >20% variance in each color trait, while minor QTLs were detected for each morphological trait. These QTLs will serve as hypotheses for regions under selection by pollinators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号