首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Until recently almost nothing was known about the effects of plant polyploidy on interactions with herbivores and pollinators. Studies of the saxifrage Heuchera grossulariifolia throughout its geographical range in the US northern Rockies have shown that autopolyploidy has probably arisen multiple times within this species since the end of the Pleistocene. Tetraploids from those different origins experience higher levels of attack by the moth Greya politella (Prodoxidae) than sympatric or parapatric diploids. In addition, within one intensively studied region, the plants are also attacked by two other lepidopteran species: G. piperella , which preferentially attack diploids, and Eupithecia misturata (Geometridae), which preferentially attacks tetraploids. Sympatric diploid and tetraploid plants also differ in the overall suites of pollinators they attract. Hence, the evolution of polyploid populations has the potential to change significantly the evolutionary ecology of interactions with herbivores and pollinators. Because a large number of plant lineages include polyploid species, the evolution of plant polyploidy may have had major effects on the interaction structure of terrestrial communities.  © 2004 The Linnean Society of London, Biological Journal of the Linnean Society , 2004, 82 , 511–519.  相似文献   

2.
Polyploidy is a common mode of speciation that can have far‐reaching consequences for plant ecology and evolution. Because polyploidy can induce an array of phenotypic changes, there can be cascading effects on interactions with other species. These interactions, in turn, can have reciprocal effects on polyploid plants, potentially impacting their establishment and persistence. Although there is a wealth of information on the genetic and phenotypic effects of polyploidy, the study of species interactions in polyploid plants remains a comparatively young field. Here we reviewed the available evidence for how polyploidy may impact many types of species interactions that range from mutualism to antagonism. Specifically, we focused on three main questions: (1) Does polyploidy directly cause the formation of novel interactions not experienced by diploids, or does it create an opportunity for natural selection to then form novel interactions? (2) Does polyploidy cause consistent, predictable changes in species interactions vs. the evolution of idiosyncratic differences? (3) Does polyploidy lead to greater evolvability in species interactions? From the scarce evidence available, we found that novel interactions are rare but that polyploidy can induce changes in pollinator, herbivore, and pathogen interactions. Although further tests are needed, it is likely that selection following whole‐genome duplication is important in all types of species interaction and that there are circumstances in which polyploidy can enhance the evolvability of interactions with other species.  相似文献   

3.
Ehrlich and Raven's (1964) hypothesis on coevolution has stimulated numerous phylogenetic studies that focus on the effects of plant defensive chemistry as the main ecological axis of phytophagous insect diversification. However, other ecological features affect host use and diet breadth and they may have very different consequences for insect evolution. In this paper, we present a phylogenetic study based on DNA sequences from mitochondrial and protein-coding genes of species in the seed beetle genus Stator, which collectively show considerable interspecific variation in host affiliation, diet breadth, and the dispersal stage of the seeds that they attack. We used comparative analyses to examine transitions in these three axes of resource use. We argue that these analyses show that diet breadth evolution is dependent upon colonizing novel hosts that are closely or distantly related to the ancestral host, and that oviposition substrate affects the evolution of host-plant affiliation, the evolution of dietary specialization, and the degree to which host plants are shared between species. The results of this study show that diversification is structured by interactions between different selective pressures and along multiple ecological axes.  相似文献   

4.
Recent theoretical studies have argued that plant-herbivore coevolution proceeds in a diffuse rather than a pairwise manner in multispecies interactions when at least one of two conditions are met: (1) genetic correlations exist between plant resistances to different herbivore species; and (2) ecological interactions between herbivores sharing a host plant cause nonadditive impacts of herbivory on plant fitness. We present results from manipulative field experiments investigating the single and interactive fitness effects of three types of herbivory on scarlet gilia (Ipomopsis aggregata) over two years of study. We utilize these data to test whether selection imposed by herbivore attack on date of first flowering is pairwise (independent) or diffuse (dependent) in nature. Our results reveal complex patterns of the fitness effect of herbivores. Simulated early season browsing had a strong negative fitness effect on plants and also reduced subsequent insect attack. Surprisingly, this ecological interaction did not translate into significant interactions between clipping and insect manipulations on plant fitness. However, we detected a significant interaction between seed fly and caterpillar herbivory on plant fitness, with the negative effect of either insect being greatest when occurring alone. These results suggest that herbivore-imposed selection may have pairwise and diffuse components. In our selection analysis of flowering phenology, we discovered significant pairwise linear selection imposed by clipping, diffuse linear selection imposed by insects, and diffuse nonlinear selection imposed by clipping and insect attack acting simultaneously. Our results reveal that the evolution of flowering phenology in scarlet gilia may be in response to diffuse and pairwise natural selection imposed by multiple herbivores. We discuss the evolution of resistance characters in light of diffuse versus pairwise forms of linear and nonlinear selection and stress the complexity of selection imposed by suites of interacting species.  相似文献   

5.
Most ecologists acknowledge that plants are subject to complex interactions between both below- and aboveground dwelling animals. However, these complex interactions are seldomly investigated simultaneously. In a factorial common garden experiment we tested single and combined effects of decomposers, root herbivores and leaf herbivores on the growth, flower visitation, and abundance of naturally colonizing aphids and parasitoids on wild mustard ( Sinapis arvensis ). We found that the individual presence of either root herbivores or decomposers resulted in increased aphid abundance, demonstrating that the same aboveground plant–insect interaction can be released by different belowground processes. Enhanced aphid densities caused higher numbers of parasitoids. Furthermore, decomposers increased plant growth and plant fitness (measured as the number of seeds produced), indicating that mustard may benefit from nutrients provided by decomposers, regardless whether plants are attacked by root herbivores or leaf herbivores, or both simultaneously. More flower visits were observed in plants attacked by root herbivores but without leaf herbivores than in plants with both herbivores, suggesting that root herbivory can modify flower attractivity to pollinators. Our results suggest that patterns in plant–insect interactions above the ground are not only affected by aboveground factors but also by a wealth of different belowground processes mediated by the plant.  相似文献   

6.
Conservatism in species interaction, meaning that related species tend to interact with similar partners, is an important feature of ecological interactions. Studies at community scale highlight variations in conservatism strength depending on the characteristics of the ecological interaction studied. However, the heterogeneity of datasets and methods used prevent to compare results between mutualistic and antagonistic networks. Here we perform such a comparison by taking plant–insect communities as a study case, with data on plant–herbivore and plant–pollinator networks. Our analysis reveals that plants acting as resources for herbivores exhibit the strongest conservatism in species interaction among the four interacting groups. Conservatism levels are similar for insect pollinators, insect herbivores and plants as interacting partners of pollinators, although insect pollinators tend to have a slightly higher conservatism than the two others. Our results thus clearly support the current view that within antagonistic networks, conservatism is stronger for species as resources than for species as consumer. Although the pattern tends to be opposite for plant–pollinator networks, our results suggest that asymmetry in conservatism is much less pronounced between the pollinators and the plant they interact with. We discuss these differences in conservatism strength in relation with the processes structuring plant–insect communities.  相似文献   

7.
Mating systems directly control the transmission of genes across generations, and understanding the diversity and distribution of mating systems is central to understanding the evolution of any group of organisms. This basic idea has been the motivation for many studies that have explored the relationships between plant mating systems and other biological and/or ecological phenomena, including a variety of floral and environmental characteristics, conspecific and pollinator densities, growth form, parity, and genetic architecture. In addition to these examples, a potentially important but poorly understood association is the relationship between plant mating systems and genome duplication, i.e., polyploidy. It is widely held that polyploid plants self-fertilize more than their diploid relatives, yet a formal analysis of this pattern does not exist. Data from 235 species of flowering plants were used to analyze the association between self-fertilization and ploidy. Phylogenetically independent contrasts and cross-species analyses both lend support to the hypothesis that polyploids self-fertilize more than diploids. Because polyploidy and self-fertilization are so common among angiosperms, these results contribute not only to our understanding of the relationship between mating systems and polyploidy in particular, but more generally, to our understanding of the evolution of flowering plants.  相似文献   

8.
The way in which herbivorous insect individuals use multiple host species is difficult to quantify under field conditions, but critical to understanding the evolutionary processes underpinning insect–host plant relationships. In this study we developed a novel approach to understanding the host plant interactions of the green mirid, Creontiades dilutus, a highly motile heteropteran bug that has been associated with many plant species. We combine quantified sampling of the insect across its various host plant species within particular sites and a molecular comparison between the insects'' gut contents and available host plants. This approach allows inferences to be made as to the plants fed upon by individual insects in the field. Quantified sampling shows that this “generalist” species is consistently more abundant on two species in the genus Cullen (Fabaceae), its primary host species, than on any other of its numerous listed hosts. The chloroplast intergenic sequences reveal that C. dilutus frequently feeds on plants additional to the one from which it was collected, even when individuals were sampled from the primary host species. These data may be reconciled by viewing multiple host use in this species as an adaptation to survive spatiotemporally ephemeral habitats. The methodological framework developed here provides a basis from which new insights into the feeding behaviour and host plant relationships of herbivorous insects can be derived, which will benefit not only ecological interpretation but also our understanding of the evolution of these relationships.  相似文献   

9.
Abstract Plant traits that mediate mutualistic interactions are widespread, yet few studies have linked their macroevolutionary patterns with the ecological interactions they mediate. Here we merged phylogenetic and experimental approaches to investigate the evolution of two common mutualistic plant traits, extrafloral nectaries (EFNs) and leaf domatia. By using the flowering plant clade Viburnum, we tested whether macroevolutionary patterns support adaptive hypotheses and conducted field surveys and manipulative experiments to examine whether ecological interactions are concordant with evolutionary predictions. Phylogenetic reconstructions suggested that EFN-bearing species are monophyletic, whereas the evolution of domatia correlated with leaf production strategy (deciduous or evergreen) and climate. Domatia were also more common in the EFN clade, suggesting that the two traits may jointly mediate ecological interactions. This result was further investigated in a common-garden survey, where plants with domatia and EFNs on the leaf blade had more mutualistic mites than plants with other trait combinations, and in manipulative field experiments, where the traits additively increased mutualist abundance. Taken together, our results suggest that mutualistic traits in Viburnum are not ecologically independent, as they work in concert to attract and retain mutualists, and their long-term evolution may be influenced by complex interactions among multiple traits, mutualists, and geography.  相似文献   

10.
Insect herbivores are considered vulnerable to extinctions of their plant hosts. Previous studies of insect-damaged fossil leaves in the US Western Interior showed major plant and insect herbivore extinction at the Cretaceous–Palaeogene (K–T) boundary. Further, the regional plant–insect system remained depressed or ecologically unbalanced throughout the Palaeocene. Whereas Cretaceous floras had high plant and insect-feeding diversity, all Palaeocene assemblages to date had low richness of plants, insect feeding or both. Here, we use leaf fossils from the middle Palaeocene Menat site, France, which has the oldest well-preserved leaf assemblage from the Palaeocene of Europe, to test the generality of the observed Palaeocene US pattern. Surprisingly, Menat combines high floral diversity with high insect activity, making it the first observation of a ‘healthy’ Palaeocene plant–insect system. Furthermore, rich and abundant leaf mines across plant species indicate well-developed host specialization. The diversity and complexity of plant–insect interactions at Menat suggest that the net effects of the K–T extinction were less at this greater distance from the Chicxulub, Mexico, impact site. Along with the available data from other regions, our results show that the end-Cretaceous event did not cause a uniform, long-lasting depression of global terrestrial ecosystems. Rather, it gave rise to varying regional patterns of ecological collapse and recovery that appear to have been strongly influenced by distance from the Chicxulub structure.  相似文献   

11.
Microbial mutualistic symbiosis is increasingly recognised as a hidden driving force in the ecology of plant–insect interactions. Although plant‐associated and herbivore‐associated symbionts clearly affect interactions between plants and herbivores, the effects of symbionts associated with higher trophic levels has been largely overlooked. At the third‐trophic level, parasitic wasps are a common group of insects that can inject symbiotic viruses (polydnaviruses) and venom into their herbivorous hosts to support parasitoid offspring development. Here, we show that such third‐trophic level symbionts act in combination with venom to affect plant‐mediated interactions by reducing colonisation of subsequent herbivore species. This ecological effect correlated with changes induced by polydnaviruses and venom in caterpillar salivary glands and in plant defence responses to herbivory. Because thousands of parasitoid species are associated with mutualistic symbiotic viruses in an intimate, specific relationship, our findings may represent a novel and widespread ecological phenomenon in plant–insect interactions.  相似文献   

12.
The herbivore load (abundance and species richness of herbivores) on alien plants is supposed to be one of the keys to understand the invasiveness of species. We investigate the phytophagous insect communities on cabbage plants (Brassicaceae) in Europe. We compare the communities of endophagous and ectophagous insects as well as of Coleoptera and Lepidoptera on native and alien cabbage plant species. Contrary to many other reports, we found no differences in the herbivore load between native and alien hosts. The majority of insect species attacked alien as well as native hosts. Across insect species, there was no difference in the patterns of host range on native and on alien hosts. Likewise the similarity of insect communities across pairs of host species was not different between natives and aliens. We conclude that the general similarity in the community patterns between native and alien cabbage plant species are due to the chemical characteristics of this plant family. All cabbage plants share glucosinolates. This may facilitate host switches from natives to aliens. Hence the presence of native congeners may influence invasiveness of alien plants.  相似文献   

13.
Rarely successful polyploids and their legacy in plant genomes   总被引:2,自引:0,他引:2  
Polyploidy, or whole genome duplication, is recognized as an important feature of eukaryotic genome evolution. Among eukaryotes, polyploidy has probably had the largest evolutionary impact on vascular plants where many contemporary species are of recent polyploid origin. Genomic analyses have uncovered evidence of at least one round of polyploidy in the ancestry of most plants, fueling speculation that genome duplications lead to increases in net diversity. In spite of the frequency of ancient polyploidy, recent analyses have found that recently formed polyploid species have higher extinction rates than their diploid relatives. These results suggest that despite leaving a substantial legacy in plant genomes, only rare polyploids survive over the long term and most are evolutionary dead-ends.  相似文献   

14.
A community of frugivorous insects was studied by rearing of 25 565 individual insects representing three orders (Coleoptera, Lepidoptera and Diptera except Drosophilidae) from 326 woody plant species in a lowland rainforest in Papua New Guinea. Fruits from 19.3% of plant species were not attacked by any insect order, 33.4% of plant species were attacked by a single order, 30% by two orders and 17.2% by all three orders. The likelihood of attack by individual orders was positively correlated so that a higher proportion of plant species than expected suffered either no attack at all or was attacked by all three insect orders. Fruits from most of the plant species exhibited low rates of attack and low densities of insects. One kilogram of fruit was attacked on average by 11 insects, including three to four Coleoptera, six Diptera and one Lepidoptera. Thus, we reared on average one insect from 10 fruits, including one Diptera from 14 fruits, one Coleoptera from 22 fruits and one Lepidoptera from 100 fruits. Only 72 out of the 326 plant species hosted more than one insect per 10 fruits, and only seven species supported a density of greater than one insect per fruit. Our results suggest that specialized insect seed predators are probably too rare to maintain the diversity of vegetation by density‐dependent mortality of seeds as suggested by the Janzen–Connell hypothesis. Fruit weight, fruit volume, mesocarp volume, seed volume and fleshiness had no significant effect on the probability that a fruit would be attacked by an insect frugivore. However, fruits attacked by Diptera were significantly larger and had larger volume of both mesocarp and seeds than fruits attacked by Coleoptera and Lepidoptera.  相似文献   

15.
Recent work has suggested that emergent ecological network structure exhibits very little spatial or temporal variance despite changes in community composition. However, the changes in network interactions associated with turnover in community composition have seldom been assessed. Here we examine whether changes in ecological networks are best detected by standard emergent network metrics or by assessing internal network changes (i.e. interaction and composition turnover). To eliminate possible spatial or phylogenetic effects, that in large‐scale studies may obscure mechanisms structuring networks and interactions, we sampled multiple antagonistic (plant–herbivore) networks for a single diverse plant family (the Restionaceae) in the hyperdiverse Cape Floristic Region. These are the first plant–herbivore networks constructed for this global biodiversity hotspot. We found invariant emergent network structure despite considerable changes in insect and plant composition across communities over time and space. In contrast, there was high interaction turnover between networks. Seasonally, this was driven by turnover in insect species and insect host switching. Spatially, this was driven by simultaneous turnover in plant and insect species, suggesting that many insects are host specific or that both groups exhibit parallel responses to environmental gradients. Spatial interaction turnover was also driven by turnover in plants, showing that many insects can utilise multiple (possibly closely related) hosts and this may create divergent selection gradients that promote insect speciation. Thus we show highly variable interaction fidelity, despite invariant emergent network structure. We suggest that evaluating internal network changes may be more effective at elucidating the processes structuring networks, and many fine‐scale changes may be obscured when only calculating emergent network metrics.  相似文献   

16.
Arbuscular mycorrhizal fungi affect phytophagous insect specialism   总被引:3,自引:0,他引:3  
The majority of phytophagous insects eat very few plant species, yet the ecological and evolutionary forces that have driven such specialism are not entirely understood. The hypothesis that arbuscular mycorrhizal (AM) fungi can determine phytophagous insect specialism, through differential effects on insect growth, was tested using examples from the British flora. In the UK, plant families and species in the family Lamiaceae that are strongly mycorrhizal have higher proportions of specialist insects feeding on them than those that are weakly mycorrhizal. We suggest that AM fungi can affect the composition of insect assemblages on plants and are a hitherto unconsidered factor in the evolution of insect specialism.  相似文献   

17.
昆虫与植物的协同进化:寄主植物-铃夜蛾-寄生蜂相互作用   总被引:4,自引:1,他引:4  
王琛柱  钦俊德 《昆虫知识》2007,44(3):311-319
近数10年内,Ehrlich和Raven于1964年提出的协同进化理论及Jermy于1976年提出的顺序进化理论极大地促进了对昆虫与植物相互作用的研究。文章首先简要介绍有关理论,对植食性昆虫与植物关系研究的若干核心问题进行评述。主要问题包括(1)植食性昆虫如何选择寄主植物?(2)植物次生物质是否作为植物防御昆虫取食的重要屏障?(3)昆虫能否适应植物的化学防御?(4)植食性昆虫寄主范围是否是从广到专演化的?随之,作者结合对铃夜蛾Helicoverpa系统研究取得的结果,对上述问题做了进一步的论证和阐述。最后,在继承协同进化、顺序进化等理论精髓的基础上,根据当今三营养级相互作用领域的研究新进展,提出一个新的假说,即多营养级协同进化假说。该假说肯定植物次生物质在植物防御和昆虫识别寄主植物上的重要作用,同时把其他营养级并列放入交互作用的系统,特别强调第三营养级在昆虫与植物关系演化过程中的参与和寄主转移与昆虫食性专化和广化的联系。  相似文献   

18.
Adaptive Radiation in Insects and Plants: Time and Opportunity   总被引:1,自引:0,他引:1  
SYNOPSIS. Insects and their hostplants represent the major partof terrestrial diversity, yet we are just beginning to understandwhy there are so very many species. By far the most influentialmodel of insect/plant diversification has been Ehrlich and Raven's(1964) hypothesis of insect/plant coevolution. While the coevolutionmodel was based on macroevolutionary patterns in plant defensesand hostplant affiliations, most of the subsequent work hasbeen on its possible ecological and genetic mechanisms, withrelatively little systematic scrutiny of the evolutionary patternsEhrlich and Raven described. We explore the possible roles insect/plantinteractions may play in the long-term evolution of insect andplant lineages, and review some of the evidence on whether ornot insects and plants have exerted reciprocal influences oneach other's diversification. Insects and plants have diversified over roughly the same timeintervals, and many insect host/affiliations are evolutionarilyconserved, thus reflecting long/term, phylogenetic history.Rather than accumulating herbivores at a rate proportional totheir geographic area of distribution or biomass, some plantgroups pose apparent chemical barriers to potential herbivorecolonists, and seem accessible to relatively few insect lineages,possibly preadapted by use of chemically similar or relatedhostplants. Evolutionary innovations in plant defenses and ininsect feeding habits seem to have spurred their respectiveadaptive radiations, thus ecological opportunity may influencelong-term evolutionary success. The greater diversity of insectsand plants in the tropics, compared to the temperate zone, probablyreflects the greater age of tropical habitats as well as climaticbarriers that limit successful invasion of the temperate zoneto just those primitively tropical groups able to evolve strategiesfor both overwintering and use of temperate resources. Thoughevidence is still sparse, successful invasion of the temperatezone may promote subsequent radiations of both insects and plants. We conclude that much of the available evidence from systematicsis consistent with Ehrlich and Raven's suggestion that muchof insect and plant diversification has been spurred by a seriesof ecological opportunities over evolutionary time.  相似文献   

19.
A general prediction of the specialist/generalist paradigm indicates that plant responses to insect herbivores may depend on the degree of ecological specialization of the insect attacker. However, results from a single greenhouse experiment evaluating the responses of the model plant Arabidopsis thaliana to three specialist (Plutella xylostella, Pieris rapae, and Brevicoryne brassicae) and three generalist (Trichoplusia ni, Spodoptera exigua, and Myzus persicae) insect species did not support the previous prediction. Using an ecological genomic approach, we assessed plant responses in terms of herbivore-induced changes in genome-wide gene expression, defense-related pathways, and concentrations of glucosinolates (i.e., secondary metabolites that are ubiquitously present in cruciferous plants). Our results showed that plant responses were not influenced by the degree of specialization of insect herbivores. In contrast, responses were more strongly shaped by insect taxa (i.e., aphid vs. lepidopteran species), likely due to their different feeding modes. Interestingly, similar patterns of plant responses were induced by the same insect herbivore species in terms of defense signaling (jasmonic acid pathway), aliphatic glucosinolate metabolism (at both the gene expression and phenotypic levels) and genome-wide responses. Furthermore, plant responses to insect herbivores belonging to the same taxon (i.e., four lepidopteran species) were not explained by herbivore specialization or phylogenetic history. Overall, this study suggests that different feeding modes of insect taxa as well as herbivore-specific plant responses, which may result from distinct ecological/evolutionary interactions between A. thaliana (or a close relative) and each of the lepidopteran species, may explain why observed responses deviate from those predicted by the specialist/generalist paradigm.  相似文献   

20.
Adaptive diversification is a process intrinsically tied to species interactions. Yet, the influence of most types of interspecific interactions on adaptive evolutionary diversification remains poorly understood. In particular, the role of mutualistic interactions in shaping adaptive radiations has been largely unexplored, despite the ubiquity of mutualisms and increasing evidence of their ecological and evolutionary importance. Our aim here is to encourage empirical inquiry into the relationship between mutualism and evolutionary diversification, using herbivorous insects and their microbial mutualists as exemplars. Phytophagous insects have long been used to test theories of evolutionary diversification; moreover, the diversification of a number of phytophagous insect lineages has been linked to mutualisms with microbes. In this perspective, we examine microbial mutualist mediation of ecological opportunity and ecologically based divergent natural selection for their insect hosts. We also explore the conditions and mechanisms by which microbial mutualists may either facilitate or impede adaptive evolutionary diversification. These include effects on the availability of novel host plants or adaptive zones, modifying host-associated fitness trade-offs during host shifts, creating or reducing enemy-free space, and, overall, shaping the evolution of ecological (host plant) specialization. Although the conceptual framework presented here is built on phytophagous insect-microbe mutualisms, many of the processes and predictions are broadly applicable to other mutualisms in which host ecology is altered by mutualistic interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号