首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Astronauts experiencing long periods of space flight suffer from severe loss of bone tissue, particularly in those bones that carry the body weight under normal gravity. It is assumed that the lack of mechanical load decreases connective tissue biosynthesis in bone-forming cells. To test this assumption, quantitative and qualitative aspects of collagen synthesis under microgravity, normal gravity, and hypergravity conditions were investigated by incubating human fibroblast cultures with [3H]-proline for 4, 7, 10, and 20 h during the Spacelab D2-mission in 1993. Quantitative analysis revealed an increase of collagen synthesis under microgravity conditions, being up to 143% higher than in 1 g controls. In contrast, hypergravity samples showed a decrease in collagen synthesis with increasing g, being at the 13% level at 10 g. The relative proportion of collagen in total synthesized protein showed a slight decrease with increasing g. The secretion of collagen by the cells, proline hydroxylation of individual collagen -chains, and the relative proportions of synthesized collagens I, III, and V were not affected under any of the applied conditions.Our research was supported financially by Dara GmbH Bonn (grant. no. 01QV 8866), the Deutsche Forschungsgemeinschaft (SFB A1/367) and BMFT grant. no. 01 KM 9303/8.  相似文献   

2.
Relaxin is believed to play a role in connective tissue remodeling during pregnancy (Bell, R.J., Eddie, L. W., Lester, A. R., Wood, E. C., Johnston, P.D., and Niall, H. D. (1987) Obstet. Gynecol. 69, 585-589; MacLennan, A. H. (1983) Clin. Reprod. Fertil. 2, 77-95). In the present study, normal human fibroblasts exposed to concentrations of a synthetic bioactive relaxin peptide from 0.1 to 10 ng/ml synthesized and secreted the metalloproteinase procollagenase, which was immunoprecipitable as a doublet of 52 and 57 kDa by a monoclonal antibody to human collagenase. The stimulation in procollagenase protein expression was reflected in an elevation in procollagenase mRNA levels. Media conditioned for 48 h by relaxin-treated fibroblasts (0.1 ng/ml) contained 1.7 units/ml activatable collagenase compared with 0.2 units/ml by untreated fibroblasts. In addition, relaxin caused a modest decrease in the levels of tissue inhibitor of metalloproteinases, as detected by reverse zymography and Northern analysis. Relaxin was also a potent modulator of the collagen secretory phenotype of these fibroblasts. Relaxin at 100 ng/ml down-regulated collagen secretion by 40%. When fibroblasts were treated simultaneously with cytokines such as transforming growth factor beta or interleukin 1 beta, which stimulated collagen synthesis to at least 9-fold of basal levels, relaxin at 100 ng/ml was able to down-regulate collagen expression by up to 88%. This decrease was reflected by changes at the mRNA level. These results indicate that relaxin can cause significant collagen turnover both by stimulating collagenase expression and by down-modulating collagen synthesis and secretion.  相似文献   

3.
The contraction of collagen matrices by dermal fibroblasts   总被引:4,自引:0,他引:4  
Floating collagen gel cultures containing human foreskin fibroblasts have been observed to undergo a rapid contraction process. The initial rate of contraction (i.e., within the first 2 hr) was observed to be a linear function of cell number within the concentration range of 10(5)-10(6) cells/gel. Observation of thick, deresined sections of such contracting gels in the SEM, as well as observation of thin sections in the TEM, suggest that the fibroblasts exert a tension upon the surrounding collagen fibers. These observations further indicate that the fibroblasts migrate from the interior regions of the gel matrix and eventually form a monolayer of cells encapsulating the contracted collagen disc. These observations are discussed in terms of the possible mechanisms involved in gel contraction.  相似文献   

4.
Our aim was to design a simple compression system and investigate the influence of mechanical stress on skin-like structures. Many mechanical compression studies have employed intricate culture systems, so the relationship between extracellular matrix material and the response of skin cells to mechanical stress remains unknown. Our approach uses only glass vials, 6-well plates and standard laboratory equipment. We examined the influence of mechanical stress on human skin fibroblasts embedded within a collagen sponge. The results show that mechanical compression increases MMP-1 and MMP-2 release by the cells into the the cell culture. Our results suggest that pressure on the skin may affect extracellular matrix degradation through some as yet unidentified pathways and that IL-6 mRNA expression may be involved in this effect. Using our approach, the effects of static mechanical stress on protein expression by cells in the culture medium and in sponges can be easily examined, and therefore this system will be useful for further analyses of skin responses to mechanical stress.  相似文献   

5.
Tumor necrosis factor (TNF) caused inhibition of collagen production by confluent cultures of human dermal fibroblasts in a dose-dependent manner. Concomitant increase of prostaglandin E2 release was observed as a result of TNF-induced cell activation. However, a blockade of the cyclooxygenase pathway of arachidonate metabolism by indomethacin did not abrogate the inhibitory effect of TNF on collagen synthesis, suggesting that this effect could be independent of prostaglandin metabolism. Gel electrophoresis of the newly synthesized macromolecules from the culture media showed that both type I and type III collagens as well as fibronectin were affected by the inhibition. Electrophoresis of cell layer-associated proteins demonstrated that the reduction in amounts of collagen and fibronectin in the medium did not result from an intracellular accumulation of these macromolecules. Production of procollagens was reduced in parallel to that of collagens, suggesting that the effect of TNF is exerted before the processing steps of procollagens. These results clearly show that TNF could play a role in modulation of matrix deposition by fibroblasts during inflammatory processes.  相似文献   

6.
Abnormal regulation of collagen synthesis has been observed in fibroblasts from keloids, benign collagenous tumors that develop as a result of an inherited defect in dermal wound healing. Hydrocortisone reduces the rate of collagen synthesis in fibroblasts from normal adult dermis and scars, but fails to down regulate collagen synthesis in keloid-derived fibroblasts. We show here that loss of glucocorticoid control of collagen synthesis in keloid cells is due to an inability of hydrocortisone to reduce the levels of types I, III, and V collagen mRNA, whereas it coordinately lowers these RNAs in normal adult cells. The defective regulatory mechanism is expressed only in fibroblasts from the lesion. Fibroblasts from uninvolved dermis respond normally to hydrocortisone. Not all glucocorticoid-modulated matrix proteins are abnormally regulated in this disorder; fibronectin mRNA is induced to a similar extent in normal and keloid cells. The failure of hydrocortisone to reduce collagen gene expression is also seen in fibroblasts from fetal dermis. We have reported similarities between keloid and fetal cells with regard to growth factor requirements and growth response to hydrocortisone. Thus, keloids may be due to the inappropriate expression of a pattern of growth and matrix production that is developmentally regulated.  相似文献   

7.
The adhesion of Balb/c 3T12 cells to fibronectin (FN) and to denatured (DC) or native (NC) collagen is differentially sensitive to divalent cations and to sodium azide. Short-time adhesion (10 min) to FN requires either Mg2+ or Mn2+, whereas only Mn2+ stimulates attachment to DC and NC. Azide treatment only slightly affects adhesion of cells to FN, but strongly inhibits cell attachment to DC and NC. Attachment to any of these substrata is unaffected by monensin and by treatment of the cells with an intracellular fraction, making unlikely the possibility that molecules released by secretion or cell lysis participate in the adhesive process. Soluble collagen inhibits the adhesion of cells to DC and NC, but does not affect adhesion to FN. Finally, rabbit antiserum against collagen binding proteins inhibits cell attachment to NC and DC; the cells, however, attach normally to FN in presence of this antiserum. Taken together, our results support the view that 3T12 cells attach directly to native or denatured collagens and that FN is not required for this process.  相似文献   

8.
Fibroblast contraction in wound healing involves the interaction of several cell types, cytokines, and extracellular matrix molecules. We have previously developed fibroblast alignment models using precise uniaxial mechanical loads in 3D culture and using contact guidance on fibronectin strands. Our aim here was to use contact guidance to place fibroblasts in their potentially most sensitive configuration, i.e., perpendicular to the axis of loading, to present cells with conflicting guidance cues. Gene expression at the mRNA level of cells recovered from different zones of the 3D collagen gel (with distinct orientation) was determined by quantitative RT-PCR for the matrix proteases MMP1, 2, and 3, and inhibitors TIMP1 and 2.Our results show a 2-, 4-, and 3-fold increase in MMP1, 2, and 3, respectively, in the non-aligned strain zone, relative to the aligned strain zone. These results suggest that cells unable to align to applied loads remodel their matrix far more rapidly than orientated cells. Where fibroblasts were held in an alignment perpendicular to the applied load by contact guidance, the fall in MMP mRNA expression was largely abolished, indicating that these cells remained in a mechano-activated state. The protease inhibitors TIMP1 and 2 were poorly mechano-responsive, further suggesting that changes in MMP expression result in functional matrix remodelling. These results indicate how mechanical loading in tissues may influence matrix remodelling, particularly under conflicting guidance cues.  相似文献   

9.
The pathogenesis of fibrosis, especially involving post-translational modifications of collagen, is poorly understood. Lysyl hydroxylase 2 (long) (LH2 (long)) is thought to play a pivotal role in fibrosis by directing the collagen cross-link pattern. Here we show that LH2 (long) exerts a bimodal function on collagen synthesis in human dermal fibroblasts. Adenoviral-mediated overexpression of LH2 (long) resulted in a mRNA increase of collagen α1(I) but not of fibronectin and fibrillin-1. This was accompanied by a higher mRNA level of prolyl-4-hydroxylase but not of other ER proteins (Bip, Hsp47, LH1, LH3). The collagen mRNA increase led to an elevated collagen synthesis, which was higher in the fraction of extracellularly deposited, cell-associated collagen than in the medium. The cross-link pattern of cell-associated collagen showed an increase of the hydroxylysine-aldehyde-derived cross-link dihydroxylysinonorleucine and a decrease of the lysine-aldehyde-derived component hydroxylysinonorleucine. The helical lysyl hydroxylation of the procollagen molecule was unaltered. The increase of collagen synthesis in fibroblasts overexpressing LH2 (long) was independent from cross-linking as it was also observed in the presence of β-aminopropionitril, a cross-linking inhibitor. Together our data identify LH2 (long) as a bifunctional protein and underscores its potential role in the pathogenesis of fibrosis.  相似文献   

10.
The triple-helical domain of type VII collagen was isolated from human placental membranes by mild digestion with pepsin, and polyclonal antibodies were raised in rabbits against this protein. After affinity purification the antibodies specifically recognized type VII collagen in both the triple-helical and the unfolded state. They also reacted with the fragments P1 and P2, derived from the triple-helical domain by further proteolysis with pepsin, but did not crossreact with other biochemical components of the dermal connective tissue. In skin the presence of a fragment of type VII collagen, similar to that isolated from placenta, was demonstrated by SDS-PAGE and immunoblotting. Type VII collagen represented less than 0.001% of the total collagen extracted by pepsin digestion from newborn or adult skin. The tissue form of type VII collagen was obtained from dermis after artificial epidermolysis with strongly denaturing buffers under conditions reducing disulfide bonds. The protein was identified by immunoblotting with the antibodies. The molecule was composed of three polypeptides with an apparent molecular mass of about 250 kDa, each. Similar large-molecular-mass chains could be identified by immunoblotting in extracts of human fibroblasts in culture.  相似文献   

11.
The chemoattractive properties of collagen in native (triple-helical) and denatured (random coil) conformation were compared in a Boyden chamber type assay to those of collagen fragments derived from cleavage with mammalian or bacterial collagenase using human embryonic dermal fibroblasts as target cells. Chemotaxis to native collagen required low collagen concentrations because fibril formation at high concentrations and at physiological pH and ionic strength prevented chemoattractiveness. Chemotaxis of denatured collagen was comparable to that of native collagen in solution. Cleavage of native collagen with mammalian collagenase increased, digestion with bacterial collagenase abolished its chemotactic activity. It is thought that these data may reflect the in vivo situation during inflammation and wound repair.  相似文献   

12.
Summary In the process of wound healing keratinocytes and fibroblasts play an important role, keratinocytes in the re-epithelization process and fibroblasts in the process of wound contraction. We have studied the role of human keratinocytes and fibroblasts in the rearrangement of collagen in a collagen lattice model system. Our results revealed that keratinocytes as well as fibroblasts rearrange the collagen lattice; this occurs in a cell number and collagen concentration dependent manner. The optimal gel contraction is obtained in the presence of keratinocytes on the top of and of fibroblasts in the collagen lattice, the situation most closely approaching the in vivo situation. Between the two types of cells, differences in morphologic behavior were observed: when incorporated into the gel the keratinocytes retained their spherical shape throughout the whole culture period, but fibroblasts became elongated and formed extensions. Our data suggest that not only fibroblasts but also keratinocytes may be involved in the process of wound contraction. This work was supported by the Koningin Wilhelmina Fonds (Netherlands Cancer Foundation, grant 84-10).  相似文献   

13.
This investigation has studied the effect of minoxidil on the contraction of hydrated collagen lattices by human dermal fibroblasts. Type I collagen was mixed with a fibroblast suspension and polymerized, and minoxidil 10 to 800 micrograms/ml (0.05 to 4 mM) was added at the time the lattices were released. Minoxidil at concentrations from 100 to 600 micrograms/ml inhibited contraction in a dose-dependent manner, whereas 800 micrograms/ml prevented contraction completely, most cells remaining rounded. Considerable inhibition was already evident within 24 hours. Visualization of living cells with MTT and cell counts showed that inhibition in the first 48 hours was not due to fibroblast death. Exchange of minoxidil to normal medium led to a resumption of contraction and a return to an elongate morphology. Minoxidil at 10 micrograms/ml had no significant effect on lattice contraction, whereas at 100 micrograms/ml it slowed contraction without affecting proliferation or morphology, as observed under the light microscope. The inhibitory effect of minoxidil should be investigated further in relation to the control of contraction of wounds in vivo.  相似文献   

14.
Human fibroproliferative disorders like hypertrophic scarring of the skin are characterized by increased contractility and excess extracellular matrix synthesis. A beneficial role of transforming growth factor (TGF)-beta in wound healing was proposed; however, chronic stimulation by this cytokine leads to fibrosis. In the present report, the intracellular TGF-beta signaling in fibroblasts derived from hypertrophic scars and normal skin was examined. In an attempt to intervene in profibrogenic TGF-beta functions, ectopic expression of Smad7 or dominant negative Smads3/4 completely inhibited contractility of scar-derived and normal fibroblasts after suspension in collagen gels. Both cell types displayed constitutive Smad2/3 phosphorylation and (CAGA)9-MLP-Luc activity with expression and phosphorylation of Smad3 being predominant in hypertrophic scar-derived fibroblasts. Down-regulation of intrinsic signaling with various TGF-beta antagonists, e.g. soluble TGF-beta receptor, latency-associated peptide, and anti-TGF-beta1 antibodies, confirms autocrine TGF-beta stimulation of both cell populations. Further, Smad7 expression inhibited alpha1 (I) collagen and alpha-smooth muscle actin expression. In summary, our data indicate that autocrine TGF-beta/Smad signaling is involved in contractility and matrix gene expression of fibroblasts from normal and hypertrophic scars. Smad7 inhibits these processes and may exert beneficial effects on excessive scar formation.  相似文献   

15.
In the current study, the involvement of phospholipase D (PLD) in the regulation of collagen type I production was examined using human dermal fibroblasts. Procollagen I production in the cells overexpressing PLD1, but not PLD2, was found to be increased compared with those in the vector control cells. To investigate the role of PLD1, we examined the effect of knockdown of endogenous PLD1 by small interference RNA (siRNA) on collagen production. The reduction of expression levels of PLD1 by siRNA transfection was accompanied by diminution of procollagen biosynthesis and also ribosomal S6 kinase 1 (S6K1) phosphorylation. The activity of mammalian target of rapamycin (mTOR) is essential for phosphorylation of S6K1 and the treatment of dermal fibroblasts with rapamycin, a potent inhibitor of mTOR abolished procollagen I production. These results suggest that PLD1 plays a crucial role in collagen type I production through mTOR signaling in human dermal fibroblast.  相似文献   

16.
Tissue remodeling is known to play important roles in wound healing. Although Rac1 is reported to be one of the key signaling molecules in cutaneous wound healing process, the exact mechanisms of Rac1-mediated tissue remodeling is still unknown. This study investigated the role of Rac1 in the regulation of extracellular matrix in cultured human dermal fibroblasts obtained by skin biopsy from three healthy donors. Protein levels of type I collagen in cultured human fibroblasts were increased by the treatment with Rac1 inhibitor NSC23766 in a dose-dependent manner. However, the mRNA levels of α2(I) collagen was not altered by the inhibitor. On the other hand, by the addition of inhibitor, half-lives of type I collagen protein were increased and MMP1 levels were reduced. These data suggest that blockade of Rac1 signaling results in accumulation of type I collagen due to decreased collagenase activity. This study also suggests that controlling Rac1 signaling is a new therapeutic approach to chronic/untreatable ulcer.  相似文献   

17.
18.
We investigated the mechanisms by which protein kinase C (PKC) regulates the expression of the α2(I) collagen gene in normal dermal fibroblasts. Reduction of PKC-α activity by treatment with Gö697-6 or by overexpression of a dominant negative (DN) mutant form decreased α2(I) collagen gene expression. This decrease required a sequence element in the collagen promoter that contains Sp1/Sp3 binding sites. Reduction of PKC-δ activity by rottlerin or overexpression of DN PKC-δ also decreased α2(I) collagen gene expression. This effect required a separate sequence element containing Sp1/Sp3-binding sites and an Ets-binding site. In both cases, point mutations within the response elements abrogated the response to PKC inhibition. Forced overexpression of Sp1 rescued the PKC inhibitor-mediated reduction in collagen protein expression. A DNA affinity precipitation assay revealed that inhibition of PKC-δ by rottlerin increased the binding activity of endogenous Fli1 and decreased that of Ets1. On the other hand, TGF-β1, which increased the expression of PKC-δ, had the opposite effect, increasing the binding activity of Ets1 and decreasing that of Fli1. Our results suggest that PKC-δ is involved in the regulation of the α2(I) collagen gene in the presence or absence of TGF-β. Alteration of the balance of Ets1 and Fli1 may be a novel mechanism regulating α2(I) collagen expression.  相似文献   

19.
Interleukin-4 (IL-4) is one of the products of T-lymphocytes and mast cells, inflammatory cells which accumulate in connective tissues at early stages of fibrosis. We tested the effects of IL-4 on human fibroblasts from normal and scleroderma skin seeded in three dimensional collagen lattices ("dermal equivalents"). IL-4 (10 and 100 U/ml) stimulated collagen synthesis in a dose-dependent manner. No significant alteration of lattice retraction and cell proliferation was observed. At the concentration 100 U/ml, Il-4 was approximately twice more efficient on collagen synthesis than Transforming Growth Factor beta (10 ng/ml). IL-4 secretion in connective tissues might be an important factor for the development of fibrotic processes.  相似文献   

20.
Frizzled-3 (Fzd3), highly expressed in both the central nervous system (CNS) and skin, plays essential roles in axonal growth and guidance during the CNS development and may be involved in maintenance of skin integrity, although its ligand remains undetermined. In this study, we demonstrate that Wnt5a specifically binds to Fzd3 in vitro and triggers phosphorylation of Akt mediated by phosphatidylinositol-3 kinase (PI3K), but not that of ERK or protein kinase C, in human primary-cultured dermal fibroblasts. We have further found that such Wnt5a/Fzd3-triggered activation of the PI3K/Akt signal promotes integrin-mediated adhesion of human dermal fibroblasts to collagen I-coated dishes. Based on another finding that Wnt5a/Fzd3-triggered activation of the PI3K/Akt signal was blocked by an excess amount of a recombinant Fzd3-cysteine-rich domain (CRD), but not by that of a recombinant Fzd6-CRD, it is concluded that Wnt5a is a natural ligand of Fzd3 that triggers the PI3K/Akt signal and promotes adhesion of human dermal fibroblasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号