首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Phyto- and protozooplankton were sampled in the upper 10 m of the water column in austral summer during a cruise of RV Polarstern from January 6 to February 20 1985 in the eastern Bransfield Strait vicinity and in the northern, southeastern (off Vestkapp, twice: I and II) and southern Weddell Sea (Vahsel Bay across the Filchner Depression to Gould Bay). The plankton assemblages are discussed in relation to physical, chemical and biological factors in the different geographical areas in summer. Phytoplankton biomass (Phytoplankton carbon, PPC) ranged from 4–194 g carbon/l and consisted on average of 65% diatoms and 35% autotrophic flagellates. Whereas in the northwest phytoplankton assemblages were dominated by small nanoflagellates (78% of PPC), higher biomass of diatoms (54–94% of PPC) occurred at the other sampling sites. In general autotrophic flagellates and small pennate diatoms dominated at oceanic stations; in neritic areas large centric diatoms prevailed. Chlorophyll a concentrations ranged from 0.25–3.14/g chl a/l with a mean of 1.13/gmg chlorophyll a/l and an average phytoplankton carbon/chlorophyll a ratio of 39. Protozooplankton biomass (Protozooplankton carbon, PZC) ranged from 0–67 g carbon/l and consisted of 49% ciliates, 49% heterotrophic dinoflagellates and 2% tintinnids. Heterotrophic dinoflagellates were more important in the northern investigation areas (58%–84% of PZC). Ciliates dominated the protozooplankton in the southeast and south (56%–65% of PZC); higher abundances of tintinnids were observed only in the south (11% of PZC). The most remarkable feature of the surface waters was the high protozooplankton biomass: protozooplankton amounted to 25% on an average of the combined biomass of PPC plus PZC for the entire investigation period. Protozoan biomass in the southeastern and southern Weddell Sea occasionally exceeded phytoplankton biomass. Temperature, salinity, and inorganic nutrients were generally lower in the southern regions; at most of these stations a meltwater layer occurred in the upper meters of the water column. We suggest that this physical regime allows a well developed summer system with a high proportion of heterotrophic microplankton. In the eastern Bransfield Strait, in the northern Weddell Sea and close to the coast off Vestkapp (I), however, early summer conditions occurred with less protozooplankton contribution.Contribution no. 427 from the Alfred-Wegener-Institute for Polar and Marine Research  相似文献   

2.
Summary Phytoplankton biomass and distribution of major phytoplankton groups were investigated in relation to sea ice conditions, hydrography and nutrients along three north-south transects in the north western Weddell Sea in early spring 1988 during the EPOS Study (European Polarstern Study), Leg 1. Three different zones along the transects could be distinguished: 1) the Open Water Zone (OWZ) from 58° to 60°S with high chlorophyll a concentrations up to 3.5 g l–1; 2) the Marginal Ice Zone (MIZ) from 60° to about 62.5° with chlorophyll a concentrations between 0.1 and 0.3 g l–1, and 3) the closed pack-ice zone (CPI) from 62.5° to 63.2°S with chlorophyll a concentrations below 0.1 gl–1. Nutrient concentrations increased towards the south showing winter values under the closed pack-ice. Centric diatoms such as Thalassiosira gravida and Chaetoceros neglectum forming large colonies dominated the phytoplankton assemblage in terms of biomass in open water together with large, long chain forming, pennate diatoms, whereas small pennate diatoms such as Nitzschia spp., and nanoflagellates prevailed in ice covered areas. Fairly low concentrations of phytoplankton cells were encountered at the southernmost stations and many empty diatom frustules were found in the samples. The enhanced phytoplankton biomass in the Weddell-Scotia-Confluence area is achieved through sea ice melting in the frontal zone of two different water masses, the Weddell and the Scotia Sea surface waters.Data presented here were collected during the European Polarstern Study (EPOS) sponsored by the European Science Foundation  相似文献   

3.
The Northeast Water polynya,Greenland Sea   总被引:2,自引:1,他引:1  
The nutrient and phytoplankton distributions in the North East Water polynya (NEW) were determined in June 1991. At Norske Øer Ice Barrier (the polynya's southern boundary), water was upwelled, but vertical instability precluded the development of phytoplankton blooms. Along the length of the northward coastal current, part of the anticyclonic circulation in this area, the vertical stability increased to the north by the input of melt water and solar heating. This caused a gradual increase in phytoplankton biomass and a decrease in nutrient concentrations until, in the northernmost area, nitrate was depleted at the surface, and sub-surface maxima of chlorophyll a were observed. The band of high chlorophyll a concentrations extending from this area to the south along the eastern margin of the polynya was interpreted as the presence of phytoplankton advected by the local circulation. The phytoplankton communities, consisting mainly of flagellates and diatoms, were typical for the beginning of phytoplankton development in ice-covered areas. They seemed to be partially released from melting ice. Three communities were distinguished, which represented, firstly, the upwelled water and its northern extension, secondly, an area of high phytoplankton biomass in the northwestern part of the polynya, and thirdly, the pack-ice region. The major taxa co-occurred at all stations, with only their relative importance changed. The nutrient concentrations in the NEW were different from those in the adjacent areas. The low nitrate values of about 4 M in the upper 70 m, found to be representative for the beginning of the growth season, imposed limitations on the overall phytoplankton production. Therefore, fertilization mechanisms such as upwelling along the Norske Øer Ice Barrier are important for local nutrient replenishment during the period of active phytoplankton growth. Eventually, silicate and phosphate supplied in higher concentrations by jets of the Arctic outflow may also support phytoplankton production, although these nutrients were not limiting during this study. The high-nutrient jets were detected in the upper 100 m of the water column at the eastern boundary of the polynya.  相似文献   

4.
Community composition, biomass and primary production of phytoplankton were studied in the east- ernmost section of the Westerschelde estuary in 1984. Photosynthetic characteristics were compared with distribution of some dominant phytoplankton species along a salinity gradient from 5 to 22 Spring phytoplankton, with Cyclotella meneghiniana (freshwater) and Skeletonema costatum (marine) as the dominant species grew faster than summer phytoplankton. In summer, biomass achieved its maximum, due to the riverine Scenedesmus species and the marine diatoms Thalassiosira levanderi and Ditylum brightwellii, as dominants. Growth conditions were more favourable to phytoplankton communities above 15%, than below this salinity. The data were compared with previous studies (1972) of species composition in the area.  相似文献   

5.
Although the northern Bering Sea is one of the most productive regions in the northern North Pacific Ocean and currently considered a declining productivity region, no recent primary productivity measurements have been collected in this region. Phytoplankton productivity was measured in the northern Bering Sea in 2007 using a dual 13C–15N isotope tracer technique to quantify present rates of primary productivity and to assess changes under recent environmental conditions in this area. We found that large diatoms (mostly Fragilaria sp.) dominated the phytoplankton during the initial part of the cruise, whereas unidentified nano + pico phytoplankton largely dominated at the surface about 2 weeks later (at “revisited stations”). At the 1% light depth, diatoms and Phaeocystis sp. were the dominant species, whereas diatoms and unidentified nano + pico cells were dominant at the revisited sites. Based on nitrate and ammonium uptake rates, the estimated f-ratios (the ratio of nitrate uptake rate/nitrate + ammonium uptake rates of phytoplankton) were high (0.65–0.74), indicating that nitrate was an important nitrogen source supporting primary production in the northern Bering Sea during the cruise in 2007. Compared with previous studies performed several decades ago, we found significantly lower chlorophyll-a concentrations and carbon uptake rates of phytoplankton in the northern Bering Sea in 2007. This is consistent with recent studies that have shown lower rates of production in the Chukchi Sea and declines in benthic biomass and sediment oxygen uptake in the northern Bering Sea.  相似文献   

6.
Köhler  Jan  Nixdorf  Brigitte 《Hydrobiologia》1994,(1):187-195
The influences of imports of nutrients and planktonic algae from the River Spree on the dynamics of phytoplankton were examined in the shallow, eutrophic Müggelsee, which has a retention time of only 42 days. Phytoplankton biomass and nutrient concentrations were measured in both the lake and its inflow from 1980–1990. On a long-term average, mean biomass as well as vitality of most dominant phytoplankton populations in the lake were not significantly different from those in the river. Nevertheless, during distinct periods the external rates of biomass change of single lake populations (due to dilution or enrichment) were as high as the lake internal ones. The import of inocula populations from the river probably induced the formation of the typical community structure in the lake. Growth and decay of phytoplankton populations in the river strongly influenced the load of dissolved nutrients and thus indirectly the dynamics of planktonic algae in the downstream lake. For example, intensive assimilation of phosphorus by riverine algae in spring intensified the P-shortage and supported possible P-limitation of algal growth in the lake at that time. In years with high vernal biomass of centric diatoms in the river, and thus diminished import of dissolved silicon, the growth of diatoms was suppressed and that of cyanobacteria was favoured in the lake during summer.  相似文献   

7.
The quantitative and qualitative distribution of phytoplankton was investigated along five North–South transects in the eastern Weddell Sea during the transition from late autumn to winter. Relationships with the regional hydrography, progressing sea ice coverage, nutrient distribution and zooplankton are discussed and compared with data from other seasons. To the north of the Antarctic Slope Front (ASF) a remnant temperature minimum layer was found above the primary pycnocline throughout summer. Surface waters had not entirely acquired typical winter characteristics. While temperature was already in the winter range, this was not the case for salinity. Highest biomass of phytoplankton, with the exception of the first transect, was found in the region adjoining the ASF to the north. Absolute chlorophyll a (Chl a) concentrations dropped from 0.35 to 0.19 g l–1 . Nutrient pools exhibited a replenishing tendency. Ammonium concentrations were high (0.75–2 mol l–1), indicating extensive heterotrophic activity. The phytoplankton in the ASF region was dominated by nanoflagellates, particularly Phaeocystis spp.. North of the ASF the abundance of diatoms increased, with Fragilariopsis spp., F. cylindrus and Thalassiosira spp. dominating. Community structure varied both due to hydrographical conditions and the advancing ice edge. The phytoplankton assemblage formed during late autumn were very similar to the ones found in early spring. A POC/PON ratio close to Redfield, decreasing POC concentration and a high phaeophytin/Chl a ratio, as well as a high abundance of mesozooplankton indicated that a strong grazing pressure was exerted on the phytoplankton community. A comparison between primary production (PP) in the water column and the sea ice showed a shift of the major portion of PP into the ice during the period of investigation.  相似文献   

8.
In this study we analysed the effects of Galaxias maculatus, a landlocked small fish species, on nutrient dynamics, and the consequent effects on phytoplankton biomass of an oligotrophic North Patagonian lake. We performed field and laboratory experiments in order to explore nutrient release by G. maculatus with increasing fish biomass and body size, and the resulting phytoplankton responses. Our results showed that phytoplankton biomass was strongly enhanced in the presence of fish, and that enhancement was greater with increasing fish biomass. These algal increments were associated with higher nutrient concentrations, due to the excretion/egestion processes of fish. In our two laboratory experiments we did not observe phytoplankton increase, probably due to light conditions, but we did observe significant effects of fish on nutrient concentrations. As was expected, mass-specific nutrient release rates were higher in smaller fish than in larger ones. So, the amount of nutrients supplied to phytoplankton would be influenced by the size structure of fish population. As a consequence of different N and P release rates, an increase in the :PTDP ratio was observed in the presence of fish. The fact that G. maculatus is a species that moves in schools would determine spatial heterogeneity in nutrient release, with important effects of reducing nutrient limitation and shifting :PTDP ratios.  相似文献   

9.
The influence of copepods (mainly Oithona sim-ilis) and krill (Euphausia superba) grazing on the species composition of plankton communities in ship board con tainers was investigated during the spring and post spring period in the Scotia Weddell Sea in the Antarctic ocean. Numbers of grazers were experimentally manipulated in containers with natural phytoplankton assemblages. With ratural levels of copepods but no krill a high (700–950 g C·l1, ca 30 g chl a·.l1) phytoplankton biomass developed. In these cultures large diatoms, e.g. Corethron criophilum and chains of Thalassiosira sp., made up 80% of total phytoplankton cell carbon at the end of the experiment. In cultures with elevated numbers of copepods (5X or 10X the natural level) phytoplankton biomass was somewhat reduced (ca 23 g chl a · l1) compared to cultures with natural copepod abundance, but still high. Phytoplankton species composition was on the other hand greatly influenced. Instead of large diatoms these cultures were dominated by Phaeocystis pouchetii (70%) together with small Nitszchia sp. and Chaetoceros neogracile (20%). In containers with krill (both juveniles and adults), but without elevated numbers of copepods, phytoplankton biomass rapidly approached zero. With 10X the in situ level of copepods, krill first preyed on these before Corethron criophilum and Thalassiosira sp. were grazed. When krill were removed a plankton community dominated by flagellates (60–90%), e.g. Pyramimonas sp. and a Cryptophycean species, grazed by an unidentified droplet-shaped heterothrophic flagellate, developed. These flagellates were the same as those which dominated the plankton community in the Weddell Sea after the spring bloom. A similar succession was observed in situ when a krill swarm grazed down a phytoplankton bloom in a few hours. Our experiments show that copepods cannot control phytoplankton biomass in shipboard cultures even at artificially elevated numbers. Krill at concentrations similar to those in natural swarms have a great impact on both phytoplankton biomass and species composition in shipboard cultures. Both copepods and krill may have an impact on phytoplankton species composition and biomass in situ since the rates of phytoplankton cell division were probably artificially increased in shipboard cultures compared to natural conditions, where lower growth rates make phytoplankton more vulnerable to grazing. A similarity between phytoplankton successions in containers and in situ, especially with respect to krill grazing, supports the conclusion that grazing may structure phytoplankton communities in the Scotia-Weddell Sea.Data presented here were collected during the European Polarstern Study (EPOS) sponsored by the European Science Foundation  相似文献   

10.
In Lake Constance, after several decades of cutrophication, a decrease in phosphorus loading over the last decade has lead to a partial recovery from eutrophication. Here we analyse the shift in the taxonomic composition of phytoplankton during the first decade of oligotrophication in Lake Constance. During the 1980s, spring total P concentrations decreased from ca. 130 to less than 50 ·l–1. This decrease was reflected by an approximately proportional decrease in summer phytoplankton biomass while spring phytoplankton biomass seemed unresponsive. Major taxonomic changes occured during both growth seasons. In spring, the proportion of diatoms, green algae and Chrysophyta increased while the proportion of Cryptophyta decreased. The summer trend was very different: the relative importance of diatoms decreased and Cryptophyta and Chrysophyta increased, while Chlorophyta reached their peak around 1985. These trends are also analysed at the genus level. Comparison with taxonomic trends during the eutrophication period shows the expected reversals in most cases. Comparison with other lakes shows general similarities, with the notable exception that Planktothrix rubescens has never been important in Lake Constance. The increase of diatoms during spring is attributed to their improved competitive performance with increasing Si:P ratios. Their decrease during summer is explained by the increasing silicate removal from the epilimnion by increasing spring populations.  相似文献   

11.
Samples of the phytoplankton in a freshwater lake, Lake Liddell, New South Wales (Lat: 32° 22 S, Long. 150° 1 E) were collected every 4 weeks between October 1987 and November 1988. Chlorophyll a concentrations ranged from 1.8 g 1–1 to 9.1 g 1–1 and were positively correlated with the following nutrient parameters: total and nett mass additions of nitrate/nitrite-N and total-N, total additions of Kjeldahl-N, and nett mass addition N-P ratios. There was no correlation between lake nutrient concentrations and chlorophyll a. Factors other than nutrient concentrations appeared to be effecting chlorophyll a concentrations as summer levels were low despite nutrient concentrations being at a maximum. In spring and summer the phytoplankton was dominated by chlorophytes, with dinoflagellates and diatoms most abundant in autumn. During winter cyanobacteria were the most abundant. The relative abundance of chlorophytes was positively correlated with in lake nitrate/nitrite-N concentrations whereas the relative abundance of cyanobacteria was negatively correlated with this parameter. Based on chlorophyll a concentrations and the phytoplankton flora Lake Liddell can be classified as mesotrophic.  相似文献   

12.
The species composition and phytoplankton biomass, concentrations of chlorophyll “a” (Chl) and nutrients, concurrent hydrophysical conditions were studied in the south part of the White Sea in July 10–15, 2012 during chlorophyll “a” decrease after summer peak. The water column stability varied, the concentration of dissolved silicon in upper mixed layer was closed to the range favorable for diatoms with exception of areas of intensive tide mixing and areas influenced by waters of Severnaya Dvina River. In surface layer the dinoflagellates dominated excepting of areas with intensive tide mixing where diatoms prevailed. Diatoms provided major contribution to biomass in different stations above, in and under pycnocline and in deep waters out of photic zone. Structural analysis has revealed three phytoplankton communities that corresponded to different depths: communities of photic zone, intermediate and deep layers. Extension of layers inhabited by different communities depended on water column stability and on genesis of water masses. Integrated values of phytoplankton biomass and Chl varied from 250 to 1188 mg С/m2, and from 22 to 51 mg/m2, correspondently.  相似文献   

13.
Spatial and temporal variation in phytoplankton community structure within a large flood-control reservoir (Sardis Reservoir, MS, USA) was investigated in relation to variation in physicochemical properties, location within the reservoir, hydraulic residence time (HRT), nutrient concentrations, temperature, and light conditions over a 14-month period. During periods of short HRT, phytoplankton communities throughout the reservoir were homogeneous in biomass, composition, and production. With a gradual increase in HRT from spring to summer, spatially heterogeneous phytoplankton communities developed along the longitudinal axis of the reservoir. During this period of longer HRT, diatoms and chlorophytes were a larger proportion of total phytoplankton biomass at shallow and more turbid locations near the head of the reservoir, whereas cyanobacteria were a larger proportion of the community at deeper and less turbid locations closer to the outflow. Seasonal succession of the phytoplankton community was represented by high abundance of diatoms in spring, increasing biomass of cyanobacteria through summer, and a secondary bloom of diatoms in fall. Species of Cyclotella, Asterionella, Nitzschia, and Ankistrodesmus were among the first colonizers in the early growing season, closely followed by Aulacoseira, whereas species of Staurastrum and Tetraedron appeared later in the spring. Species of Synedra, Crucigenia, Selenastrum, Scenedesmus, and Merismopedia occurred throughout the sampling period. As the diatoms started to decrease during mid-spring, cryptophytes increased, prior to dominance of species of Pseudanabaena in summer. Reservoir management of HRT, in combination with spatial variation in reservoir morphology and seasonal variation in temperature and riverine nutrient inputs, creates seasonally variable yet distinct spatial patterns in phytoplankton community biomass, composition, and production. Handling editor: L. Naselli-Flores  相似文献   

14.
Nutrients, phytoplankton and periphyton were monitored in a 71 ha shallow, unstratified lake used for intensive cage culture of rainbow trout. Inorganic nitrogen, ortho-phosphate and suspended solids were significantly higher near the cages and the bottom and, although declining during summer, nutrients did not reach levels which limit phytoplankton growth. Microcystis aeruginosa dominated the phytoplankton, with surface chlorophyll a reaching 189 µg l–1 in August, but with no subsequent bloom collapse or deoxygenation. A sub-dominant community of vernal diatoms and Pediastrum spp. persisted. Periphyton was dominated by Melosira italica-subarctica. Algal species and water quality showed the lake to be highly eutrophic. Chlorophyll values predicted from a phosphorus-dependent eutrophication model agreed with observations but light limitation by self-shading and suspended farm wastes, aided by wind-induced turbulence, is believed to control algal growth rates and biomass. Implications for environmental management of intensive freshwater cage farms are discussed.  相似文献   

15.
Ault  Timothy  Velzeboer  Renate  Zammit  Rebecca 《Hydrobiologia》2000,429(1-3):89-103
We investigated the influence of nutrient availability, specifically nitrogen, phosphorus and silicon on growth and community structure of phytoplankton from the Port Adelaide River estuary, South Australia. Two bioassay experiments were conducted. The first, Nutrich1, involved addition of nutrients in vitro to samples of the natural phytoplankton community from a single location in the upper estuary. The second, Nutrich2, involved nutrient addition and incubation of water from five locations in the estuary following inoculation with a `standardised' phytoplankton assemblage derived from laboratory cultures. In Nutrich1, enrichment with silicon led to greatly enhanced phytoplankton biomass due to increased growth of diatoms. Addition of nitrogen or phosphorus had little effect on phytoplankton growth. In Nutrich2, addition of nitrogen resulted in enhanced growth of phytoplankton in water collected from near the mouth the estuary, but there were no differences in growth among nutrient treatments for the remaining locations. Comparison of phytoplankton growth rate among locations revealed a trend of decreasing growth in moving towards the mouth of the estuary. This trend was unaffected by enrichment with nitrate, phosphate or silicate. We suggest that spatial variation in growth potential within the Port Adelaide River estuary may relate to variation in the concentration of nitrogen as ammonium.  相似文献   

16.
The seasonal development and decline of phytoplankton was investigated in the eastern Weddell Sea during summer and fall 1991. During the first half of the study (15 Jan–13 Feb) in an area off Vestkapp, favourable irradiance/mixing regimes initiated net phytoplankton growth in ice-free waters on the shelf and in stretches of open water over the partially ice-covered deep ocean. Chi a concentrations in the upper water column were moderate (0.2–0.8 g l–1), but significantly above winter values. Later in the season (16 Feb–11 March), a phytoplankton bloom with surface Chl a concentrations ranging from 1.6–2.3 g l–1 was encountered in an area further to the east. We suggest that the upper water column must have been stratified in this region for time scales of weeks to faciliate bloom development. Bacterial biomass and productivity generally paralleled the seasonal development of the phytoplankton. Nitrate concentrations in the upper mixed layer were substantially lower than would be expected from the existing phytoplankton standing stock, suggesting that heterotrophic consumption of organic matter by bacteria and zooplankton removed a large fraction of the primary production. The shallow seasonal pycnocline was eventually eroded by the passage of a storm, resulting in a homogeneous distribution of phytoplankton biomass over the entire water column, followed by sedimentation and deposition of phytodetritus on the sea floor. After the storm induced destratification, bacterial productivity was particularly high, amounting to more than half of the primary production (range: 10%–120%) in the upper water column. Subsequently, phytoplankton biomass in the upper water column decreased to values <1 g Chl a l–1. The combination of low incident irradiances and incessant deep mixing prevented the phytoplankton biomass to increase again. During the last week of the investigation, extensive new-ice formation was observed. A major fraction of the residual surface plankton was incorporated into new sea ice, thus terminating the pelagic growth season of the phytoplankton in the eastern Weddell Sea.  相似文献   

17.
Galveston Bay, Texas, is a large shallow estuary with a watershed that includes 60% of the major industrial facilities of Texas. However, the system exhibits low to moderate (2-20 μg l−1) microalgal biomass with sporadic phytoplankton blooms. Both nitrogen (N) and phosphate (P) limitation of phytoplankton growth have been proposed for the estuary. However, shifts between N and P limitation of algae growth may occur due to annual fluctuations in nutrient concentrations. The primary goal of this work was to determine the primary limiting nutrient for phytoplankton in Galveston Bay. Nutrient addition bioassays were used to assess short-term (1-2 days) phytoplankton responses (both biomass and community composition) to potentially limiting nutrients. The experimental bioassays were conducted over an annual cycle using natural water collected from the center to lower part of the estuary. Total phytoplankton biomass increased in the nitrate (10 μM) additions in 11 of the 13 bioassays, but no significant increases were detected in the phosphate (3 μM)-only additions. Bioassay results suggest that the phytoplankton community was usually not phosphate limited. All major groups increased in biomass following nitrate additions but diatoms increased in biomass at a faster rate than other groups, shifting the community composition toward higher relative abundance of diatoms. The results of this study suggest that pulsed N input events preferentially favor increases in diatom biomass in this estuary. The broader implications of this study are that N pulsing events, primarily due to river discharge, play an important role in structuring the phytoplankton community in the Galveston Bay estuary.  相似文献   

18.
During the EPOS leg 2 cruise of the RV Polarstern, carried out in late austral spring of 1988–1989, the composition of phytoplankton in relation to the distribution of hydrographic parameters was studied in four successive transects carried out along 49°W and 47°W, across the Weddell-Scotia Confluence (WSC) and the marginal ice zone (which overlapped in part). In all transects, a maximum of phytoplankton biomass was found in the WSC, in surface waters stabilized by ice melting. Different phytoplankton assemblages could be distinguished. North of the Scotia Front (the northern limit of the WSC) diatoms with Chaetoceros neglectus, Nitzschia spp. and (Thalassiosira gravida) dominated the phytoplankton community. This assemblage appeared to have seeded a biomass maximum which occupied, during the first transect, an area of the WSC, south of the Scotia Front. The southernmost stations of the first transect and all the stations to the south of the Scotia Front in the other transects were populated by a flagellate assemblage (with a cryptomonad, Pyramimonas spp. and Phaeocystis sp.) and an assemblage of diatoms (Corethron criophilum and Tropidoneis vanheurkii among others) associated to the presence of ice. During the last three transects, the flagellate assemblage formed a bloom in the low salinity surface layers of the WSC zone. The bulk of the biomass maximum was formed by the cryptomonad which reached concentrations up to 4×106 cells l–1 towards the end of the cruise. Multivariate analysis is used to summarize phytoplankton composition variation. The relationships between the distribution of the different assemblages and the hydrographic conditions indicate that the change of dominance from diatoms to flagellates in the WSC zone was related to the presence of water masses from different origin.Data presented here were collected during the European Polarstern Study (EPOS) sponsored by the European Science Foundation  相似文献   

19.
In the James River Estuary, a chlorophyll peak occurred in verylow salinity waters (0.5) during periods of low river dischargein the summer and fall. The biomass of phytoplankton, as measuredby chlorophyll concentration, was 5–10 times that formedin adjacent areas further up-and downstream. Comparisons betweenthe peak area and the 2 area for net plankton biomass, biogenicsilica, phaeopigments, POC/PON ratios and microscopic observationindicated the peak biomass was largely composed of high concentrationsof physiologically healthy freshwater diatoms. We applied equationsfor particle sinking rates to diatoms observed in the JamesRiver and compared these rates with calculations of upward verticalwater velocity. During periods of low river discharge (summerand fall) the sinking rate of diatoms in the chlorophyll peakclosely balanced the net upward water velocity, thereby selectivelytrapping diatoms in the very low salinity zone. The turbiditymaximum increased in intensity and moved downriver in winterand spring due to high river discharge. As upward water velocityincreases, phytoplankton are never able to attain a criticalbiomass and are swept downestuary. This seasonally changingplant biomass is significant to food chain and geochemical considerationsof estuaries. 1Present address: Department of Oceanography, National FisheriesUniversity of Pusan, Korea  相似文献   

20.
Summary Four major functional units have been identified in the Southern Ocean and the mechanisms that control the dynamics of nutrients and phytoplankton are detailed for the different sub-systems. The very productive Coastal and Continental Shelf Zone (CCSZ, 0.9 M km 2) can experience severe macronutrient depletion paralleling intense diatom-dominated phytoplankton blooming (maximum > 8 mg Chl a m–3) at the ice edge. In the Seasonal Ice Zone (SIZ, 16 M km 2), dramatic variations in the hydrological structure occur in surface waters during the spring to summer retreat of the pack-ice, changing from a well-mixed system to a stratified one within the reaches of the ice edge. Grazing activity of euphausiids limits phytoplankton biomass to a moderate level (Chl a maximum around 4 mg m–3). A shift from new production to a regenerated production regime has been demonstrated during spring, along with the key role played by protozoans in controlling high ammonium concentrations (maximum > 2 M) in the surface layers. The well-mixed Permanently Open Ocean Zone (POOZ, 14 M km 2) is characterised by variable N/Si ratios in surface waters along a north-south transect: at the northern border of the POOZ (N/Si = 0.25) silicate concentrations as low as < 10 M could help limit the phytoplankton growth. Although favourable conditions have been demonstrated for the initiation of blooms in spring in the Antarctic Circumpolar Current, it appears that critical-depth/ mixing-depth relationships control maximum chlorophyll a concentrations < 1 g l–1 during summer. The POOZ is usually not influenced directly by euphausiids, except for the Scotia Sea and Drake Passage where migrations of krill from the adjacent SIZ are usual. Mesoscale eddies are typical of the Polar Front Zone (FPZ, 3 M km 2): significant increases in phytoplankton biomass have been reported in this frontal area (maximum Chl a = 2 mg m–3). Food web and biogeochemical cycles in this sub-system are poorly documented. The question of limitation of the primary production by eolian-transported trace-metals in these different sub-systems is still a matter of debate, although clear iron limitation has been evidenced for offshore waters of the Ross Sea.Data presented here were partly collected during the European Polarstern Study (EPOS) sponsored by the European Science Foundation  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号