首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Molecular interactions between the photoreceptor G protein and rhodopsin   总被引:1,自引:0,他引:1  
1. The visual transduction system of the vertebrate retina is a well-studied model for biochemical and molecular studies of signal transduction. The structure and function of rhodopsin, a prototypical G protein-coupled receptor, and transducin or Gt, the photoreceptor G protein, have been particularly well studied. Mechanisms of rhodopsin-Gt interaction are discussed in this review. 2. The visual pigment rhodopsin contains a chromophore, and thus conformational changes leading to activation can be monitored spectroscopically. A model of the conformational changes in the activated receptor is presented based on biophysical and biochemical data. 3. The current information on sites of interaction on receptors and cognate G proteins is summarized. Studies using synthetic peptides from amino acid sequences corresponding to Gt and rhodopsin have provided information on the sites of rhodopsin-Gt interaction. Synthetic peptides from the carboxyl terminal region of alpha t mimic Gt by stabilizing the active conformation of rhodopsin, Metarhodopsin II. 4. The conformation of one such peptide when it is bound to Metarhodopsin II was determined by 2D NMR. The model based on the NMR data was tested using peptide analogs predicted to stabilize or break the structure. These studies yield molecular insight into why toxin-treated and mutant G proteins are uncoupled from receptors.  相似文献   

2.
Regulation of arrestin binding by rhodopsin phosphorylation level   总被引:1,自引:0,他引:1  
Arrestins ensure the timely termination of receptor signaling. The role of rhodopsin phosphorylation in visual arrestin binding was established more than 20 years ago, but the effects of the number of receptor-attached phosphates on this interaction remain controversial. Here we use purified rhodopsin fractions with carefully quantified content of individual phosphorylated rhodopsin species to elucidate the impact of phosphorylation level on arrestin interaction with three biologically relevant functional forms of rhodopsin: light-activated and dark phosphorhodopsin and phospho-opsin. We found that a single receptor-attached phosphate does not facilitate arrestin binding, two are necessary to induce high affinity interaction, and three phosphates fully activate arrestin. Higher phosphorylation levels do not increase the stability of arrestin complex with light-activated rhodopsin but enhance its binding to the dark phosphorhodopsin and phospho-opsin. The complex of arrestin with hyperphosphorylated light-activated rhodopsin is less sensitive to high salt and appears to release retinal faster. These data suggest that arrestin likely quenches rhodopsin signaling after the third phosphate is added by rhodopsin kinase. The complex of arrestin with heavily phosphorylated rhodopsin, which appears to form in certain disease states, has distinct characteristics that may contribute to the phenotype of these visual disorders.  相似文献   

3.
The visual pigments of most invertebrate photoreceptors have two thermostable photo-interconvertible states, the ground state rhodopsin and photo-activated metarhodopsin, which triggers the phototransduction cascade until it binds arrestin. The ratio of the two states in photoequilibrium is determined by their absorbance spectra and the effective spectral distribution of illumination. Calculations indicate that metarhodopsin levels in fly photoreceptors are maintained below ~35% in normal diurnal environments, due to the combination of a blue-green rhodopsin, an orange-absorbing metarhodopsin and red transparent screening pigments. Slow metarhodopsin degradation and rhodopsin regeneration processes further subserve visual pigment maintenance. In most insect eyes, where the majority of photoreceptors have green-absorbing rhodopsins and blue-absorbing metarhodopsins, natural illuminants are predicted to create metarhodopsin levels greater than 60% at high intensities. However, fast metarhodopsin decay and rhodopsin regeneration also play an important role in controlling metarhodopsin in green receptors, resulting in a high rhodopsin content at low light intensities and a reduced overall visual pigment content in bright light. A simple model for the visual pigment–arrestin cycle is used to illustrate the dependence of the visual pigment population states on light intensity, arrestin levels and pigment turnover.  相似文献   

4.
The key physiological functions of the rhodopsin molecule are reviewed. Molecular mechanisms of visual pigments spectral tuning, photoisomerization of the 11-cis-retinal chromophore that triggers the phototransduction process, formation of physiologically active state of rhodopsin as a G-protein-coupled receptor, rhodopsin visual cycle, and consequences of its impairment are evaluated. Visual pigment rhodopsin performs several functions, providing spectral sensitivity of photoreceptor cells, phototransduction processes and light and dark adaptation. Genetically determined defects of visual pigment molecule and proteins involved into mechanisms of phototransduction and adaptation or into mechanism of visual cycle are directly linked to pathogenesis of different forms of degenerative retina diseases. Understanding the molecular mechanisms of these physiological processes uncovers the way to direct investigation of pathogenesis of these severe eye diseases.  相似文献   

5.
视紫红质是感光细胞中的一种视色素,在光线的接收和视觉电位的产生方面具有重要的生理作用,由视紫红质介导的过度光信号传导是光性视网膜变性的主要原因。近年的研究表明,视网膜色素上皮细胞中的RPE65蛋白作为影响视紫红质再生的关键因素,与视网膜光损伤的易感性密切相关。就视紫红质和RPE65蛋白在光致视网膜变性中的作用机理作一探讨。  相似文献   

6.
Phosphorylation of iodopsin, chicken red-sensitive cone visual pigment   总被引:1,自引:0,他引:1  
The amino acid sequence has been determined for the carboxyl-terminal 41 amino acids of chicken red-sensitive cone pigment, iodopsin. This sequence is distinct from but structurally homologous to that of other visual pigments. It contains a region rich in the hydroxy amino acids serine and threonine. In the related rod cell visual pigment, rhodopsin, such serines and threonines have previously been identified as sites for phosphorylation by rhodopsin kinase. Phosphorylation of photolyzed rhodopsin serves to terminate its ability to function in visual transduction as an activator of G-protein. We have purified and reconstituted both chicken rhodopsin and chicken iodopsin and shown them to be phosphorylated by bovine rhodopsin kinase. Chicken iodopsin has a Km and Vmax similar to but distinguishably different from that for bovine rhodopsin. These results, in conjunction with other data, suggest that visual pigments in cone cells, upon absorption of light, undergo functional processes similar to those of the visual pigments in rod cells.  相似文献   

7.
R N Frank  S M Buzney 《Biochemistry》1975,14(23):5110-5117
Partial separation of protein kinase activity from rhodopsin in isolated bovine retinal photoreceptor outer segments was accomplished by mild ultrasonic treatment followed by ultracentrifugation. Residual kinase activity in the rhodopsin-rich sediment was destroyed by chemical denaturation which did not affect the spectral properties of the rhodopsin. The retinal outer segment kinase was found to be specific for rhodopsin, since in these preparations it alone of several bovine protein kinases was capable of phosphorylating rhodopsin in the light. The phosphorylation reaction apparently requires a specific conformation of the rhodopsin molecule since it is abolished by heat denaturation of rhodopsin, and it is greatly reduced or abolished by treatment of the visual pigment protein with potassium alum after the rhodopsin has been "bleached" by light. When kinase and rhodopsin or opsin fractions were prepared from dark-adapted and bleached outer segments and the resultant fractions were mixed in various combinations of bleached and unbleached preparations, the observed pattern of light-activated phosphorylation was consistent only with the interpretation that a conformational change in the rhodopsin molecule in the light exposes a site on the visual pigment protein to the kinase and ATP. These results rule out the possibility of a direct or indirect (rhodopsin-mediated) light activation of the kinase. Finally, phosphorylation of retinal outer segment protein in monochromatic lights of various wavelengths followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicates that both rhodopsin and the higher molecular weight visual pigment protein reported by several laboratories have the same action spectrum for phosphorylation. This result is consistent with the suggestion that the higher molecular weight species is a rhodopsin dimer.  相似文献   

8.
If a photoexcited rhodopsin molecule initiates the formation of rhodopsin oligomers during the process of visual excitation, the rate of rotational diffusion of the rhodopsin molecules involved should change markedly. Using microsecond-flash photometry, we have observed the rotational diffusion of rhodopsin throughout the time period of visual excitation and found that no detectable change occurs in its rotational diffusion rate. Partial chemical cross-linking of the retina yields oligomers of rhodopsin and causes a significant decrease in the rotational diffusion rate of rhodopsin even when as little as 20% of rhodopsin is dimeric. Moreover, the pattern of oligomers formed by cross-linking, taken together with the magnitude of decreases in rotational diffusion rate accompanying the cross-linking reaction, suggests that rhodopsin is a monomer in the dark-adapted state. The experiments reported here show that photoexcited rhodopsin molecules do not irreversibly associate with unbleached neighbors during the time course of the receptor response. Hence, it is not likely that stable oligomers of rhodopsin trigger the excitation of the photoreceptor cell.  相似文献   

9.
Most of the photoreceptors of the fly compound eye have high sensitivity in the ultraviolet (UV) as well as in the visible spectral range. This UV sensitivity arises from a photostable pigment that acts as a sensitizer for rhodopsin. Because the sensitizing pigment cannot be bleached, the classical determination of the photosensitivity spectrum from measurements of the difference spectrum of the pigment cannot be applied. We therefore used a new method to determine the photosensitivity spectra of rhodopsin and metarhodopsin in the UV spectral range. The method is based on the fact that the invertebrate visual pigment is a bistable one, in which rhodopsin and metarhodopsin are photointerconvertible. The pigment changes were measured by a fast electrical potential, called the M potential, which arises from activation of metarhodopsin. We first established the use of the M potential as a reliable measure of the visual pigment changes in the fly. We then calculated the photosensitivity spectrum of rhodopsin and metarhodopsin by using two kinds of experimentally measured spectra: the relaxation and the photoequilibrium spectra. The relaxation spectrum represents the wavelength dependence of the rate of approach of the pigment molecules to photoequilibrium. This spectrum is the weighted sum of the photosensitivity spectra of rhodopsin and metarhodopsin. The photoequilibrium spectrum measures the fraction of metarhodopsin (or rhodopsin) in photoequilibrium which is reached in the steady state for application of various wavelengths of light. By using this method we found that, although the photosensitivity spectra of rhodopsin and metarhodopsin are very different in the visible, they show strict coincidence in the UV region. This observation indicates that the photostable pigment acts as a sensitizer for both rhodopsin as well as metarhodopsin.  相似文献   

10.
Cone visual pigments   总被引:1,自引:0,他引:1  
Cone visual pigments are visual opsins that are present in vertebrate cone photoreceptor cells and act as photoreceptor molecules responsible for photopic vision. Like the rod visual pigment rhodopsin, which is responsible for scotopic vision, cone visual pigments contain the chromophore 11-cis-retinal, which undergoes cis–trans isomerization resulting in the induction of conformational changes of the protein moiety to form a G protein-activating state. There are multiple types of cone visual pigments with different absorption maxima, which are the molecular basis of color discrimination in animals. Cone visual pigments form a phylogenetic sister group with non-visual opsin groups such as pinopsin, VA opsin, parapinopsin and parietopsin groups. Cone visual pigments diverged into four groups with different absorption maxima, and the rhodopsin group diverged from one of the four groups of cone visual pigments. The photochemical behavior of cone visual pigments is similar to that of pinopsin but considerably different from those of other non-visual opsins. G protein activation efficiency of cone visual pigments is also comparable to that of pinopsin but higher than that of the other non-visual opsins. Recent measurements with sufficient time-resolution demonstrated that G protein activation efficiency of cone visual pigments is lower than that of rhodopsin, which is one of the molecular bases for the lower amplification of cones compared to rods. In this review, the uniqueness of cone visual pigments is shown by comparison of their molecular properties with those of non-visual opsins and rhodopsin. This article is part of a Special Issue entitled: Retinal Proteins — You can teach an old dog new tricks.  相似文献   

11.
Studies on a Missing Reaction in the Visual Cycle   总被引:1,自引:0,他引:1  
DEVELOPMENT in the biochemistry of vision during the past twenty-five years can be summarized by equations (1) and (2) in Fig. 1, which envisage1 that 11-cis-retinal combines with the visual protein opsin in a dark reaction to form the photolabile complex rhodopsin, λmax 497 nm. When rhodopsin absorbs light it stimulates, through a process whose mechanism is not understood, the transmission of impulses, which are responsible for the visual sensation, although much is known about the biochemical changes accompanying the absorption of light by rhodopsin. These changes culminate in the formation of all-trans-retinal (λmax 385 nm) and opsin (equation (2), Fig. 1), through a number of intermediates2 and for the completion of the cycle one needs a molecular process which may regenerate 11-cis-retinal from all-trans-retinal (equation (3), Fig. 1).  相似文献   

12.
Lee SJ  Montell C 《Current biology : CB》2004,14(23):2076-2085
BACKGROUND: Continuous exposure to light, even at relatively low intensities, leads to retinal damage and blindness in wild-type animals. However, the molecular mechanisms underlying constant-light-induced blindness are poorly understood. It has been presumed that the visual impairment resulting from long-term, continuous exposure to ambient light is a secondary consequence of the effects of light on retinal morphology, but this has not been addressed. RESULTS: To characterize the mechanism underlying light-induced blindness, we applied a molecular genetic approach using the fruit fly, Drosophila melanogaster. We found that the temporal loss of the photoresponse was paralleled by a gradual decline in the concentration of rhodopsin. The decline in rhodopsin and the visual response were suppressed by a C-terminal truncation of rhodopsin, by mutations in arrestin, and by elimination of a lysosomal protein, Sunglasses. Conversely, the visual impairment was greatly enhanced by mutation of the rhodopsin phosphatase, rdgC. Surprisingly, the mutations that suppressed light-induced blindness did not reduce the severity of the retinal degeneration resulting from constant light. Moreover, mutations known to suppress retinal degeneration did not ameliorate the light-induced blindness. CONCLUSIONS: These data demonstrate that the constant light-induced blindness and retinal degeneration result from defects in distinct molecular pathways. Our results support a model in which visual impairment caused by continuous illumination occurs through an arrestin-dependent pathway that promotes degradation of rhodopsin.  相似文献   

13.
The visual pigments in the compound eye of the comma butterfly, Polygonia c-album, were investigated in a specially designed epi-illumination microspectrophotometer. Absorption changes due to photochemical conversions of the visual pigments, or due to light-independent visual pigment decay and regeneration, were studied by measuring the eye shine, i.e., the light reflected from the tapetum located in each ommatidium proximal to the visual pigment-bearing rhabdom. The obtained absorbance difference spectra demonstrated the dominant presence of a green visual pigment. The rhodopsin and its metarhodopsin have absorption peak wavelengths at 532 nm and 492 nm, respectively. The metarhodopsin is removed from the rhabdom with a time constant of 15 min and the rhodopsin is regenerated with a time constant of 59 min (room temperature). A UV rhodopsin with metarhodopsin absorbing maximally at 467 nm was revealed, and evidence for a blue rhodopsin was obtained indirectly.  相似文献   

14.
Rod outer segment disk membranes are densely packed with rhodopsin. The recent notion of raft or microdomain structures in disk membranes suggests that the local density of rhodopsin in disk membranes could be much higher than the average density corresponding to the lipid/protein ratio. Little is known about the effect of high packing density of rhodopsin on the structure and function of rhodopsin and lipid membranes. Here we examined the role of rhodopsin packing density on membrane dynamic properties, membrane acyl chain packing, and the structural stability and function of rhodopsin using a combination of biophysical and biochemical techniques. We reconstituted rhodopsin into large unilamellar vesicles consisting of polyunsaturated 18:0,22:6n3PC, which approximates the polyunsaturated nature of phospholipids in disk membranes, with rhodopsin/lipid ratios ranging from 1:422 to 1:40. Our results showed that increased rhodopsin packing density led to reduced membrane dynamics revealed by the fluorescent probe 1,6-diphenyl-1,3,5-hexatriene, increased phospholipid acyl chain packing, and reduced rhodopsin activation, yet it had minimal impact on the structural stability of rhodopsin. These observations imply that densely packed rhodopsin may impede the diffusion and conformational changes of rhodopsin, which could reduce the speed of visual transduction.  相似文献   

15.
Functional expression of bovine visual rhodopsin in the cell-free translation system with cotranslational insertion of the protein into phosphatidylcholine liposomes is described. The recombinant rhodopsin has spectral and functional properties similar to those of natural rhodopsin from bovine retina. Two mutant rhodopsins with amino acid substitutions in the hydrophilic C-terminal domain were obtained using oligonucleotide-directed mutagenesis. It was found that substitution Cys-316----Ser does not affect rhodopsin's ability to activate the visual amplification cascade, whereas double mutation Asp-330----Asn, Asp-331----Asn dramatically lowers the rhodopsin functional activity.  相似文献   

16.
Hydrogen bonding interactions between transmembrane helices stabilize the visual pigment rhodopsin in an inactive conformation in the dark. The crystal structure of rhodopsin has previously revealed that Glu122 and Trp126 on transmembrane helix H3 form a complex hydrogen bonding network with Tyr206 and His211 on H5, while the indole nitrogen of Trp265 on H6 forms a water-mediated hydrogen bond with Asn302 on H7. Here, we use solid-state magic angle spinning NMR spectroscopy to probe the changes in hydrogen bonding upon rhodopsin activation. The NMR chemical shifts of 15N-labeled tryptophan are consistent with the indole nitrogens of Trp126 and Trp265 becoming more weakly hydrogen bonded between rhodopsin and metarhodopsin II. The NMR chemical shifts of 15N-labeled histidine show that His211 is neutral; the unprotonated imidazole nitrogen is not coordinated to zinc in rhodopsin and becomes more strongly hydrogen bonded in metarhodopsin II. Moreover, measurements of rhodopsin containing 13C-labeled histidine show that a strong hydrogen bond between the side-chain of Glu122 and the backbone carbonyl of His211 is disrupted in metarhodopsin II. The implications of these observations for the activation mechanism of rhodopsin are discussed.  相似文献   

17.
Rod and cone photoreceptor cells that are responsible for scotopic and photopic vision, respectively, exhibit photoresponses different from each other and contain similar phototransduction proteins with distinctive molecular properties. To investigate the contribution of the different molecular properties of visual pigments to the responses of the photoreceptor cells, we have generated knock-in mice in which rod visual pigment (rhodopsin) was replaced with mouse green-sensitive cone visual pigment (mouse green). The mouse green was successfully transported to the rod outer segments, though the expression of mouse green in homozygous retina was approximately 11% of rhodopsin in wild-type retina. Single-cell recordings of wild-type and homozygous rods suggested that the flash sensitivity and the single-photon responses from mouse green were three to fourfold lower than those from rhodopsin after correction for the differences in cell volume and levels of several signal transduction proteins. Subsequent measurements using heterozygous rods expressing both mouse green and rhodopsin E122Q mutant, where these pigments in the same rod cells can be selectively irradiated due to their distinctive absorption maxima, clearly showed that the photoresponse of mouse green was threefold lower than that of rhodopsin. Noise analysis indicated that the rate of thermal activations of mouse green was 1.7 x 10(-7) s(-1), about 860-fold higher than that of rhodopsin. The increase in thermal activation of mouse green relative to that of rhodopsin results in only 4% reduction of rod photosensitivity for bright lights, but would instead be expected to severely affect the visual threshold under dim-light conditions. Therefore, the abilities of rhodopsin to generate a large single photon response and to retain high thermal stability in darkness are factors that have been necessary for the evolution of scotopic vision.  相似文献   

18.
Photoisomerization of 11-cis-retinal to all-trans-retinal and reduction to all-trans-retinol occur in photoreceptor outer segments whereas enzymatic esterification of all-trans-retinol, isomerization to 11-cis-retinol, and oxidation to 11-cis-retinal occur in adjacent cells. The processes are linked into a visual cycle by intercellular diffusion of retinoids. Knowledge of the mechanistic aspects of the visual cycle is very limited. In this study, we utilize chemical analysis of visual cycle retinoids to assess physiological roles for components inferred from in vitro experiments and to understand why excised mouse eyes fail to regenerate their bleached visual pigment. Flash illumination of excised mouse eyes or eyecups, in which regeneration of rhodopsin does not occur, produced a block in the visual cycle after all-trans-retinal formation; constant illumination of eyecups produced a block in the cycle after all-trans-retinol formation; and constant illumination of whole excised eyes resulted in a block of the cycle after formation of all-trans-retinyl ester. These blocks emphasize the role of cellular metabolism in the visual cycle. Interphotoreceptor retinoid-binding protein (IRBP) has been postulated to play a role in intercellular retinoid transfer in the retina; however, the rates of recovery of 11-cis-retinal and of regeneration of rhodopsin in the dark in IRBP-/- mice were very similar to those found with wild-type (wt) mice. Thus, IRBP is necessary for photoreceptor survival but is not essential for a normal rate of visual pigment turnover. Arrestin forms a complex with activated rhodopsin, quenches its activity, and affects the release of all-trans-retinal in vitro. The rate of recovery of 11-cis-retinal in arrestin-/- mice was modestly delayed relative to wt, and the rate of rhodopsin recovery was approximately 80% of that observed with wt mice. Thus, the absence of arrestin appeared to have a minor effect on the kinetics of the visual cycle.  相似文献   

19.
20.
The color of visual pigments is experimentally shown to be controlled by excited state effects. These effects which define the primary absorption of light by rhodopsin are considered together with results obtained from emission and picosecond spectroscopy. In addition, the molecular changes induced in rhodopsin when a photon is absorbed are analyzed using resonance Raman spectroscopy. The molecular changes observed are compared in bacterial and photoreceptor rhodopsins. This comparison yields a unique explanation for the biological role of the cis-trans isomerization in visual transduction.Presented at the EMBO-Workshop on Transduction Mechanism of Photoreceptors, Jülich, Germany, October 4–8, 1976  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号