共查询到20条相似文献,搜索用时 0 毫秒
1.
A characteristic feature of developing neural networks is spontaneous periodic activity. In the developing retina, retinal ganglion cells fire bursts of action potentials that drive large increases in intracellular calcium concentration with a periodicity of minutes. These periodic bursts of action potentials propagate across the developing inner retina as waves, driving neighboring retinal ganglion cells to fire in a correlated fashion. Here we will review recent progress in elucidating the mechanisms in mammals underlying retinal wave propagation and those regulating the periodicity with which these retinal waves occur. In addition, we will review recent experiments indicating that retinal waves are critical for refining retinal projections to their primary targets in the central visual system and may be involved in driving developmental processes within the retina itself. 相似文献
2.
3.
Structure and function of argonaute proteins 总被引:8,自引:0,他引:8
Hall TM 《Structure (London, England : 1993)》2005,13(10):1403-1408
Argonaute (Ago) family proteins are multidomain proteins expressed in prokaryotic and eukaryotic organisms. In eukaryotes, Ago proteins are most well known for their roles in RNA silencing. In prokaryotes, the functions of Ago proteins are unknown, but based on their similarity to eukaryotic Ago proteins, they could be involved in nucleic acid-directed regulatory pathways related to RNA silencing. Recent structural and biochemical studies have shed new light on the function of this family of proteins. These studies reveal how these proteins recognize and cleave RNA and suggest a function for prokaryotic family members. 相似文献
4.
Structure and function of antifreeze proteins 总被引:11,自引:0,他引:11
Davies PL Baardsnes J Kuiper MJ Walker VK 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2002,357(1423):927-935
High-resolution three-dimensional structures are now available for four of seven non-homologous fish and insect antifreeze proteins (AFPs). For each of these structures, the ice-binding site of the AFP has been defined by site-directed mutagenesis, and ice etching has indicated that the ice surface is bound by the AFP. A comparison of these extremely diverse ice-binding proteins shows that they have the following attributes in common. The binding sites are relatively flat and engage a substantial proportion of the protein's surface area in ice binding. They are also somewhat hydrophobic -- more so than that portion of the protein exposed to the solvent. Surface-surface complementarity appears to be the key to tight binding in which the contribution of hydrogen bonding seems to be secondary to van der Waals contacts. 相似文献
5.
6.
Hanson SM Van Eps N Francis DJ Altenbach C Vishnivetskiy SA Arshavsky VY Klug CS Hubbell WL Gurevich VV 《The EMBO journal》2007,26(6):1726-1736
A distinguishing feature of rod arrestin is its ability to form oligomers at physiological concentrations. Using visible light scattering, we show that rod arrestin forms tetramers in a cooperative manner in solution. To investigate the structure of the tetramer, a nitroxide side chain (R1) was introduced at 18 different positions. The effects of R1 on oligomer formation, EPR spectra, and inter-spin distance measurements all show that the structures of the solution and crystal tetramers are different. Inter-subunit distance measurements revealed that only arrestin monomer binds to light-activated phosphorhodopsin, whereas both monomer and tetramer bind microtubules, which may serve as a default arrestin partner in dark-adapted photoreceptors. Thus, the tetramer likely serves as a 'storage' form of arrestin, increasing the arrestin-binding capacity of microtubules while readily dissociating to supply active monomer when it is needed to quench rhodopsin signaling. 相似文献
7.
8.
Structure and function of seed lipid-body-associated proteins 总被引:1,自引:0,他引:1
Many organisms among the different kingdoms store reserve lipids in discrete subcellular organelles called lipid bodies. In plants, lipid bodies can be found in seeds but also in fruits (olives, ...), and in leaves (plastoglobules). These organelles protect plant lipid reserves against oxidation and hydrolysis until seed germination and seedling establishment. They can be stabilized by specific structural proteins, namely the oleosins and caleosins, which act as natural emulsifiers. Considering the putative role of some of them in controlling the size of lipid bodies, these proteins may constitute important targets for seed improvement both in term of oil seed yield and optimization of technological processes for extraction of oil and storage proteins. We present here an overview of the data on the structure of these proteins, which are scarce, and sometimes contradictory and on their functional roles. 相似文献
9.
Structure and function of Toll-like receptor proteins 总被引:16,自引:0,他引:16
Beginning in 1997 with the identification of the first human homologue of the Drosophila protein Toll, a family of related molecules have been identified in both humans and other mammals. These Toll-like receptor (TLR) proteins appear to represent a conserved family of innate immune recognition receptors. TLR proteins share extended homology with receptors for the cytokines interleukin 1 (IL-1) and interleukin 18 (IL-18). These receptors are coupled to a signaling pathway that is conserved in mammals, insects, and plants, resulting in cellular activation, thereby stimulating innate immune defenses. A variety of bacterial and fungal products have been identified that serve as TLR ligands, and more recent studies have identified the first endogenous protein ligands for TLR proteins. While TLR signaling is likely to be a key feature of innate immune responses, these proteins may also regulate homeostasis via interaction with endogenous protein ligands. 相似文献
10.
Structure and function of mismatch repair proteins 总被引:13,自引:0,他引:13
Yang W 《Mutation research》2000,460(3-4):245-256
DNA mismatch repair is required for maintaining genomic stability and is highly conserved from prokaryotes to eukaryotes. Errors made during DNA replication, such as deletions, insertions and mismatched basepairs, are substrates for mismatch repair. Mismatch repair is strand-specific and targets only the newly synthesized daughter strand. To initiate mismatch repair in Escherichia coli, three proteins are essential, MutS, for mismatch recognition, MutH, for introduction of a nick in the target strand, and MutL, for mediating the interactions between MutH and MutS. Homologues of MutS and MutL important for mismatch repair have been found in nearly all organisms. Mutations in MutS and MutL homologues have been linked to increased cancer susceptibility in both mice and humans. Here, we review the crystal structures of the MutH endonuclease, a conserved ATPase fragment of MutL (LN40), and complexes of LN40 with various nucleotides. Based on the crystal structure, the active site of MutH has been identified and an evolutionary relationship between MutH and type II restriction endonucleases established. Recent crystallographic and biochemical studies have revealed that MutL operates as a molecular switch with its interactions with MutH and MutS regulated by ATP binding and hydrolysis. These crystal structures also shed light on the general mechanism of mismatch repair and the roles of Mut proteins in preventing mutagenesis. 相似文献
11.
Brunger AT 《Quarterly reviews of biophysics》2005,38(1):1-47
This review focuses on the so-called SNARE (soluble N-ethyl maleimide sensitive factor attachment protein receptor) proteins that are involved in exocytosis at the pre-synpatic plasma membrane. SNAREs play a role in docking and fusion of synaptic vesicles to the active zone, as well as in the Ca2+-triggering step itself, most likely in combination with the Ca2+ sensor synaptotagmin. Different SNARE domains are involved in different processes, such as regulation, docking, and fusion. SNAREs exhibit multiple configurational, conformational, and oliogomeric states. These different states allow SNAREs to interact with their matching SNARE partners, auxiliary proteins, or with other SNARE domains, often in a mutually exclusive fashion. SNARE core domains undergo progressive disorder to order transitions upon interactions with other proteins, culminating with the fully folded post-fusion (cis) SNARE complex. Physiological concentrations of neuronal SNAREs can juxtapose membranes, and promote fusion in vitro under certain conditions. However, significantly more work will be required to reconstitute an in vitro system that faithfully mimics the Ca2+-triggered fusion of a synaptic vesicle at the active zone. 相似文献
12.
We examined the ligand protein interactions of two highly homologous cellular retinol binding proteins, CRBP and CRBP-II, and two highly homologous cellular retinoic acid binding proteins, CRABP-I and CRABP-II. While the crystal structures of all four have been determined, nuclear magnetic resonance studies provide a means for observing dynamic aspects of ligand protein interactions of these proteins in solution. The cellular functions of these proteins are less well understood. We have modeled retinoid flux between cytoplasmic retinoid proteins and model membranes and with nuclear receptors. Based on our in vitro studies, we propose that certain retinoids may indirectly influence retinoid signaling by displacing endogenous retinoids from the cytoplasmic proteins to the nuclear receptors. 相似文献
13.
Structure and function of nucleosome assembly proteins. 总被引:1,自引:0,他引:1
14.
Vogel C Bashton M Kerrison ND Chothia C Teichmann SA 《Current opinion in structural biology》2004,14(2):208-216
Proteins are composed of evolutionary units called domains; the majority of proteins consist of at least two domains. These domains and nature of their interactions determine the function of the protein. The roles that combinations of domains play in the formation of the protein repertoire have been found by analysis of domain assignments to genome sequences. Additional findings on the geometry of domains have been gained from examination of three-dimensional protein structures. Future work will require a domain-centric functional classification scheme and efforts to determine structures of domain combinations. 相似文献
15.
In this issue of Neuron, Chowdhury and DeAngelis report that training monkeys to perform a fine depth discrimination abolishes the contribution of signals from area MT to the execution of a different, coarse depth discrimination. This result calls into question the principle of associating particular visual areas with particular visual functions, by showing that such associations are modifiable by experience. 相似文献
16.
The field of membrane structural biology represents a fast-moving field with exciting developments including native nanodiscs that allow preparation of complexes of post-translationally modified proteins bound to biological lipids. This has led to conceptual advances including biological membrane:protein assemblies or “memteins” as the fundamental functional units of biological membranes. Tools including cryo-electron microscopy and X-ray crystallography are maturing such that it is becoming increasingly feasible to solve structures of large, multicomponent complexes, while complementary methods including nuclear magnetic resonance spectroscopy yield unique insights into interactions and dynamics. Challenges remain, including elucidating exactly how lipids and ligands are recognized at atomic resolution and transduce signals across asymmetric bilayers. In this special volume some of the latest thinking and methods are gathered through the analysis of a range of transmembrane targets. Ongoing work on areas including polymer design, protein labelling and microfluidic technologies will ensure continued progress on improving resolution and throughput, providing deeper understanding of this most important group of targets. 相似文献
17.
18.
Structure and function of heterotrimeric G proteins in plants 总被引:12,自引:0,他引:12
Heterotrimeric G proteins are mediators that transmit the external signals via receptor molecules to effector molecules. The G proteins consist of three different subunits: alpha, beta, and gamma subunits. The cDNAs or genes for all the alpha, beta, and gamma subunits have been isolated from many plant species, which has contributed to great progress in the study of the structure and function of the G proteins in plants. In addition, rice plants lacking the alpha subunit were generated by the antisense method and a rice mutant, Daikoku d1, was found to have mutation in the alpha-subunit gene. Both plants show abnormal morphology such as dwarfism, dark green leaf, and small round seed. The findings revealed that the G proteins are functional molecules regulating some body plans in plants. There is evidence that the plant G proteins participate at least in signaling of gibberellin at low concentrations. In this review, we summarize the currently known information on the structure of plant heterotrimeric G proteins and discuss the possible functions of the G proteins in plants. 相似文献
19.
20.
Bing Gan Sizhuo Chen Huan Liu Jinrong Min 《Critical reviews in biochemistry and molecular biology》2019,54(2):119-132
Tudor domain-containing (TDRD) proteins, as a family of evolutionarily conserved proteins, have been studied extensively in recent years in terms of their biological and biochemical functions. A major function of the TDRD proteins is to recognize the N-terminal arginine-rich motifs of the P-element-induced wimpy testis (PIWI) proteins via their conserved extended Tudor (eTudor or eTud) domains, which is essential in piRNA biogenesis and germ cell development. In this review, we summarize recent progress in the study of the TDRD proteins, and discuss the molecular mechanisms for the different binding selectivity of these eTudor domains to PIWI proteins based on the available binding and structural data. Understanding the binding differences of these TDRDs to PIWI proteins will help us better understand their functional differences and aid us in developing the target-specific therapeutics, because overexpression or mutations of the human TDRD proteins have been demonstrated to associate with various diseases. 相似文献