首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have labelled the rat vitamin D binding protein (DBP), DBP-actin and rat albumin with 125I-tyramine-cellobiose (125I-TC). In contrast with traditional 125I-labelling techniques where degraded radioactive metabolites are released into plasma, the 125I-TC moiety is trapped intracellularly in the tissues, where the degradation of the labelled proteins takes place. By using this labelling method, the catabolism of proteins can be studied in vivo. In this study we have used this labelling technique to compare the tissue uptake and degradation of DBP, DBP-actin and albumin in the rat. DBP-actin was cleared from plasma at a considerably faster rate than DBP. After intravenous injection of labelled DBP-actin complex, 48% of the radioactive dose was recovered in the liver after 30 min, compared with 14% when labelled DBP was administered. Only small amounts of DBP-actin complex were recovered in the kidneys. In contrast with the results obtained with DBP-actin complex, liver and kidneys contributed about equally in the uptake and degradation of DBP determined 24 h after the injection. When labelled DBP was compared with labelled albumin, the amount of radioactivity taken up by the liver and kidneys by 24 h after the injection was 2 and 5 times higher respectively. In conclusion, liver and kidneys are the major organs for catabolism of DBP in the rat. Furthermore, binding of actin to DBP enhances the clearance of DBP from circulation as well as its uptake by the liver.  相似文献   

2.
The search for a radioiodinated “cumulative” protein label, stored within cells following intracellular protein degradation, suggested that plasma protein turnover of tumours might be of use. While earlier investigators were primarily interested in metabolism and utilization of plasma proteins by tumours, we tried to utilize the tumour protein turnover to channel radioiodine labelled compounds, covalently bound to serum albumin, into neoplastic tissues. To identify those parameters which influence the tumour uptake and storage, we investigated a series of compounds having different chemical and physicochemical properties. Unbound, small molecular weight compounds were rapidly eliminated from the circulatory system. They had a prolonged biological half life if linked to serum albumin (SA), especially when derivatized with deoxysorbitol. Parallel with the prolongation of the biological half-life we noted a remarkable increase in tumour uptake, which was not accompanied by increased liver activity. Further-more, without thyroid blockade, we failed to detect significant radioiodine uptake in this organ after 24 or 72 h. This is due to the particular coupling mechanism, which may be relevant for other (radio)iodinated pharmaceuticals used in medicine. Glucose and aromatic amines, as well as aromatic aldehydes and glucamine react to form deoxysorbitol derivates, which then have similar biokinetics after linkage to serum albumin. This indicates that a new approach in tumour detection and possibly in tumour therapy may be possible when SA is used as a carrier molecule, using the described labelling procedure.  相似文献   

3.
A method is described for radiolabelling proteins with O-(4-diazo-3,5-di[125I]iodobenzoyl)sucrose (DD125IBS). When proteins so labelled were degraded within lysosomes, the radioactive fragments were largely retained within the organelle. High specific radioactivities were obtained without changing the properties of the protein. The validity of the method was demonstrated in vivo in rats using the short-lived protein lactate dehydrogenase, isoenzyme M4, and the long-lived protein bovine serum albumin. Derivatization with DD125IBS did not alter the clearance of either protein. Uptake of DD125IBS-labelled lactate dehydrogenase, isoenzyme M4, by liver and spleen of rats was determined. Radioactivity in these tissues increased up to about 2 h after injection (at this time the protein has been almost completely cleared from the blood) and subsequently declined with a half-life of approx. 20 h. After differential fractionation of liver, radioactivity was largely found in the mitochondrial and lysosomal fraction. The results of these studies establish that DD125IBS covalently coupled to plasma proteins should be a useful radioactive tracer for identifying the tissue and cellular sites of catabolism of relatively long-lived circulating proteins.  相似文献   

4.
1. Receptor-mediated endocytosis of mannose-terminated glycoproteins in rat liver endothelial cells has been followed by means of subcellular fractionation and by immunocytochemical labelling of ultrathin cryosections after intravenous injection of ovalbumin. For subcellular-fractionation studies the ligand was labelled with 125-tyramine-cellobiose adduct, which leads to labelled degradation products being trapped intracellularly in the organelle where the degradation takes place. 2. Isopycnic centrifugation in sucrose gradients of a whole liver homogenate showed that the ligand is sequentially associated with three organelles with increasing buoyant densities. The ligand was, 1 min after injection, recovered in a light, slowly sedimenting vesicle and subsequently (6 min) in larger endosomes. After 24 min the ligand was recovered in dense organelles, where also acid-soluble degradation products accumulated. 3. Immunocytochemical labelling of ultrathin cryosections showed that the ligand appeared rapidly after internalization in coated vesicles and subsequently in two larger types of endosomes. In the 'early' endosomes (1 min after injection) the labelling was seen closely associated with the membrane of the vesicle; after 6 min the ligand was evenly distributed in the lumen. At 24 min after injection the ligand was found in the lysosomes. 4. A bimodal distribution of endothelial cell lysosomes with different buoyant densities was revealed by centrifugation in iso-osmotic Nycodenz gradients, suggesting that two types of lysosomes are involved in the degradation of mannose-terminated glycoproteins in liver endothelial cells. Two populations of lysosomes were also revealed by sucrose-density-gradient centrifugation after injection of large amounts of yeast invertase. 5. In conclusion, ovalbumin is transferred rapidly through three endosomal compartments before delivering to the lysosomes. The degradation seems to take place in two populations of lysosomes.  相似文献   

5.
A universally applicable labelling and purification process was established to prepare biologically active proteins with a stoichiometric 1:1 ratio of attached dye-label. The dye-label is linked to a specific DNA sequence, which acts as a barcode-like tag for affinity purification. The DNA-dye tag is covalently bound to the target protein, which is present in excess to assure the binding of not more than one dye per molecule. Affinity purification occurs at magnetic beads that are functionalized with oligonucleotides that are complementary to the DNA-tag of the labelled proteins but for one or two mismatches. Washing removes all unbound, unlabelled molecules. The labelled protein is subsequently released by the addition of a fully complementary oligonucleotide. This process allows a gentle purification of a protein fraction that has exactly one label attached to each molecule under conditions that preserve protein structure.  相似文献   

6.
beta-Very low density lipoprotein (beta-VLDL) may be a major atherogenic lipoprotein, and knowledge of the sites of its catabolism should facilitate elucidation of mechanisms important in the regulation of its plasma concentrations. In this study, catabolic sites of beta-VLDL have been delineated in normolipidemic rabbits with a novel, radioiodinated, residualizing label, 125I-dilactitol tyramine (125I-DLT). Comparative studies of beta-VLDL and low density lipoprotein catabolism were performed with 125I-DLT conjugated to each lipoprotein and with lipoproteins iodine-labeled conventionally. Conjugation did not alter size distributions or charge characteristics of lipoprotein particles. The overall processing (binding and degradation) of lipoproteins by cultured rabbit skin fibroblasts was not influenced by 125I-DLT derivatization, suggesting that attachment of the label did not influence cell receptor-lipoprotein interactions. Furthermore, although degradation products of 125I-lipoproteins leaked out of the cells and into the medium, the degradation products of 125I-DLT lipoproteins were retained by the cells. The principal catabolic site of beta-VLDL in normolipidemic rabbits was found to be the liver with 54 +/- 4% of injected 125I retained in this organ 24 h after injection of 125I-DLT-beta-VLDL. When catabolism was normalized to tissue weight, the liver and adrenals were found to be approximately equally active in the metabolism of beta-VLDL. In agreement with results of other studies with residualizing labels, the principal organ of catabolism of 125I-DLT-LDL in vivo was the liver. The adrenals were the most highly catabolizing organ when results were normalized for tissue weight. The quantitative differences observed in the tissue distributions of injected 125I-DLT-beta-VLDL and 125I-DLT-low density lipoprotein suggested that a significant proportion of beta-VLDL is removed by tissues before conversion to low density lipoprotein.  相似文献   

7.
1. The uptake of ovalbumin (OVA) in rat liver parenchymal cells (PC) and non-parenchymal cells was studied in vivo and in vitro in order to compare the cellular expression of glycoprotein receptors and the kinetics of intracellular transport of ligand endocytosed by these receptors. 2. Ovalbumin was labelled with 125I or with 125I-tyramine-cellobiose (125I-TC). By using 125I-TC-OVA the labelled degradation products were trapped in the cells. 3. 125I-TC-OVA was rapidly cleared from blood mainly by receptor-mediated uptake in the liver. At 30 min after injection, 50% of the ligand was recovered in the liver. The endothelial cells (EC) and the PC were the predominant cell types responsible for uptake. 4. The uptake in PC was strongly inhibited by asialo-orosomucoid (AOM), but not by mannan, indicating that the uptake in these cells was mediated by the galactose receptor and not by the mannose receptor. This finding is compatible with the observation that a proportion of the OVA contains terminal galactose residues in the carbohydrate moiety. 5. In vitro uptake of OVA in cultured EC was saturable and inhibited by mannan, mannose, fructose, N-acetylglucosamine, EDTA or monensin, but not by galactose or AOM. The uptake of OVA in these cells was therefore mediated by the mannose receptor. 6. To label the organelles involved in endocytosis in PC and EC, 125I-TC-OVA was injected intravenously together with an excess of either AOM or mannan. In this way the labelled ligand could be directed selectively to EC or PC respectively. Subcellular fractionation of total liver in sucrose and Nycodenz gradients revealed that in EC the intracellular transport of OVA is so fast that endocytosed ligand accumulates and thus increases the density of the lysosomes. Conversely, in PC transfer of ligand is slower, with the result that accumulation of undegraded ligand in the lysosomes does not occur. These findings are interpreted to mean that in EC the rate-limiting step of handling of endocytosed ligand is intralysosomal degradation, whereas in PC the rate-limiting step is transport of ligand to the lysosomes. 7. Altogether, these findings suggest that endocytosis of OVA by the liver EC and PC is mediated by mannose and galactose receptors respectively, and that the kinetics of intracellular transport of OVA differ in the two cell types.  相似文献   

8.
As a test of the labelling characteristics of photogenerated reagents, an aryl azide was photolysed in the aromatic-binding locus of a protein of known tertiary structure. The acyl-enzyme derived from the reaction of alpha-chymotrypsin with the p-nitrophenyl ester of p-azido[(14)C]cinnamate was isolated and photolysed. About 60% of the acyl group is covalently bound to the protein after photolysis and deacylation, and labelled enzyme is inactive. The covalently attached label is localized in the C chain of chymotrypsin, and there are firm indications that the major labelled tryptic fragment of the C chain is that which constitutes the aromatic-binding locus of the enzyme. The high degree of labelling of that portion of the protein molecule predicted on the basis of the known chemistry and structure of alpha-chymotrypsin, provides gratifying confirmation of the utility of the photo-labelling method.  相似文献   

9.
The intracellular transport and degradation of asialoorosomucoid (AOM) in isolated rat hepatocytes was studied by means of subcellular fractionation in Nycodenz gradients. The asialoglycoprotein was labelled by covalent attachment of a radioiodinated tyramine-cellobiose adduct ( [125I]TC) which leads to labelled degradation products being trapped intracellularly and thus serving as markers for the degradative organelles. The ligand was initially (1 min) in a slowly sedimenting (small) vesicle and subsequently in larger endosomes. Acid-soluble, radioactive degradation products were first found in a relatively light lysosome whose distribution coincided in the gradient with that of the larger endosome. Later (30 min) degradation products were found in denser lysosomes which banded in the same region of the gradient as the lysosomal enzyme, beta-acetylglucosaminidase. Colchicine, monensin and leupeptin all inhibited degradation of [125I]tyramine-cellobiose asialoorosomucoid ( [125I]TC-AOM) and reduced the formation of degradation products in both the light and the dense lysosomes. In presence of monensin and colchicine no undegraded ligand was seen in the dense lysosome, suggesting that uptake in these vesicles was inhibited. Leupeptin allowed accumulation of undegraded ligand in the dense lysosome. Therefore, transfer from light to dense lysosomes is not dependent on degradation as such. In the presence of monensin two peaks of undegraded ligand were found in the gradients. It seems possible that in the monensin-sensitive endosomes, dissociation of the ligand-receptor complex is inhibited, allowing ligand to recycle with the receptors in small vesicles.  相似文献   

10.
The ability of human keratinocytes and squamous carcinoma cell lines to attach lipid covalently to cell proteins has been examined using both palmitic and myristic acids. SDS-polyacrylamide gel analyses of the proteins labelled with these lipids demonstrated that each labelled a different set of proteins. Covalently protein bound palmitic acid could be removed from the proteins by mild alkali hydrolysis but the bound myristic acid required prolonged acid hydrolysis to release it from the associated proteins. H.p.l.c. analyses of the released lipid confirmed that both lipids were attached to proteins directly and that the labelling was not due to the lipids being catabolised. Cycloheximide could prevent the attachment of myristic acid to cell proteins, but only reduced the levels of palmitic acid incorporation. Pulse chase experiments indicated that there was little turnover of the attached myristic acid whereas this was significant for covalently bound palmitic acid. These observations show for the first time that two different protein populations are labelled by different lipids in eukaryotic cells, and that there appear to be two separate pathways for the acylation of proteins in such cells.  相似文献   

11.
A series of amine-specific reagents based on the benzaldehyde reactive group have been synthesized, characterized, and used to study beef heart cytochrome c oxidase reconstituted in phospholipid bilayers. The series contained three classes of reagents: lipid-soluble phosphodiesters having a single hydrocarbon chain, phospholipid analogues, and a water-soluble benzaldehyde. All reagents were either radiolabeled or spin-labeled or both. The Schiff bases formed by these benzaldehydes with amines were found to be reversible until the addition of the reducing agent sodium cyanoborohydride, whereas attachment of lipid-derived aliphatic aldehydes was not readily reversible in the absence of the reducing agent. The benzaldehyde group provides a convenient method of controlling and delaying permanent attachment to integral membrane proteins until after the reconstitution steps. This ensures that the lipid analogues are located properly to identify amine groups at the lipid-protein interface rather than reacting indiscriminately with amines of the hydrophilic domains of the protein. The benzaldehyde lipid labels attach to cytochrome c oxidase with high efficiency. Typically, 20% of the amount of lipid label present was covalently attached to the protein, and the number of moles of label incorporated per mole of protein ranged from 1 to 6, depending on the molar ratios of label, lipid, and protein. The efficiency of labeling by the water-soluble benzaldehyde was much less than that observed for any of the lipid labels because of dilution effects, but equivalent levels of incorporation were achieved by increasing the label concentration. Electron spin resonance spectra of a nitroxide-containing phospholipid analogue covalently attached to reconstituted cytochrome c oxidase exhibited a large motion-restricted component, which is characteristic of spin-labeled lipids in contact with the hydrophobic surfaces of membrane proteins. The line shape and splittings were similar for covalently attached label and label free to diffuse and contact the protein molecules in the bilayer, providing independent evidence that the coupling occurs at the protein-lipid interface. The distribution of the benzaldehyde reagents attached to the polypeptide components of cytochrome c oxidase was examined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The labeling pattern observed for the lipid analogues was not affected by the presence of the nitroxide moiety on the acyl chains but was dependent on the molar ratio of labeling reagent to protein.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
Development of biosensor devices typically requires incorporation of the molecular recognition element into a solid surface for interfacing with a signal detector. One approach is to immobilize the signal transducing protein directly on a solid surface. Here we compare the effects of two direct immobilization methods on ligand binding, kinetics, and signal transduction of reagentless fluorescent biosensors based on engineered periplasmic binding proteins. We used thermostable ribose and glucose binding proteins cloned from Thermoanaerobacter tengcongensis and Thermotoga maritima, respectively. To test the behavior of these proteins in semispecifically oriented layers, we covalently modified lysine residues with biotin or sulfhydryl functions, and attached the conjugates to plastic surfaces derivatized with streptavidin or maleimide, respectively. The immobilized proteins retained ligand binding and signal transduction but with adversely affected affinities and signal amplitudes for the thiolated, but not the biotinylated, proteins. We also immobilized these proteins in a more specifically oriented layer to maleimide-derivatized plates using a His(2)Cys(2) zinc finger domain fused at either their N or C termini. Proteins immobilized this way either retained, or displayed enhanced, ligand affinity and signal amplitude. In all cases tested ligand binding by immobilized proteins is reversible, as demonstrated by several iterations of ligand loading and elution. The kinetics of ligand exchange with the immobilized proteins are on the order of seconds.  相似文献   

13.
A single administration of hydrocortisone to intact rabbits increases the incorporation of [14C] alanine into proteins of the brain and liver tissue homogenates and soluble fractions as well as in blood plasma proteins and reduces the label incorporation into the brain tissue proteins and reduces its incorporation into the blood plasma proteins. Adrenalcetomy is followed by an increase in the incorporation of [14C] alanine into proteins of the brain and muscle tissue homogenates and soluble fraction and into proteins of blood plasma and liver tissue homogenates as well as by reducing the label incorporation into the spleen soluble fraction proteins. ACTH administered to adrenalectomized rabbits reduces incorporation of [14C] alanine into the brain and muscle tissue proteins, total proteins of liver tissue homogenate and increases it into the proteins of the spleen tissue soluble fraction. Multiple administration of the soluble fraction hormones both to intact and adrenalectomized rabbits inhibits the label incorporation into the studied tissue proteins. Parallel with the change in [14C] alanine incorporation into proteins under the hormones effect certain shifts in their contents were also established.  相似文献   

14.
Two tryptic peptides from spinach ribulosebisphosphate carboxylase/oxygenase that contain the essential lysyl residues derivatized by the affinity label 3-bromo-1,4-dihydroxy-2-butanone 1,4-bisphosphate were subjected to sequence analyses. The sequences of these peptides are -Tyr-Gly-Arg-Pro-Leu-Leu-Gly-Cys-Thr-Ile-Lys-Pro-Lys- and -Leu-Ser-Gly-Gly-Asp-His-Ile-His-Ser-Gly-Thr-Val-Val-Gly-Lys-Leu-Glu-Gly-Glu-Arg-, respectively. The reagent moiety is covalently attached to the internal lysyl residue in each peptide.  相似文献   

15.
A DNA-protein complex was isolated from Bacillus subtilis bacteriophage phi29 by sucrose gradient sedimentation or gel filtration in the presence of agents known to break noncovalent bonds. A 28,000-dalton protein was released from this complex by subsequent hydrolysis of the DNA. The DNA-protein complex was examined for its susceptibility to enzymes which act upon the 5' and 3' termini of DNA molecules. It was susceptible to exonucleolytic degradation from the 3' termini by exonuclease III but not from the 5' termini by lambda exonuclease. Attempts to label radioactively the 5' termini by phosphorylation with T4 polynucleotide kinase were unsuccessful despite prior treatment with alkaline phosphatase or phosphatase treatment of denatured DNA. Removal of the majority of the bound protein by proteolytic digestion did not increase susceptibility. These results suggest that the linked protein is covalently attached to the 5' termini of phi29 DNA.  相似文献   

16.
A new stationary phase for protein purification was investigated with regard to its performance during capture of selected model proteins. The commercially available matrix consists of a porous agarose backbone, to which dextran is covalently attached. The dextran carries ion-exchange ligands, thus providing a binding space of high ligand density. Breakthrough of various proteins during frontal application to packed beds was measured and the experiments were analyzed in terms of equilibrium and breakthrough capacity. A significant increase of static capacity, as compared with conventional porous matrices, was found. Good dynamic properties allowed utilization of a high percentage of the equilibrium capacity at 10% breakthrough. For all proteins, a decreasing ratio of breakthrough to equilibrium capacity was detected with increasing feed concentration. This observation suggested a significant contribution of solid diffusion to the transport of proteins into the adsorbent particles. The specific architecture of the stationary phase, where the agarose base structure is derivatized with ion-exchange ligand-bearing dextran, may lead to this behavior.  相似文献   

17.
Membrane proteins of the intestinal brush border were labelled in vivo by intraluminal injection of diazotised [125I]iodosulfanilic acid, a highly polar molecule. Sodium dodecyl sulfate polyacrylamide gel electrophoresis of brush border membranes labelled in this manner showed 20 protein bands, 11 of which contained significant radioactivity. The most heavily labelled proteins had molecular weights greater than 150 000, indicating that they were the most exposed to the intestinal lumen. Little radioactivity was detected in proteins with molecular weights of less than 94 000. The majority of these smaller proteins were likely to have been brush border core proteins. The evidence that diazotised [125I]iodosulfanilic acid bound primarily to brush border membrane proteins when administered in this way, was: (a) the specific activity of brush border proteins was up to 3-fold greater than that of total cell particulate proteins (pelleted at 27 000 × g from mucosal homogenates); (b) principal peaks in the gel radioactivity profile of total cell particulate proteins corresponded to the most heavily labelled proteins of the isolated brush border membrane; and (c) brush border core proteins showed minimal radioactivity in vivo, but considerably higher radioactivity when brush border membranes were labelled in vitro. A small amount of label was absorbed across the intestinal mucosa. However, secondary labelling of brush border proteins by this absorbed label was minimal, since the specific activity of brush border proteins in jejunum adjacent to the labelled loop was only 0.22% of the level for those proteins in the labelled segment. Since this technique did not affect the cellular morphology, enzyme activity or biochemical integrity of the membrane, it should prove useful as a means of accurately studying in vivo turnover rates of brush border membrane proteins.  相似文献   

18.
The effect of hypophysectomy on the protein metabolism of the liver in vivo was studied. Fractional rates of protein synthesis and degradation were determined in the livers of normal and hypophysectomized rats. Synthesis was measured after the injection of massive amounts of radioactive leucine. Degradation was estimated either as the balance between synthesis and accumulation of stable liver proteins or from the disappearance of radioactivity from the proteins previously labelled by the injection of NaH14CO3. The results indicate that: (1) hypophysectomy diminishes the capacity of the liver to synthesize proteins in vivo, mainly of those that are exported as plasma proteins; (2) livers of both normal and hypophysectomized rats show identical protein-degradation rates, whereas plasma proteins are degraded slowly after hypophysectomy.  相似文献   

19.
Aminopeptidase has been previously shown (Louvard et al., 1975b) to be present at least in part at the outer surface of the brush-border membrane of enterocytes. In order to show that this hydrolase was also exposed at the inner face of the membrane, the reagent 4-fluoro-3-nitrophenyl azide was covalently attached to the Fab fragment of a human myeloma protein to produce a photo-generated macromolecular reagent. This latter was trapped into closed and sealed right-side-out vesicles, then photolyzed in situ to generate a nitrene capable of reacting with a large variety of chemical bonds. After extraction of the membrane proteins with detergent the aminopeptidase was recognized by its specific antibody and the extent of labelling was determined by titrating the Fab bound with a monovalent anti-Fab labelled with peroxidase. By this general methodology aminopeptidase was found to be a transmembrane protein which was exposed at both the outer and the inner face of the vesicles. Furthermore, in this latter case, the label was recovered in the “so-called” hydrophobic part of the molecule, which remains in the membrane after the removal of the external and hydrophilic part of aminopeptidase by a papain treatment of the vesicles. Thus three distinct regions in aminopeptidase can be delineated. The principal one is located at the outer surface of the membrane. A hydrophobic part is embedded within the lipid interior of the membrane. Finally, the last region, attached to the latter one, is situated at the inner face of the membrane.  相似文献   

20.
Uptake and degradation of lysozyme in the rat kidney were studied in vivo. The protein was labeled with 125I by way of a moiety (tyramine-cellobiose or 'TC') which remained trapped inside the cells even after proteolysis of the peptide chain (in contrast, the label from conventionally labeled proteins escapes after degradation). Following the injection of 'trapped-label' lysozyme, the radioactivity in the kidneys represented the total amount of lysozyme that was taken up during the experiment. Proteolysis could be followed by determining the amount of acid-soluble degradation products. By adding the radioactivity in the urine to that in the kidneys, a measure of the total filtered load was obtained. When only a trace dose of 125I-labeled TC lysozyme was injected into rats, the amount of radioactivity in the kidneys increased on average by 0.09% per min, after the concentration in the blood had become nearly stable. After 100 min, 30% of the injected dose was recovered in the kidneys. The labeled protein was degraded to acid-soluble molecules of Mr less than 1000. There was apparently a 'lag period' between the endocytosis in the kidneys and the start of degradation. 40 min after the injection of a trace dose, about 0.6% of the 'trapped-label' lysozyme in the kidneys was degraded per min.; subsequently, there was a decline in the fraction which was degraded per min. The amount of lysozyme in the urine increased after the injection of increasing amounts of lysozyme, showing that the capacity of the uptake mechanism was being exceeded, but truly saturating levels of lysozyme could not be reached in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号