首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To find out stable and effective producers of major protective antigens intended for use as components of cholera chemical vaccine against V. cholerae strains of serogroups O and O139, the comparative analysis of the production of cholera toxin, toxin-coregulated pili (TCP), antigens O1 and O139, polysaccharide capsule and outer membrane protein OmpU in different V. cholerae strains groups O1 and O139 has been made. V. cholerae strain KM68, serogroup O1, has been found capable of the production of antigen O1, serovar Ogawa, protein OmpU at a sufficiently high level and the hyperproduction of cholera toxin and TCP, and thus suitable for use in the manufacture of cholera bivalent vaccine as the source of these antigens. Specially selected alysogenic noncapsular strain KM137 of serogroup O139, characterized by a high and stable level of the biosynthesis of this somatic antigen when grown in both laboratory and production conditions, may serve as the produces of antigen O139.  相似文献   

2.
Since Vibrio cholerae O139 first appeared in 1992, both O1 El Tor and O139 have been recognized as the epidemic serogroups, although their geographic distribution, endemicity, and reservoir are not fully understood. To address this lack of information, a study of the epidemiology and ecology of V. cholerae O1 and O139 was carried out in two coastal areas, Bakerganj and Mathbaria, Bangladesh, where cholera occurs seasonally. The results of a biweekly clinical study (January 2004 to May 2005), employing culture methods, and of an ecological study (monthly in Bakerganj and biweekly in Mathbaria from March 2004 to May 2005), employing direct and enrichment culture, colony blot hybridization, and direct fluorescent-antibody methods, showed that cholera is endemic in both Bakerganj and Mathbaria and that V. cholerae O1, O139, and non-O1/non-O139 are autochthonous to the aquatic environment. Although V. cholerae O1 and O139 were isolated from both areas, most noteworthy was the isolation of V. cholerae O139 in March, July, and September 2004 in Mathbaria, where seasonal cholera was clinically linked only to V. cholerae O1. In Mathbaria, V. cholerae O139 emerged as the sole cause of a significant outbreak of cholera in March 2005. V. cholerae O1 reemerged clinically in April 2005 and established dominance over V. cholerae O139, continuing to cause cholera in Mathbaria. In conclusion, the epidemic potential and coastal aquatic reservoir for V. cholerae O139 have been demonstrated. Based on the results of this study, the coastal ecosystem of the Bay of Bengal is concluded to be a significant reservoir for the epidemic serogroups of V. cholerae.  相似文献   

3.
霍乱O139型菌苗的试制   总被引:3,自引:1,他引:2  
对来自孟加拉、泰国、印度、中国四地区O139型霍乱菌株进行了毒力、免疫原性、免疫力与相互交叉保护力试验,结果显示不同地区分离的O139型霍乱弧菌其所试特性相互间无差异。用中国(93-3)株试制的菌体菌苗,其抗原性、毒性、免疫力安全性等经检定符合霍乱菌苗规程要求。鉴于O139型霍乱弧菌存在荚膜的特性,而现有的几种荚膜多糖菌苗都显示有明显的保护作用,因而,使用O139型菌苗有可能在一定程度上达到控制O139型霍乱流行的目的。  相似文献   

4.
霍乱弧菌是引起人和动物烈性肠道传染病霍乱的病原体。在霍乱弧菌的200多个血清群中,只有O1群和O139群霍乱弧菌能引起霍乱。快速准确检测O1群和O139群霍乱弧菌是霍乱防治的关键。表面抗原在O1群和O139群霍乱弧菌检测中发挥着重要作用。简要综述了O1群和O139群霍乱弧菌的脂多糖、霍乱肠毒素、外膜蛋白W、毒素共调菌毛和甘露糖敏感血凝素等5种主要抗原的研究进展。  相似文献   

5.
Since Vibrio cholerae O139 first appeared in 1992, both O1 El Tor and O139 have been recognized as the epidemic serogroups, although their geographic distribution, endemicity, and reservoir are not fully understood. To address this lack of information, a study of the epidemiology and ecology of V. cholerae O1 and O139 was carried out in two coastal areas, Bakerganj and Mathbaria, Bangladesh, where cholera occurs seasonally. The results of a biweekly clinical study (January 2004 to May 2005), employing culture methods, and of an ecological study (monthly in Bakerganj and biweekly in Mathbaria from March 2004 to May 2005), employing direct and enrichment culture, colony blot hybridization, and direct fluorescent-antibody methods, showed that cholera is endemic in both Bakerganj and Mathbaria and that V. cholerae O1, O139, and non-O1/non-O139 are autochthonous to the aquatic environment. Although V. cholerae O1 and O139 were isolated from both areas, most noteworthy was the isolation of V. cholerae O139 in March, July, and September 2004 in Mathbaria, where seasonal cholera was clinically linked only to V. cholerae O1. In Mathbaria, V. cholerae O139 emerged as the sole cause of a significant outbreak of cholera in March 2005. V. cholerae O1 reemerged clinically in April 2005 and established dominance over V. cholerae O139, continuing to cause cholera in Mathbaria. In conclusion, the epidemic potential and coastal aquatic reservoir for V. cholerae O139 have been demonstrated. Based on the results of this study, the coastal ecosystem of the Bay of Bengal is concluded to be a significant reservoir for the epidemic serogroups of V. cholerae.  相似文献   

6.
Vibrio cholerae is a free-living bacterium found in water and in association with plankton. V. cholerae non-O1/non-O139 strains are frequently isolated from aquatic ecosystems worldwide. Less frequently isolated are V. cholerae O1 and V. cholerae O139, the aetiological agents of cholera. These strains have two main virulence-associated factors, cholera toxin (CT) and toxin co-regulated pilus (TCP). By extracting total DNA from aquatic samples, the presence of pathogenic strains can be determined quickly and used to improve a microbiological risk assessment for cholera in coastal areas. Some methods suggested for DNA extraction from water samples are not applicable to all water types. We describe here a method for DNA extraction from coastal water and a multiplex polymerase chain reaction (PCR) for O1 and O139 serogroups. DNA extraction was successfully accomplished from 117 sea water samples collected from coastal areas of Perú, Brazil and the USA. DNA concentration in all samples varied from 20 ng to 480 micro g micro l-1. The sensitivity of the DNA extraction method was 100 V. cholerae cells in 250 ml of water. The specificity of multiplex O1/O139 PCR was investigated by analysing 120 strains of V. cholerae, Vibrio and other Bacteria species. All V. cholerae O1 and O139 tested were positive. For cholera surveillance of aquatic environments and ballast water, total DNA extraction, followed by V. cholerae PCR, and O1/O139 serogroup and tcpA/ctxA genes by multiplex PCR offers an efficient system, permitting risk analysis for cholera in coastal areas.  相似文献   

7.
Abstract Two strains of cholera toxin (CT) gene-positive Vibrio cholerae O1, Ogawa, isolated from patients with diarrhoea and the hypertoxigenic V. cholerae O1, Inaba (569B), were found to produce the new cholera toxin that has earlier been demonstrated to be elaborated by CT gene-negative human and environmental isolates of V. cholerae O1. The CT gene-positive strains produce the new cholera toxin simultaneously with CT, indicating that they contain the gene coding for the new cholera toxin in addition to that of CT.  相似文献   

8.
Yu L  Zhou Y  Wang R  Lou J  Zhang L  Li J  Bi Z  Kan B 《PloS one》2012,7(6):e38633
Regarded as an emerging diarrheal micropathogen, Vibrio cholerae serogroup O139 was first identified in 1992 and has become an important cause of cholera epidemics over the last two decades. O139 strains have been continually isolated since O139 cholera appeared in China in 1993, from sporadic cases and dispersed foodborne outbreaks, which are the common epidemic types of O139 cholera in China. Antibiotic resistance profiles of these epidemic strains are required for development of clinical treatments, epidemiological studies and disease control. In this study, a comprehensive investigation of the antibiotic resistance of V. cholerae O139 strains isolated in China from 1993 to 2009 was conducted. The initial O139 isolates were resistant to streptomycin, trimethoprim-sulfamethoxazole and polymyxin B only, while multidrug resistance increased suddenly and became common in strains isolated after 1998. Different resistance profiles were observed in the isolates from different years. In contrast, most V. cholerae O1 strains isolated in the same period were much less resistant to these antibiotics and no obvious multidrug resistance patterns were detected. Most of the non-toxigenic strains isolated from the environment and seafood were resistant to four antibiotics or fewer, although a few multidrug resistant strains were also identified. These toxigenic O139 strains exhibited a high prevalence of the class I integron and the SXT element, which were rare in the non-toxigenic strains. Molecular subtyping of O139 strains showed highly diverse pulsed-field gel electrophoresis patterns, which may correspond to the epidemic state of sporadic cases and small-scale outbreaks and complex resistance patterns. Severe multidrug resistance, even resistance transfers based on mobile antibiotic resistance elements, increases the probability of O139 cholera as a threat to public health. Therefore, continual epidemiological and antibiotic sensitivity surveillance should focus on the occurrence of multidrug resistance and frequent microbial population shifts in O139 strains.  相似文献   

9.
Vibrio cholerae O139, the new serogroup associated with epidemic cholera, came into being in the second half of the year 1992 in an explosive fashion and was responsible for several outbreaks in India and other neighbouring countries. This was an unprecedented event in the history of cholera and the genesis of the O139 serogroup was, at that time, thought to be the beginning of the next or the eighth pandemic of cholera. However, with the passage of time, the O1 serogroup of the El Tor biotype again reappeared and displaced the O139 serogroup on the Indian subcontinent, and there was a feeling among cholera workers that the appearance of this new serogroup may have been a one-time event. The resurgence of the O139 serogroup in September 1996 in Calcutta and the coexistence of both the O1 and O139 serogroups in much of the cholera endemic areas in India and elsewhere, suggested that the O139 serogroup has come to stay and is a permanent entity to contend with in the coming years. During the past 10 years, intensive work on all aspects of the O139 serogroup was carried out by cholera researchers around the world. The salient findings on this serogroup over the past 10 years pertinent to its prevalence, clinico-epidemiological features, virulence-associated genes, rapid screening and identification, molecular epidemiology, and vaccine developments have been highlighted.  相似文献   

10.
Study of molecular-epidemiological characteristics of Vibrio cholerae non O1/non O139 serogroup with complete and limited set of virulence genes was performed. Differences of their genes composition as compared to these of O1 serogroup (classic and El Tor biovars) were revealed, which points to their origin from avirulent environmental cholera vibrios.  相似文献   

11.
霍乱是经粪口传播的烈性传染病,相应的疫苗研究已逾百年,但目前还没有理想的疫苗。实验中以霍乱O1群小川血清型的脂多糖为目标抗原,用不同方法制备了其四种霍乱结合疫苗,通过小鼠模型验证了各结合物的免疫学效果。结果显示,不同结合物免疫学效果不一,其中增大多糖分子量后制备的结合物免疫效果较好,氨还原法制备的结合物多针免疫后也可诱导特异性抗体产生,而且具有针对小川和稻叶两种血清型的杀弧菌活性。  相似文献   

12.
Aim: To demonstrate the presence of culturable and nonculturable viable pathogenic Vibrio cholerae O1 in fresh water environments of a cholera‐endemic region in India. Methods and Results: Conventional culture and ciprofloxacin DFA–DVC were utilized to investigate the existence of V. cholerae O1. We isolated pathogenic culturable V. cholerae O1 from water samples collected from cholera‐affected areas. No culturable V. cholerae O1 was isolated from water and plankton samples from natural fresh water bodies. Ciprofloxacin was used for DFA–DVC as V. cholerae O1 are 100% resistant to nalidixic acid in our region. The viable but nonculturable O1 cells were demonstrated in 2·21 and 40·69% samples from natural water bodies and cholera‐affected areas, respectively. Conclusion: Vibrio cholerae O1 VBNC could be demonstrated using modified DFA–DVC technique. Ciprofloxacin is preferable to nalidixic acid for DVC in view of existing high‐level resistance to nalidixic acid in cholera‐endemic areas. Significance and Impact of the study: We endorse that for public health surveillance, cholera outbreak investigation and disease control water samples in addition to culture should be tested for V. cholerae using DFA–DVC.  相似文献   

13.
在广西田阳县中学生中,分6组共697人进行了O139型霍乱菌苗与O1群霍乱菌苗的双盲、有对照的人体反应现场观察。结果表明,不加铝佐剂的O139型霍乱菌苗及O1群霍乱菌苗,不论是低剂量组(两剂全程接种45亿菌体)抑或常剂量组(全程接种90亿)接种人群均可产生10~25%的体温呈轻度升高的弱反应,并且同种菌苗的两剂量组的反应率无显著差异;第一剂接种的反应率(19~25%)较第二剂接种的(10~15%)高,P<0.05;接种局部反应轻微,只有个别受试者出现直径小于15mm的硬结;加佐剂的O1群吸附霍乱菌苗的反应较其它组强。结果证实,甲醛灭活的O139型霍乱菌苗和O1群霍乱菌苗是安全的,接种人体对之具有良好的耐受性  相似文献   

14.
BackgroundAfter a multi-country Asian outbreak of cholera due to Vibrio cholerae serogroup O139 which started in 1992, it is rarely detected from any country in Asia and has not been detected from patients in Africa.Methodology/Principal findingsWe extracted surveillance data from the Dhaka and Matlab Hospitals of International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b) to review trends in isolation of Vibrio cholerae O139 in Bangladesh. Data from the Dhaka Hospital is a 2% sample of > 100,000 diarrhoeal patients treated annually. Data from the Matlab Hospital includes all diarrhoeal patients who hail from the villages included in the Matlab Health and Demographic Surveillance System. Vibrio cholerae O139 was first isolated in Dhaka in 1993 and had been isolated every year since then except for a gap between 2005 and 2008. An average of thirteen isolates was detected annually from the Dhaka Hospital during the last ten years, yielding an estimated 650 cases annually at this hospital. During the last ten years, cases due to serogroup O139 represented 0.47% of all cholera cases; the others being due to serogroup O1. No cases with serogroup O139 were identified at Matlab since 2006. Clinical signs and symptoms of cholera due to serogroup O139 were similar to cases due to serogroup O1 though more of the O139 cases were not dehydrated. Most isolates of O139 remained sensitive to tetracycline, ciprofloxacin, and azithromycin, but they became resistant to erythromycin starting in 2009.Conclusions/SignificanceCholera due to Vibrio cholerae serogroup O139 continues to cause typical cholera in Dhaka, Bangladesh.  相似文献   

15.
Strains of hemolytic Vibrio cholerae O1 (El Tor vibrio) which are sensitive to Mukerjee's cholera phage group IV were isolated from cholera patients in North-East Thailand in 1986. Plaques of the phage on these hemolytic V. cholerae O1 were usually translucent but almost transparent on some strains, just like the plaques on non-hemolytic V. cholerae O1 (classical vibrio). These hemolytic V. cholerae O1 were lysogenized with the infection of cholera phage IV, and the lysogenized strains produced phage different from cholera phage IV. These hemolytic strains were classified into Cured type in prophage typing of V. cholerae O1, El Tor, because they were also lysogenized with Kappa phage and were hemolytic. When Cured-type V. cholerae O1, El Tor previously isolated in various countries were examined for the sensitivity to cholera phage IV, some of the isolates were sensitive.  相似文献   

16.
Vibrio cholerae serogroup O1, the causative agent of cholera, is capable of surviving in aquatic environments for extended periods and is considered an autochthonous species in estuarine and brackish waters. These environments contain numerous elements that may affect its ecology. The studies reported here examined physical interactions between V. cholerae O1 and natural plankton populations of a geographical region in Bangladesh where cholera is an endemic disease. Results showed that four of five clinical V. cholerae O1 strains and endogenous bacterial flora were attached preferentially to zooplankton molts (exuviae) rather than to whole specimens. One strain attached in approximately equal numbers to both exuviae and whole specimens. V. cholerae O1 also attached to several phytoplankton species. The results show that V. cholerae O1 can bind to diverse plankton species collected from an area where cholera is an endemic disease, with potentially significant effects on its ecology.  相似文献   

17.
The distribution, characterization and function of the tcpA gene was investigated in Vibrio cholerae O1 strains of the El Tor biotype and in a newly emergent non-O1 strain classified as serogroup O139. The V. cholerae tcpA gene from the classical biotype strain O395 was used as a probe to identify a clone carrying the tcpA gene from the El Tor biotype strain E7946. The sequence of the E7946 tcpA gene revealed that the mature El Tor TcpA pilin has the same number of residues as, and is 82% identical to, TcpA of classical biotype strain O395. The majority of differences in primary structure are either conservative or clustered in a manner such that compensatory changes retain regional amino acid size, polarity and charge. In a functional analysis, the cloned gene was used to construct an El Tor mutant strain containing an insertion in tcpA. This strain exhibited a colonization defect in the infant mouse cholera model similar in magnitude to that previously described for classical biotype tcpA mutants, thus establishing an equivalent role for TCP in intestinal colonization by El Tor biotype strains. The tcpA analysis was further extended to both a prototype El Tor strain from the Peru epidemic and to the first non-O1 strain known to cause epidemic cholera, an O139 V. cholerae isolate from the current widespread Asian epidemic. These strains were shown to carry tcpA with a sequence identical to E7946. These results provide further evidence that the newly emergent non-O1 serogroup O139 strain represents a derivative of an El Tor biotype strain and, despite its different LPS structure, shares common TCP-associated antigens. Therefore, there appear to be only two related sequences associated with TCP pilin required for colonization by all strains responsible for epidemic cholera, one primary sequence associated with classical strains and one for El Tor strains and the recent O139 derivative. A diagnostic correlation between the presence of tcpA and the V. cholerae to colonize and cause clinical is now extended to strains of both O1 and non-O1 serotypes.  相似文献   

18.
Construction of genetically marked Vibrio cholerae O1 vaccine strains   总被引:7,自引:0,他引:7  
Abstract Attenuated Vibrio cholerae O1 vaccine strains lacking the gene encoding the A subunit of cholera toxin have proven efficacious in preventing experimental cholera. As these strains move from closed, contained testing environment to large-scale field trials, a readily assayable phenotypic trait to distinguish a vaccine strain from wild-type V. cholerae O1 is desirable. We have constructed three derivatives of the attenuated V. cholerae strain CVD 103 which carry a mercury resistance or urease marker in the hlyA gene. CVD 103-HgR was constructed using a protracted marker-exchange procedure; this strain was found to have somewhat lowered colonisation efficiency in infant mice in comparison to its parent strain, CVD 103. The insertion of the resistance marker was repeated using a suicide vector system; CVD 103-HgR2 was found to colonise infant mice as efficiently as CVD 103. Strain CVD 103-UR, in which sequences encoding urease were inserted using a suicide vector, also colonised infant mice as well as CVD 103. The genetically marked strains CVD 103-HgR, CVD 103-HgR2 and CVD 103-UR form the basis for a generation of defined oral vaccines that may give single-dose, long-lasting protection to populations at risk from cholera.  相似文献   

19.
Aims: Vibrio cholerae is an important bacterial pathogen that causes global cholera epidemic. Although they are commonly found in coastal waters around the world, most environmental isolates do not contain cholera toxin genes. This study investigates vibriophages in southern California coastal waters and their ability to transfer cholera toxin genes. Methods and Results: Lytic phages infecting V. cholerae were isolated from Newport Bay, California, between May and November, while none was found in winter. Some of the phage isolates can infect multiple environmental V. cholerae strains and El Tor strains. All phages contained double‐stranded DNA. Transduction experiments using kanamycin‐resistant gene marked CTXΦ demonstrated that some environmental vibriophages can transfer CTXΦ genes from O1 El Tor strain to environmental non‐O1/O139 V. cholerae via generalized transduction. Conclusions: Vibriophages are important components of the natural aquatic ecosystem. They play an important role in influencing the dynamics and evolution of V. cholerae in the environment. Significance and Impact of the Study: This study demonstrates the significance of vibriophages in the coastal environment and transduction as one of the mechanisms of pathogenicity evolution among environmental V. cholerae.  相似文献   

20.
The association of Vibrio cholerae with zooplankton has been suggested as an important factor in transmission of human epidemic cholera, and the ability to colonize zooplankton surfaces may play a role in the temporal variation and predominance of the two different serogroups (V. cholerae O1 El Tor and O139) in the aquatic environment. To date, interactions between specific serogroups and species of plankton remain poorly understood. Laboratory microcosm experiments were carried out to compare quantitatively the colonization of two copepod species, Acartia tonsa and Eurytemora affinis, by each of the epidemic serogroups. V. cholerae O1 consistently achieved higher abundances than V. cholerae O139 in colonizing adults of each copepod species as well as the multiple life stages of E. affinis. This difference in colonization may be significant in the general predominance of V. cholerae O1 in cholera epidemics in rural Bangladesh where water supplies are taken directly from the environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号