首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The uptake of a number of amino acids by the developing small intestine of the rat was investigated in vitro. L-valine, L-leucine, L-methionine, L-phenylalanine, L-arginine and L-lysine were all taken up by active transport and concentrated within the jejunal mucosa. GABA was not actively transported by the jejunum. The kinetics of carrier transport of amino acids was determined from birth to maturity. The Michaelis constant (Km) of the L-leucine, L-methionine, L-arginine and l-lysine transport systems was found to be low postnatally and increased with age, particularly after the time of weaning. The rate of l-leucine, L-methionine, L-phenylalanine and L-lysine transport (Vmax) was high postnatally but decreased after weaning. Neutral amino acids were transported at higher rates than basic amino acids. l-arginine was poorly transported by the jejunum. The specificity of transport systems for amino acids was investigated in inhibition studies. Amino acid transport systems appeared to be polyfunctional in the postnatal period but were more specific in post-weaned animals. The changes in kinetics and specificity of amino acid transport in the small intestine are discussed with reference to their possible functional significance and to the maturational changes in the jejunum, particularly with the appearance of a functionally distinct absorptive cell lining the intestinal villi during the third postnatal week (the time of weaning).  相似文献   

2.
1. The L-amino acid oxidase of the monocellate cobra (Naja naja kaouthia) venom was purified to electrophoretic homogeneity. The molecular weight of the enzyme was 112,200 as determined by Sephadex G-200 gel filtration chromatography, and 57,400 as determined by SDS-polyacrylamide gel electrophoresis. 2. The enzyme had an isoelectric point of 8.12 and a pH optimum of 8.5. It showed remarkable thermal stability, and, unlike many venom L-amino acid oxidase, was also stable in alkaline medium. The enzyme was partially inactivated by freezing. 3. The enzyme was very active against L-phenylalanine and L-tyrosine, moderately active against L-tryptophan, L-methionine, L-leucine, L-norleucine, L-arginine and L-norvaline. Other L-amino acids were oxidized slowly or not oxidized. 4. Kinetic studies suggest the presence of a side-chain binding site in the enzyme, and that the binding site comprises of at least four hydrophobic subsites.  相似文献   

3.
Y Asano  K Yamaguchi    K Kondo 《Journal of bacteriology》1989,171(8):4466-4471
A new NAD+-dependent opine dehydrogenase was purified to homogeneity from Arthrobacter sp. strain 1C isolated from soil by an enrichment culture technique. The enzyme has a molecular weight of about 70,000 and consists of two identical subunits with molecular weights of about 36,000. The enzyme catalyzed a reversible oxidation-reduction reaction of opine-type secondary amine dicarboxylic acids. In the oxidative deamination reaction, the enzyme was active toward unusual opines, such as N-[1-R-(carboxyl)ethyl]-S-methionine and N-[1-R-(carboxyl)ethyl]-S-phenylalanine. In the reductive secondary amine-forming reaction with NADH as a cofactor, the enzyme utilized L-amino acids such as L-methionine, L-isoleucine, L-valine, L-phenylalanine, L-leucine, L-alanine, and L-threonine as amino donors and alpha-keto acids such as pyruvate, oxaloacetate, glyoxylate, and alpha-ketobutyrate as amino acceptors. The product enzymatically synthesized from L-phenylalanine and pyruvate in the presence of NADH was identified as N-[1-R-(carboxyl)ethyl]-S-phenylalanine.  相似文献   

4.
Borstlap, A. G, Meenks, J. L. D., van Eck, W. F. and Bicker,J. T. E. 1986. Kinetics and specificity of amino acid uptakeby the duckweed Spirodela polyrhiza (L.) Schleiden.—J.exp. Bot. 37: 1020–1035. Uptake of 14C-labelled amino acids by intact, axenically grownplants of Spirodela polyrhiza (L.) Schleiden was investigated.Experiments in which uptake was measured from the decrease inthe amino acid concentration in the medium, indicated that saturableuptake conforms to the sum of two Michaelis-Menten terms, possiblycorresponding with a high-affinity and a low-affinity system.Further experiments with L-leucine, L-glutamic acid, and L-lysine,in which uptake was measured by assaying the amount of 14 inthe plants, showed the presence of a non-saturable componentin addition to the dual saturable uptake. Uptake of L-glutamic acid precipitously declined between pH4?0 and 6? and that of L-leucine between pH 4?0 and 8? whereasL-lysine uptake was optimal at pH 6?0. No evidence was foundthat the apparent high-affinity and low-affinity systems respondeddifferently to changes in external pH or to the addition ofCCCP. The non-saturable uptake component was not affected bychanges in external pH or by adding CCCP, and might have beendue to free space uptake. Mutual inhibition of uptake was found between acidic and neutralamino acids (L-leucine, L-methionine, L-glutamic acid) and betweenbasic amino acids (L-lysine, L-ornithine). The basic amino acidshad no effect on the uptake of L-leucine, L-methionine and L-glutamicacid, although the uptake of basic amino acids was inhibitedby glutaminc acid and several neutral amino acids. It is suggested that the duckweed has a high-affinity transportsystem for neutral and acidic amino acids, and a distinct high-affinitysystem for basic amino acids. It is argued that the first systemtransports zwitterionic amino acids (z-system), and that thesecond system transports cationic amino acids(y+-system). Thespecificity of the low-affinity system is less certain, butthere is some evidence that it is similar to that of their high-affinitycounterparts. Key words: Kinetics, membrane transport, pH-dependency, transport systems, uptake isotherms  相似文献   

5.
Scanning electron micrograph observations of the olfactory mucosa from both unpigmented glass eel(GE)andpigmentedelvers(EL)of the European eel, Anguilla anguilla (L.), revealed the presence of various cell types; amongst these, the ciliated and microvillous ones are likely to possess a chcmosensory function. Recording of underwater electro-olfactograms (EOGs) showed that various amino acids (glycine, L-alanine, L-valine, L-leucine, L-asparagine, L-glutamine and L-methionine) are effective stimulants for the olfactory mucosa. Dose response curves of stimulus concentrations v. EOG amplitudesfit regression linesat both GE and EL stages. Leucine was more stimulatory at the GE than at the EL stage. The stimulatory effect of the other six amino acids tested was similar at both developmental stages. The possible role of olfactory sensitivity in animal behaviour at different developmental stages is discussed.  相似文献   

6.
The transport of the aromatic amino acids into isolated rat liver cells was studied. There was a rapid and substantial binding of the aromatic amino acids, L-alanine and L-leucine to the plasma membrane. This has important consequences for the determination of rates of transport and intracellular concentrations of the amino acids. Inhibition studies with a variety of substrates of various transport systems gave results consistent with aromatic amino acid transport being catalysed by two systems: a 2-aminobicyclo(2,2,1)heptane-2-carboxylic acid (BCH)-insensitive aromatic D- and L-amino acid-specific system, and the L-type system (BCH-sensitive). The BCH-insensitive component of transport was Na+-independent and facilitated non-concentrative transport of the aromatic amino acids; it was unaffected by culture of liver cells for 24 h, by 48 h starvation, dexamethasone phosphate or glucagon. Kinetic properties of the BCH-inhibitable component were similar to those previously reported for the L2-system in liver cells. The BCH-insensitive component was a comparatively low-Km low-Vmax. transport system that we suggest is similar to the T-transport system previously seen only in human red blood cells. The results are discussed with reference to the importance of the T- and L-systems in the control of aromatic L-amino acid degradation in the liver.  相似文献   

7.
The energetics of amino acid uptake by the developing small intestine was investigated in vitro. L-valine, L-leucine, L-phenylalanine, L-methionine, L-lysine and L-arginine were all actively transported by the newborn rat jejunum. Metabolic inhibitors (e.g. 2,4-dinitrophenol) significantly reduced uptake of all amino acids but uptake against a concentration gradient was not totally abolished. Uptake of all amino acids was reduced at low[Na+]. Inhibition of transport of neutral amino acids by reduced luminal [Na+] was greater than that of basic amino acids, and the tissue was barely able to concentrate the neutral amino acids. [Na+] affected the Michaelis constant (Km) of neutral transport systems for their substrates; for the basic amino acids Km values were unaffected by the presence or absence of Na+. Ouabain significantly inhibited neutral amino acid uptake but had no effect on L-lysine or L-arginine uptake. These results are discussed in terms of the Na+ gradient hypothesis for amino acid transport, and the site of energy input to active transport. The role of glycolysis in providing energy for intestinal transport in the neonatal rat and the efficiency of Na+ dependent and independent transport mechanisms are considered. It is concluded that the energetics of amino acid transport systems in neonatal and adult rats are essentially similar.  相似文献   

8.
Transport of tyrosine (Tyr) and phenylalanine (Phe) across the rat nasal mucosa was studied using an in situ perfusion technique. It was found that both amino acids were absorbed by active, saturable transport processes. The Km and Vmax values were calculated to be 0.68 mM and 0.44 mM/hr for L-Tyr, and 0.40 mM and 0.39 mM/hr for L-Phe, respectively. The values for L-Tyr agreed well with the results previously reported. When D-Tyr and D-Phe were used as substrates, the extent of nasal absorption was significantly reduced indicating the specific affinity of the carrier for the L-amino acids. When mixtures of L-Tyr and L-Phe were used as perfusates, both amino acids were found to be concomitantly absorbed in a competitive manner. This implied that at least one common carrier system was present in the nasal mucosa. In addition the transport appears to be Na+-dependent and may require metabolic energy as a driving force as seen from the inhibition of the L-Phe uptake by ouabain and 2,4-dinitrophenol.  相似文献   

9.
N Esaki  T Nakayama  S Sawada  H Tanaka  K Soda 《Biochemistry》1985,24(15):3857-3862
Hydrogen exchange reactions of various L-amino acids catalyzed by L-methionine gamma-lyase (EC 4.4.1.11) have been studied. The enzyme catalyzes the rapid exchange of the alpha- and beta-hydrogens of L-methionine and S-methyl-L-cysteine with deuterium from the solvent. The rate of alpha-hydrogen exchange was about 40 times faster than that of the enzymatic elimination reaction of the sulfur-containing amino acids. The enzyme also catalyzes the exchange reaction of alpha- and beta-hydrogens of the following straight-chain L-amino acids which are not susceptible to elimination: norleucine, norvaline, alpha-aminobutyrate, and alanine. The exchange rates of the alpha-hydrogen and the total beta-hydrogens of L-alanine and L-alpha-aminobutyrate with deuterium followed first-order kinetics. For L-norvaline, L-norleucine, S-methyl-L-cysteine, and L-methionine, the rate of alpha-hydrogen exchange followed first-order kinetics, but the rate of total beta-hydrogen exchange decreased due to a primary isotope effect at the alpha-position. One beta-hydrogen of S-methyl-L-cysteine was exchanged faster than the other, although both the beta-hydrogens were exchanged completely with deuterium ultimately. L-Phenylalanine and L-tryptophan slowly underwent alpha-hydrogen exchange. The pro-R hydrogen of glycine was deuterated stereospecifically. None of the following amino acids were susceptible to the enzymatic hydrogen exchange: D isomers of the above amino acids, branched chain L-amino acids, acidic L-amino acids, and basic L-amino acids.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
11.
12.
Membrane vesicles were prepared by osmotic lysis of spheroplasts of Pseudomonas aeruginosa strain P14, and the active transport of amino acids was studied. D-Glucose, gluconate, and L-malate supported active transport of various L-amino acids. The respiration-dependent leucine transport was markedly stimulated by Na+. Moreover, without any respiratory substrate, leucine was also transported transiently by the addition of Na+ alone. This transient uptake of leucine was not inhibited either by carbonyl cyanide p-trifluoromethyoxyphenylhydrazone or by valinomycin, but was completely abolished by gramicidin D. Increase in the concentration of Na+ of the medium resulted in a decrease of the Km for L-leucine transport, whereas the Vmax was not significnatly affected. Active transport of leucine was inhibited competitively by isoleucine or by valine, whose transport was also stimulated by Na+. On the other hand, Na+ was not required for the uptake of other L-amino acids tested, but rather was inhibitory for some of them. These results show (i) that a common transport system for branched-chain amino acids exists in membrane vesicles, (ii) that the system requires Na+ for its activity, and (iii) that an Na+ gradient can drive the system.  相似文献   

13.
The transport of lysine has been investigated in epithelial cells isolated from chicken jejunum. The kinetics of lysine transport and the pattern of interaction with zwitterionic amino acids were consistent with system b(0,+) activity, the broad-spectrum and Na(+)-independent amino acid transporter. The half-saturation constant for lysine entry (K(m)+/-S.E.) was 0.029+/-0.002 mM and the flux was not affected significantly by Na(+) replacement with choline. Lysine influx was inhibited by L-leucine both in Na(+) and choline medium with inhibition constants (K(i)+/-S.E.) 0.068+/-0.006 mM (in Na(+)) and 0.065+/-0.009 mM (in choline). Other inhibitory amino acids (K(i)+/-S.E.) were (mM): L-tyrosine (0.073+/-0.018), L-methionine (0.15+/-0.015), L-cystine (0.42+/-0.04), L-cysteine (1.1+/-0.07), L-isoleucine (1.1+/-0.09), L-glutamine (1.8+/-0.16) and L-valine (2.5+/-0.13). Lysine exit was trans-accelerated (approx. 20 fold) by 2 mM L-lysine and L-leucine. The flux was resistant to pretreatment of the cells with p-chloromercuriphenylsulfonate (0.2 mM), which is an inhibitor of system y(+)L, the broad-spectrum and cation-modulated transporter.  相似文献   

14.
The complexes of general formula [(LMS)2Pd(amino acid)]Cl with LMS = levamisole, and amino acid = L-alanine, L-phenylglycine, L-phenylalanine, L-valine, L-methionine, and L-proline, were synthesized by the interaction of [(LMS)2PdCl2] with the sodium salts of L-amino acids. The newly synthesized complexes are characterized by elemental analysis, conductivity, magnetic susceptibility, optical rotation measurements, and UV-Vis, IR and 13C NMR spectral data. Levamisole is coordinated to palladium via the N-7 nitrogen and the amino acids through the amino nitrogen and carboxylate oxygen, except for L-methionine which binds the metal via nitrogen and sulfur atoms. Optically active [(LMS)2Pd(amino acid)]Cl complexes are obtained when L-amino acids or D,L-amino acids are used for the synthesis of these complexes. L-Methionine and L-proline complexes induce new cell forms in Baker's yeast (Saccharomyces cerevisiae) cells.  相似文献   

15.
L-isoleucine-4-hydroxylase (IDO) is a recently discovered member of the Pfam family PF10014 (the former DUF 2257 family) of uncharacterized conserved bacterial proteins. To uncover the range of biochemical activities carried out by PF10014 members, eight in silico-selected IDO homologues belonging to the PF10014 were cloned and expressed in Escherichia coli. L-methionine, L-leucine, L-isoleucine and L-threonine were found to be catalysed by the investigated enzymes, producing L-methionine sulfoxide, 4-hydroxyleucine, 4-hydroxyisoleucine and 4-hydroxythreonine, respectively. An investigation of enzyme kinetics suggested the existence of a novel subfamily of bacterial dioxygenases within the PF10014 family for which free L-amino acids could be accepted as in vivo substrates. A hypothesis regarding the physiological significance of hydroxylated l-amino acids is also discussed.  相似文献   

16.
The ethylene precursor, 1-aminocyclopropane-1-carboxylic acid (ACC), is actively transported across the tonoplast of plant cells, impacting cellular compartmentation of ACC and ethylene biosynthesis. In the present study, the effects of ACC and amino acid analogs on ACC uptake into isolated maize (Zea mays L. cv. Golden Cross Bantam) mesophyll vacuoles were investigated to identify the stereospecific and structural features that are important in molecular recognition by the ACC transport system. Of the four stereoisomers of l-amino-2-ethylcyclopropane-l-carboxylic acid (AEC), (1S, 2R)-(–)-AEC having a configuration corresponding to an L-amino acid was the preferred substrate for the ACC transport system, competitively inhibiting ACC transport with a Ki of 18 μM. Of 11 neutral amino acid stereoisomers, L-isomers were stronger inhibitors of ACC transport than corresponding D-isomers. Neutral L-amino acids with nonpolar side chains generally were more inhibitory than those with polar side chains, whereas several cationic and anionic L-amino acids were ineffective antagonists of ACC transport. These observations suggest that the ACC transport system is stereospecific for relatively nonpolar, neutral L-amino acids. This conclusion was supported by the observation that group additions, substitutions, or deletions at the carboxyl. α-amino and the Pro- (R) methylene or hydrogen moieties (analogous to D-amino acids) of ACC and other neutral amino acids and analogs essentially eliminated transport inhibition. In contrast, L-amino acid analogs with variable substitutions at the distal end of the molecule remained antagonists. The relative activity of analogs was influenced by the length and degree of unsaturation of the side chain and by the location of side chain branching. Increasing the ring size of ACC analogs reduced antagonism whereas incorporating the α-amino group into the ring structure as an L-amino acid increased antagonism. The kinetics of L-methoxyvinylglycine, L-methionine. p-nitro-L-phenylalanine and 1-aminocyclobutane-l-carboxylic acid were competitive with Ki values of 3, 13, 16 and 19 μM, respectively. These results indicate that the ACC transport system can be classifie as a neutral L-amino acid carrier having a relatively high affinity for ACC and other nonpolar amino acids. The results also suggest that the carrier interacts with the carboxyl, α-amino and Pro-(R) groups and with other less restricted side chain substituents of substrate amino acids.  相似文献   

17.
The increasing amino acid transport activity which occurs during germination of Neurospora crassa is repressed by substrate amino acid. This repression acts on the transport systems similarly to competition in that amino acids within a specific transport class (e.g., basic) repress that system. Repression of the other system (neutral-aromatic) by that amino acid is shown to be repression of the general transport system. The level of repression and the rate of derepression after removal of the amino acid appear to depend on the nonrepressed level and rate. The extent of repression caused by increasing the concentration of the amino acid is shown to be different for two amino acids. A mutant deficient in developmental transport for arginine and phenylalanine contains two mutations. The mutation affecting phenylalanine transport maps on linkage group III and results in an accumulation of phenylalanine in the medium, thus repressing the development of this transport activity.This work was supported in part by a National Institutes of Health, U.S. Public Health Service Traineeship in Genetics (2-T01-GM1316).  相似文献   

18.
Parietal cells are the primary acid secretory cells of the stomach. We have previously shown that activation of the calcium-sensing receptor (CaSR) by divalent (Ca(2+)) or trivalent (Gd(3+)) ions stimulates acid production in the absence of secretagogues by increasing H(+),K(+)-ATPase activity. When overexpressed in HEK-293 cells, the CaSR can be allosterically activated by L-amino acids in the presence of physiological concentrations of extracellular Ca(2+) (Ca(o)(2+); 1.5-2.5 mM). To determine whether the endogenously expressed parietal cell CaSR is allosterically activated by L-amino acids, we examined the effect of the amino acids L-phenylalanine (L-Phe), L-tryptophan, and L-leucine on acid secretion. In ex vivo whole stomach preparations, exposure to L-Phe resulted in gastric luminal pH significantly lower than controls. Studies using D-Phe (inactive isomer) failed to elicit a response on gastric pH. H(+)-K(+)-ATPase activity was monitored by measuring the intracellular pH (pH(i)) of individual parietal cells in isolated rat gastric glands and calculating the rate of H(+) extrusion. We demonstrated that increasing Ca(o)(2+) in the absence of secretagogues caused a dose-dependent increase in H(+) extrusion. These effects were amplified by the addition of amino acids at various Ca(o)(2+) concentrations. Blocking the histamine-2 receptor with cimetidine or inhibiting system L-amino acid transport with 2-amino-2-norbornane-carboxylic acid did not affect the rate of H(+) extrusion in the presence of L-Phe. These data support the conclusion that amino acids, in conjunction with a physiological Ca(o)(2+) concentration, can induce acid secretion independent of hormonal stimulation via allosteric activation of the stomach CaSR.  相似文献   

19.
To obtain a clearer concept of the mechanism of organic solute transport in mammalian cells, we have attempted to reconstitute a functional transport system for amino acids from plasma membranes of Ehrlich ascites cells. Purified plasma membranes were dissolved in 2% Na cholate--4 M urea, a mixture which brought over 85% of the membrane proteins into solution. After centrifugation of the solubilized material for 2 hrs at 100,000 x g, the supernatant was dialyzed in the cold for 20 hrs with additional lipid. The reformed vesicles were tested for the ability to transport amino acids. The preliminary results obtained show that the uptake of alpha-aminoisobutyric acid can be inhibited by L-methionine and much less by L-leucine as would be predicted from the known properties of alpha-aminoisobutyric transport in the intact cells. In addition, it has been possible to show accelerated efflux of intravesicular phenylalanine when phenylalanine is added to the trans side (medium side). The data are consistent with the conclusion that there is carrier mediated transport in the reconstituted vesicles.  相似文献   

20.
The construction and performance of bienzyme amperometric composite biosensors for the selective determination of l- or d-amino acids is reported. D- or L-Amino acid oxidase, horseradish peroxidase, and the mediator ferrocene were coimmobilized by simple physical inclusion into the bulk of a graphite-70% Teflon electrode matrix. Working conditions including amino acid oxidase loading and pH were optimized. Studies on the repeatability of the amperometric response obtained at +0.00 V, with and without regeneration of the electrode surface by polishing, on the useful lifetime of one single biosensor and on the reproducibility in the fabrication of different biosensors illustrate the robustness of the bioelectrodes design. Calibration plots by both amperometry in stirred solutions and flow injection with amperometric detection were obtained for L-arginine, L-phenylalanine, L-leucine, L-methionine, L-tryptophan, D-leucine, D-methionine, D-serine, and D-valine. Differences in sensitivity were discussed in terms of the hydrophobicity of the substrate and of the electrode surface. The bienzyme composite electrode was applied to the determination of L- and D-amino acids in racemic samples, as well as to the estimation of the L-amino acids content in muscatel grapes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号