首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recombinant hemopoietic colony-stimulating factors (CSFs), including GM-CSF, G-CSF and IL-3, have been shown to be effective stimulators of both self-renewal and terminal differentiation of blast stem cells in acute myeloblastic leukemia (AML). We have examined the activity of a fourth growth factor, recombinant CSF-1 (or M-CSF), on the growth of leukemic blasts in culture. CSF-1 was found to be active on some, but not all, blast populations. In sensitive cells, CSF-1 often stimulated the production of adherent blast cells incapable of division. This observation leads us to suggest that CSF-1 may be useful in the treatment of selected cases of AML.  相似文献   

2.
A hypothesis of the use of hemopoietic stem cells with a view of satisfying the demand for mature cells depending on their generation age predicts that CFUs that survived after repeated treatment with hydroxyurea should have a greater capacity for self-renewal. It has been demonstrated that after repeated administrations of hydroxyurea according to the scheme devised by the authors of the hypothesis (3-4 times) and as a result of a more prolonged treatment (6 times, every other 12 or 15 h), the capacity of the survived hemopoietic stem cells for self maintenance was not only lower than normal but commonly significantly decreased. The generation-age hypothesis of the use of hemopoietic stem cells thus remains badly needing experimental support.  相似文献   

3.
Interleukin-3 (IL-3)-dependent cell lines (FDCP-mix) were cloned and isolated from long-term bone-marrow cultures infected with src-MoMuLV. These cell lines have many of the characteristics of hematopoietic stem cells. Early isolates of the FDCP-mix cells form spleen colonies in irradiated mice and establish long-term hematopoiesis on irradiated marrow stroma in vitro in the absence of IL-3. These two properties of the cells are lost within 15 weeks of establishing the cell lines, but the cell lines retain their ability to differentiate in a multilineage response to hematopoietic growth factors and to hematopoietic stromal cells, as well as to self-renew in the presence of IL-3. The choice between differentiation and self-renewal in FDCP-mix cells can clearly be modified by culture conditions: in particular, cultures containing horse serum preferentially promote self-renewal, whereas cultures containing fetal calf serum preferentially promote differentiation. The FDCP-mix cell lines are not leukemic, nor do they contain the src oncogene. Their ability to respond to hematopoietic growth factors and stroma in a similar manner to normal hematopoietic cells makes them a valuable model for studying the regulation of hemopoietic cell self-renewal and differentiation.  相似文献   

4.
In long-term cultures of murine bone marrow, clonal succession of hemopoietic cells was observed as measured by karyologic analysis. There were high oscillations in self-renewal of CFUs in the cultures. A close correlation between the CFUmix karyotype and mitotic non-adherent cells in culture (but not between these cell types and CFUs) was revealed.  相似文献   

5.
Daughter cells arising from a single cell division in the leukemic cell line K562 have equivalent self-renewal potential with respect to their ability to form clones in semisolid medium. However, individual cells isolated from these clones in sequence have vastly different abilities in their self-renewal potentials. Thus, cells originating from a clone with any particular self-renewal potential exhibit the full range of self-renewal potentials--from highly renewing to none renewing, cells. These results show that self-renewal potential in the K562 cell line is a random, reversible and partially noninherited characteristic. It is suggested that the stochastic variability of the intraclonal self-renewal potential of K562 progeny cells either reflects the initial expression of a differentiation program or the expression of the predeterministic portion of the normal myelopoietic differentiation pathway.  相似文献   

6.
Retroviral vectors were used to introduce an activated ras gene into murine pluripotent hemopoietic stem cells. We attempted to reconstitute the hemopoietic system of lethally irradiated mice with isolated spleen colonies obtained in vivo after injection of infected bone marrow cells. Spleen colonies derived from infected bone marrow were inefficient in promoting long-term survival of irradiated hosts. This loss of reconstitutive capacity of spleen colonies was not due to the retroviral infection per se but to the in vitro culture of spleen colony precursors. Incubation for 24 h in the presence of fetal calf serum and interleukin-3 without virus-producing cells was sufficient to abolish completely the reconstitutive capacity of spleen colonies while maintaining both self-renewal and pluripotential capacities of spleen colony precursors. These results show that the in vitro manipulation of stem cells that is included in current protocols for retroviral infection can modify the developmental potential of these cells. This finding clearly indicates that the use of retroviral vectors can introduce a bias in the analysis of hemopoiesis.  相似文献   

7.
采用人胎肝造血基质细胞的体外液体培养技术,结合造血干细胞和祖细胞的体外测试方法,研究了造血基质细胞所释放的造血生长因子与造血干细胞和祖细胞之间的相互作用。结果表明,在适宜的条件下,人胎肝造血基质细胞可在体外传代培养达100d之久。培养过程中,对不同时间收集的培养上清液进行测试的结果表明,这些贴壁细胞可以不断地释放多种造血活性物质。在100d培养过程中,上清液中始终都可以检出CFU-S增殖刺激物活性。培养第24天的上清液中还可检出BPF和GM-CSF活性。这些造血活性物质对CFU-S的生理状态和祖细胞的增殖与分化有着深刻的影响。但是在培养上清液中未检出IL-3样活性物质。  相似文献   

8.
Adult mouse hemopoietic stem cells (HSCs) are typically quiescent and enter and progress through the cell cycle rarely in steady-state bone marrow, but their rate of proliferation can be dramatically enhanced on demand. We have studied the cell cycle kinetics of HSCs in the developing fetal liver at a stage when they expand extensively. Despite that 100% of fetal liver HSCs divide within a 48-h period, their average cell cycle transit time (10.6 h) is twice that of their downstream progenitors, translating into a prolonged G(1) transit and a period of relative quiescence (G(0)). In agreement with their prolonged G(1) transit when compared with hemopoietic progenitors, competitive transplantation experiments demonstrate that fetal HSCs are highly enriched in G(1) but also functional in S-G(2)-M. This observation combined with experimental data demonstrating that adult HSCs forced to expand ex vivo also sustain a uniquely prolonged cell cycle and G(1) transit, demonstrate at least in part why purified HSCs at any state of development or condition are highly enriched in the G(0)-G(1) phases of the cell cycle. We propose that a uniquely prolonged cell cycle transit is a defining stem cell property, likely to be critical for their maintenance and self-renewal throughout development.  相似文献   

9.
Feline leukemia viruses (FeLVs) belonging to interference subgroup C induce fatal anemia resembling human pure red cell aplasia (PRCA). Subgroup A FeLVs, although closely related genetically to FeLVs of subgroup C, do not induce PRCA. The determinants for PRCA induction by a molecularly cloned prototype subgroup C virus (FeLV-Sarma-C [FSC]) have been localized to the N-terminal 241 amino acids of the surface glycoprotein (SU) gp70. To investigate whether the anemogenic activity of FSC reflects a unique capacity to infect erythroid progenitor cells, we used correlative immunogold, immunofluorescence, and cytological staining to study prospectively the hemopoietic cell populations infected by either FSC or FeLV-FAIDS-61E-A (F6A), a prototype of subgroup A virus. The results demonstrated that although only FSC-infected animals developed erythrocyte aplasia, the env SU and the major core protein (p27) were expressed in a surprisingly large fraction of the lymphoid, erythroid, and myeloid lineage marrow cells in both FSC- and F6A-infected cats. Between days 8 and 17 postinoculation, gp70 and p27 were detected in 43 to 73% of erythroid, 25 to 75% of lymphoid, and 35 to 50% of myeloid lineage cells, regardless of whether the cats were infected with FSC or F6A. Thus, anemogenic subgroup C and nonanemogenic subgroup A FeLVs have similar hemopoietic cell tropism and infection kinetics, despite their divergent effects on erythroid progenitor cell function. Acute anemia induction by subgroup C FeLV, therefore, does not reflect a unique tropism for marrow erythroid cells but rather indicates a unique cytopathic effect of the SU on erythroid progenitor cells.  相似文献   

10.
The granulocyte colony-stimulating factor (G-CSF) belongs to a family of hemopoietic growth factors regulating the production of granulocytes and macrophages. Murine G-CSF stimulates the proliferation and differentiation of precursors of neutrophilic granulocytes and is also able to stimulate the functional activities of mature neutrophils. Among the hemopoietic growth factors, G-CSF has an outstanding capacity to induce terminal differentiation and suppression of self-renewal in myeloid leukemic cells. Murine and human G-CSF's show complete biological cross-reactivity across species and bind equally well to G-CSF receptors of either species. Specific receptors for G-CSF exist on all normal neutrophilic cells and have not been lost in the generation of primary human myeloid leukemias. This data indicates that G-CSF may be a useful reagent in the treatment of myeloid leukemia, in hemopoietic regeneration and in increasing resistance against infections.  相似文献   

11.
Since the first successful cord blood transplant was performed in 1988 there has been a gradual increase in the use of cord blood for hemopoietic stem cell transplantation. Worldwide, over 8,000 unrelated cord blood transplants have been performed with the majority being for children with hemopoietic malignancies. Transplantation for adults has increased but is limited by the low number of nucleated cells and CD34(+) cells within a single cord blood collection. Cord blood hemopoietic stem cells are more primitive than their adult counterparts and have high proliferative potential. Cord blood ex vivo expansion is designed to improve transplant outcomes by increasing the number of hemopoietic stem cells with long term repopulating potential and their differentiated progeny. However, despite a large amount of research activity during the last decade, this aim has not been realized. Herein we discuss the rationale for this approach; culture methods for ex vivo expansion, ways to assess the functional capacity of ex vivo generated hemopoietic stem cells and clinical outcomes following transplantation with ex vivo expanded cord blood.  相似文献   

12.
Several investigators have described hemopoietic colonies expressing multilineage differentiation in culture. We recently identified a class of murine hemopoletic progenitors which form blast cell colonies with very high replating efficiencies. In order to clarify further the relationship between progenitors for blast cell colonies and progenitors for the multilineage hemopoietic colonies in culture, we carried out analyses of kinetic and differentiation properties of murine blast cell colonies. Serial observations of the development of blast cell colonies into multilineage (and single lineage) colonies in cultures of spleen cells obtained from 5-fluorouracil (5-FU)-treated mice confirmed the transitional nature of the murine blast cell colonies. The data also suggested that the early pluripotent progenitors are in G0 for variable periods, and that when triggered into cell cycle, they proliferate at relatively constant doubling rates during the early stages of differentiation. The notion that some of the pluripotent progenitors are in G0 was also supported by long-term thymidine suicide studies in which spleen cells were exposed to 3H-thymidine with high specific activity for 5 days in culture, washed, and assayed for surviving progenitors. Comparison of replating abilities of day-7 and day-16 blast cell colonies from normal as well as 5-FU-treated mice indicated that some of the day-7 blast cell colonies are derived from maturer populations of progenitors which are sensitive to 5-FU. In contrast, progenitors for the day-16 blast cell colonies are dormant in cell cycle and were not affected by 5-FU treatment. Previously we reported that progenitors for day-16 blast cell colonies have a significant capacity for self-renewal. These observations suggest the hypothesis that the capability for self-renewal is accompanied by long periods of G0, and that once commitment to differentiation takes place, then active cell division occurs.  相似文献   

13.
It is known that the poor colony-forming ability of B6 bone marrow transplanted into B6D2F1 hybrids can be improved if B6 lymphocytes are given in addition. It was recently reported that the augmenting lymphocytes decrease the doubling time of differentiating hemopoietic cells. To determine whether thymus cells alter the self-renewal of CFUs in this parent leads to F1 combination, retransplantation and 3H-thymidine 'suicide' were employed as methods to determine the cell-division rate. We have observed that in the presence of thymocytes, parental bone marrow cells are seeded more efficiently in the spleen, and the lag phase of the CFUs growth curve is shortened. However, thymic lymphocytes do not increase the slope of the exponential growth phase of CFUs.  相似文献   

14.
A concept of hemopoietic regulation and its biomathematical realization   总被引:3,自引:0,他引:3  
Although the amount of experimental data on the behavior of the hemopoietic system after various perturbations is considerable, a conclusive understanding of hemopoietic regulation is still absent. In the last years, we have examined murine erythropoiesis, thrombopoiesis, granulopoiesis, and stem cell hemopoiesis by means of mathematical modeling in order to identify some of the underlying principles. Our results can be summarized in four hypotheses. 1) The regulation of hemopoiesis is governed by three interrelated control loops: autoregulation of stem cells, feedback from progenitors and precursors to the stem cells, and feedback from mature cells to progenitor and precursor cells. 2) The feedback from mature cells to the progenitor and precursor cells predominantly varies the number of cell divisions taking place during hemopoietic maturation. 3) Two distinct properties of the stem cells are regulated: their cyclic activity and their self-renewal. Both are under the control of stem cell autoregulation and the feedback from progenitors and precursors. 4) A large variance in the maturation time from the stem cells to the mature cells stabilizes the hemopoietic control. The mathematical formulation of these assumptions allows us to understand a broad range of experimental observations including recovery from stem cell damage, hypoproliferative and hyperproliferative situations, and interactions between different cell lines.  相似文献   

15.
The production of B lymphocytes and myeloid cells occurs in the bone marrow in association with a supporting population of stromal cells. To determine whether these processes are dependent upon the same or different populations of stromal cells, stromal cell lines were generated from the adherent layer of a Dexter type long-term bone marrow culture. These cultures support myeloid cells and their precursors, a B cell precursor, and the adherent layer cells with support B cell differentiation under appropriate conditions. Two of the lines examined, S10 and S17, express class I histocompatibility antigens but not other hemopoietic cell surface determinants such as Thy-1, Lyt-1, Ig, Ia, Mac-1, or BP-1. Both lines could support myelopoiesis under Dexter conditions upon seeding with nylon wool-passed bone marrow. The nylon wool passage depletes stromal cells capable of forming adherent layers in vitro but retains hemopoietic precursors. The number of cells and colony-forming units-granulocytes/macrophages in the nonadherent cell population recovered 3 wk post-seeding had increased 19-fold and 10-fold, respectively, in the reseeded cultures of S10 and S17. After 3 wk of growth in Dexter conditions, the reseeded cultures were transferred to conditions optimal for B cell differentiation described by Whitlock and Witte. After 4 wk of growth, hemopoietic cells were consistently recovered from S17 cultures but not those of S10. A proportion of these cells from S17 cultures expressed the 14.8 antigen and were surface IgM positive. Surviving hemopoietic cells present in cultures of S10 were primarily macrophages. These findings indicate that S17 but not S10 can support both myelopoiesis and B lymphopoiesis and suggest that one stromal cell population has the capacity to form a hemopoietic microenvironment for both lineages.  相似文献   

16.
Labelling of mammalian cells with superparamagnetic iron oxide (SPIO) nanoparticles enables to monitor their fate in vivo using magnetic resonance imaging (MRI). However, the question remains whether or not SPIO nanoparticles affect the phenotype of labelled cells. In the present study, the effects of SPIO nanoparticles from two producers on the growth and differentiation of mouse embryonic stem (ES) cells in vitro were investigated. Our observations have shown that SPIO nanoparticles have no effect on the self-renewal of ES cells. Subsequently, we studied the effect of SPIO on the formation of embryoid bodies and neural differentiation of ES cell in monolayer culture. The cavitation of embryoid bodies was partially inhibited and neural differentiation was supported regardless the type of SPIO nanoparticles used. Thus for the first time we documented the effects of SPIO nanoparticles on ES cells and their differentiation.  相似文献   

17.
《Cellular signalling》2014,26(7):1500-1505
Endogenous reactive oxygen species (ROS) control is important for the maintenance of self-renewal of embryonic stem (ES) cells. Although miRNAs have been found to be critically involved in the regulation of the self-renewal, whether miRNAs can regulate the signaling axis to control ROS in ES cells is unclear. Here we show that miR-29b specifically regulates the self-renewal of mouse ES cells in response to ROS generated by antioxidant-free culture. Sirt1 is the direct target of miR-29b and can also make mES cells sensitive to ROS and regulate the self-renewal of mES cells during the response of ROS. We further found that Sirt1 could attenuate the miR-29b function in regulating mES cells' self-renewal in response to ROS. Our results determined that miR-29b–Sirt1 axis regulates self-renewal of mES cells in response to ROS.  相似文献   

18.
Highly purified primitive hemopoietic stem cells express BMP receptors but do not synthesize bone morphogenetic proteins (BMPs). However, exogenously added BMPs regulate their proliferation, differentiation, and survival. To further explore the mechanism by which BMPs might be involved in hemopoietic differentiation, we tested whether stromal cells from long-term culture (LTC) of normal human bone marrow produce BMPs, BMP receptors, and SMAD signaling molecules. Stromal cells were immunohistochemically characterized by the presence of lyzozyme, CD 31, factor VIII, CD 68, S100, alkaline phosphatase, and vimentin. Gene expression was analyzed by RT-PCR and the presence of BMP protein was confirmed by immunohistochemistry (IHC). The supportive role of the stromal cell layer in hemopoiesis in vitro was confirmed by a colony assay of clonogenic progenitors. Bone marrow stromal cells express mRNA and protein for BMP-3, -4, and -7 but not for BMP-2, -5, and -6 from the first to the eighth week of culture. Furthermore, stromal cells express the BMP type I receptors, activin-like kinase-3 (ALK-3), ALK-6, and the downstream transducers SMAD-1, -4, and -5. Thus, human bone marrow stromal cells synthesize BMPs, which might exert their effects on hemopoietic stem cells in a paracrine manner through specific BMP receptors.  相似文献   

19.
We recently identified a murine hemopoietic stem cell colony which consists of undifferentiated (blast) cells and appears to be more primitive than CFU-GEMM in the stem cell hierarchy. The progenitors for the colony which we termed “stem cell colony” possess an extensive self-renewal capacity and the ability to generate many secondary multipotential hemopoietic colonies in culture. We replated a total of 68 stem cell colonies from cultures of murine spleen cells and analyzed the number of stem cell–and granulocyte(neutrophil)-erythrocyte-macrophage-megakaryocyte (GEMM) colony-forming cells in individual stem cell colonies. Of the 68 stem cell colonies, 35 contained progenitors (abbreviated as “S”-cells) for stem cell colonies. The distributions of S-cells and CFU-GEMM in individual stem cell colonies were extremely heterogeneous. Neither the frequency distributions of S-cells nor CFU-GEMM in stem cell colonies could be fitted well by Poisson distribution. Rather, the frequency distribution of the s-cells could be approximated by a geometric distribution and that of CFU-GEMM by an exponential distribution, both of which are variates of the gamma distribution. Our observations are in agreement with those on the distributions of CFU-S in individual spleen colonies and provided support for a stochastic model for stem cell self-renewal and commitment in culture. Application of the theory of the branching process to the distribution of S-cells revealed a distributional parameter “p” of 0.589 which is also in agreement with the earlier report on the p value for reproduction of CFU-S.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号