首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The chemical structure of the polysaccharide moiety of the lipopolysaccharide Rhodopseudomonas sphaeroides ATCC 17023 was established. Mild acetic acid hydrolysis of isolated lipopolysaccharide, followed by preparative high-voltage paper electrophoresis afforded three oligosaccharides. They were characterized by chemical and physicochemical studies to be: GlcA(alpha 1----4)dOclA8P, Thr(6') GlcA(alpha 1----4)GlcA and GlcA(alpha 1----4)dOclA, where GlcA is D-glucuronic acid and dOc1A is 3-deoxy-D-manno-octulosonic acid. Carboxyl-reduction of the lipopolysaccharide followed by acid hydrolysis gave a trisaccharide: GlcA(alpha 1----4)Glc(alpha 1----4)Glc, showing the presence of three residues of glucuronic acids in the O-specific chain and indicating that only two of them are reducible by NaBH4. The linkage between the polysaccharide and lipid A was shown to be through a single 1,4-linked residue of dOc1A attached by a 2,6'-linkage to the lipid A moiety.  相似文献   

2.
The aqueous-phase lipopolysaccharide isolated from Pasteurella haemolytica serotype T10 cells by the phenol-water extraction method was found to be S-type lipopolysaccharide which possessed O-antigenic polysaccharide chains composed only of D-galactose residues. Structural analysis of the O-polysaccharide, using a combination of 1D and 2D 1H- and 13C-n.m.r. methods, led to the identification of the disaccharide repeating-unit as [----3)-alpha-D-Galp-(1----3)-beta-D-Galf-(1----]n. The serological cross-reactivity between P. haemolytica serotypes T4 and T10 can now be related to the structural similarity of the antigenic LPS O-polysaccharides.  相似文献   

3.
The sidechain of the lipopolysaccharide from the phytopathogen Pseudomonas syringae pv. morsprunorum C28 was shown to be composed of D-rhamnose. Using 1H and 13C-NMR spectroscopy, methylation analysis, Smith degradation and optical rotation data, the repeat unit was found to have the structure: ----3)-D-Rhap-(alpha 1----3)-D-Rhap-(alpha 1----2)-D-Rhap-(alpha 1---- and a degree of polymerization of approximately 70. Attention is drawn to the possible prevalence of D-6-deoxyhexoses in the lipopolysaccharides of plant pathogenic bacteria.  相似文献   

4.
The polysaccharide chain of Proteus vulgaris O19 lipopolysaccharide contains D-galactose, N-acetyl-D-glucosamine N-acetyl-D-galactosamine and N-acetyl-L-fucosamine in the ratio 1:1:1:1. The structure of the polysaccharide was established by full acid hydrolysis and methylation analysis, as well as by non-destructive methods, i.e. the computer-assisted evaluation of the 13C-NMR spectrum and computer-assisted evaluation of the specific optical rotation by Klyne's rule. The polysaccharide is regular and built up of tetrasaccharide repeating units of the following structure: ----3)-alpha-L-FucNAcp-(1----3)-beta-D-GlcNAcp-(1----3)-alph a-D-Galp- (1----4)-alpha-D-GalNAcp-(1---- The O19-antiserum cross-reacts with lipopolysaccharide from P. vulgaris O42, the structure of which is still unknown. No cross-reactions were observed with O-polysaccharides Pseudomonas aeruginosa O7 and Salmonella arizonae O59 in spite of some structural similarities.  相似文献   

5.
The structure of the O-specific side-chains of the Escherichia coli O2 lipopolysaccharide has been investigated, different 1H- and 13C-n.m.r. techniques being the main methods used. It is concluded that they are composed of pentasaccharide repeating-units having the following structure, in which D-Fuc3NAc is 3-acetamido-3,6-dideoxy-D-galactose. ----4)-beta-D-GlcpNAc-(1----3)-alpha-L-Rhap-(1----2)-alpha-L-Rh ap-(1----3)-beta-L-Rhap-(1----2 increases 1 alpha-D-Fucp3NAc.  相似文献   

6.
Both a neutral and an acidic polymer have been isolated from a lipopolysaccharide extract of the reference strain for Serratia marcescens serogroup O22. The neutral polymer has a linear structure with the repeating unit shown. The same tetrasaccharide unit also forms the backbone of the branched neutral polymer isolated from the reference strain for serogroup O10, which cross-reacts strongly with O22. ----2)-alpha-L-Rhap-(1----2)-alpha-L-Rhap-(1----3)-alpha-L-+ ++Rhap-(1----3)-alpha- D-GlcpNAc-(1----  相似文献   

7.
O-Specific polysaccharide, consisting of D-rhamnose and L-glycero-D-manno-heptose (LD-Hep) in a 2 : 1 ratio, was obtained on the mild acid degradation of the Pseudomonas cepacia IMV 673/2 lipopolysaccharide; monosaccharide LD-Hep has not previously been found in O-specific chains of lipopolysaccharides. On the basis of methylation and 13C-NMR data, it was concluded that the polysaccharide is composed of trisaccharide repeating units having the following structure: ----3)-alpha-D-Rha-(1----3)-alpha-D-Rha-(1----2)-alpha-LD-Hep-(1----  相似文献   

8.
The O-specific polysaccharide chain of the Pseudomonas aurantiaca IMV 31 lipopolysaccharide contains N-acetyl-L-fucosamine (FucNAc) and di-N-acetyl-D-bacillosamine (2,4-diacetamido-2,4,6-trideoxyglucose, Bac(NAc)2) in the ratio 2:1. On the basis of methylation, solvolysis with anhydrous hydrogen fluoride, and computer-assisted analysis of 13C-NMR spectrum, it was concluded that the trisaccharide repeating unit of the polysaccharide possesses the following structure: structure: ----3)-beta-D-Bac(NAc)2-(1----3)-alpha-L-FucNAc-(1----3)-alpha-L- FucNAc-(1----.  相似文献   

9.
Lipopolysaccharide was isolated from a phage-selected mutant of a wild strain of Aeromonas salmonicida by the aqueous phenol method. The lipopolysaccharide consisted of the R form, containing per mole, three moles of L-glycero-D-manno-heptopyranose, one mole of 3-deoxy-D-manno-2-octulosonic acid (dOclA) and lipid A. The dOclA was not fully assayable by the thiobarbituric acid methods usually used, but its degradation product was detected, after Smith degradation of the lipopolysaccharide, either as free 3-deoxy-2-heptulosonic acid (after hydrolysis) or substituted by a mannopyranosyl residue derived from heptose. Mass spectrometry indicated that the dOclA existed in the furanose form and was substituted by the heptose trisaccharide through position six. Methylation analysis, chemical degradation, chromium trioxide oxidation and nuclear magnetic resonance spectroscopy were used to identify the structure of the core oligosaccharide as: L alpha DHepp(1----2)L alpha DHepp(1----3)L alpha DHepp(1----6)dOclAf(2----.  相似文献   

10.
The structure of the O-antigen of the lipopolysaccharide from an avirulent strain (M4S) of Pseudomonas solanacearum has been investigated by methylation analysis, n.m.r. spectroscopy, and N-deacetylation-deamination, followed by analysis and controlled Smith-degradation of the product. These studies demonstrate that the O-antigen is composed of a tetrasaccharide repeating-unit having the following structure: ----3)-alpha-D-GlcpNAc-(1----2)-alpha-L-Rhap-(1----2)-alpha- L-Rhap-(1----3)- alpha-L-Rhap-(1----.  相似文献   

11.
The structure of the antigenic O-polysaccharide part of the S-type lipopolysaccharide produced by Actinobacillus pleuropneumoniae serotype 4 has been determined by periodate oxidation, methylation, partial hydrolysis, and 1H- and 13C-n.m.r. spectroscopy. The O-polysaccharide structure has a branched-tetrasaccharide repeating unit, (----3)-beta-D-Galp-(1----4)-[beta-D-Glcp-(1----3)]-beta-D-GalpNAc- (1----4)-alpha-L-Rhap-(1-)n. The structure resembles that of the lipopolysaccharide O-chain of A. pleuropneumoniae serotype 7, and their common epitopes may account for the apparent serological cross-reactivity observed between the two serotypes when incompletely adsorbed, anticapsular-typing sera are used.  相似文献   

12.
Polymeric material isolated from the lipopolysaccharide of the reference strain of Pseudomonas cepacia serogroup O1 consisted mainly of D-glucose and 2-amino-2-deoxy-L-glucose: rhamnose and O-acetyl groups were also present. As a result of spectroscopic and degradative studies, the disaccharide repeating-unit shown could be assigned to the major polymer present. A possible origin of the minor components is suggested. ----4)-alpha-D-Glcp-(1----3)-alpha-L-GlcpNAc-(1----.  相似文献   

13.
O-Specific polysaccharide composed of L-rhamnose and 2-acetamido-2-deoxy-D-mannose was obtained on mild acid degradation of the V. fluvialis lipopolysaccharide. On the basis of the 13C-NMR data and methylation studies, the following structure was suggested for the polysaccharide repeating unit: ----4)-alpha-L-Rhap-(1----3)-beta-D-ManpNAc-(1---- This structure was confirmed by calculations using known glycosidation effects on 13C chemical shifts.  相似文献   

14.
A neutral polymer (the putative O antigen) has been isolated from the lipopolysaccharide of the reference strain for Serratia marcescens serogroup 018. From the results of spectroscopic and degradative studies, the repeating unit of the polymer was identified as a linear tetrasaccharide having the structure shown. ----2)-alpha-L-Rhap-(1----2)-alpha-L-Rhap-(1----6)-alpha-D- GlcpNAc-(1----  相似文献   

15.
On mild acid degradation of the Pseudomonas cepacia strain IMV 4176 lipopolysaccharide, two polysaccharides were obtained, one of which is a homopolymer of N-acetyl-D-galactosamine and the other is composed of equal amounts of N-acetyl-D-galactosamine and D-ribose. Partial hydrolysis with aqueous oxalic acid caused depolymerization of the heteropolysaccharide, and the homopolysaccharide was isolated in the individual state. On the basis of methylation and 13C NMR analysis, it was concluded that both polysaccharides are built up of disaccharide repeating units having the following structures: ----4)-alpha-D-GalpNAc-(1----4)-beta-D-GalpNAc-(1---- and ----4)-alpha-D-GalpNAc-(1----2)-beta-D-Ribf-(1----. The heteropolysaccharide from P. cepacia strain 4176 is identical by the structure of the repeating unit to the O-specific polysaccharide of P. cepacia strain IMV 4202 (serotype 3), Pseudomonas aeruginosa O12 and Serratia marcescens O14.  相似文献   

16.
Specific acidic polysaccharide has been isolated from the Shigella boydii type 9 antigenic lipopolysaccharide after mild hydrolysis followed by chromatography on Sephadex G-50. The polysaccharide consists of D-glucose, D-glucuronic acid, 2-acetamido-2-deoxy-D-glucose, and L-rhamnose. From the results of methylation analysis, partial acid hydrolysis and 13C NMR data the structure of the repeating unit of the polysaccharide was deduced as follows: [----4)DGlcp(alpha 1----4)DGlcAp(beta 1----3)DGlcNAcp(alpha 1----3)LRhap(alpha 1----]n. The lipopolysaccharide from Sh. boydii 9 was fractionated by gel chromatography on the Sephadex G-200 column in a buffer containing sodium deoxycholate into three fractions. PAGE-SDS of the fractions obtained, 13C NMR- and chromato-mass-spectrometry data indicated that the three fractions contained the O-specific polysaccharide as the only carbohydrate component. The substance from the most high-molecular weight fraction contained unusually long O-specific chains (60,000 dalton). In the fat acid composition this fraction differed from other lipopolysaccharides by absence of beta-hydroxymyristic acid.  相似文献   

17.
Structure of the O-antigen of Francisella tularensis strain 15.   总被引:2,自引:0,他引:2  
The O-specific polysaccharide, obtained by mild acid degradation of the lipopolysaccharide of Francisella tularensis strain 15, contained 2-acetamido-2,6-dideoxy-D-glucose (D-QuiNAc), 4,6-dideoxy-4-formamido-D-glucose (D-Qui4NFm), and 2-acetamido-2-deoxy-D-galacturonamide (D-GalNAcAN) in the ratios 1:1:2. Tri- and tetra-saccharide fragments were obtained on treatment of the polysaccharide with anhydrous hydrogen fluoride and partial hydrolysis with 0.1 M hydrochloric acid, respectively. On the basis of 1H- and 13C-n.m.r. spectroscopy of the polysaccharide and the saccharides, it was concluded that the O-antigen had the structure: ----4)-alpha-D-GalpNAcAN-(1----4)-alpha-D-GalpNAcAN-(1----3) -beta-D-QuipNAc-(1----2)-beta-D-Quip4NFm-(1----. This O-antigen is related in structure to those of Pseudomonas aeruginosa O6, immunotype 1, and IID 1008, and Shigella dysenteriae type 7.  相似文献   

18.
O-Specific side chain of P. aeruginosa immunotype 3 lipopolysaccharide is composed of N-acetyl-D-fucosamine (FucNAc), 2,3-diacetamido-2,3-dideoxy-L-guluronic acid (GulN2Ac2A) and 3-acetamidino = 2-acetamido = 2,3 = dideoxy = D-mannuronic acid (ManNAcAmA). The latter sugar is identified on the basis of solvolysis with anhydrous hydrogen fluoride, 13C NMR spectroscopy and fast-atom bombardment mass spectrometry analysis, as well as of reactions of acetamidino function (alkaline hydrolysis to acetamido group and reductive deamination to ethylamino group). Earlier, in the course of investigation of P. aeruginosa O3 lipopolysaccharides, the structure of 1-methyl-2-imidazoline was erroneously ascribed to the acetamidino group. The following structure was established for the repeating unit of immunotype 3 polysaccharide which is identical to P. aeruginosa O3(a),3c polysaccharide: ----4)-beta-D-ManNAcAmA-(1----4)-alpha-L-GulN2Ac2A-(1----3)- beta-D-FucNac-(1----.  相似文献   

19.
Structural studies were carried out on the O-polysaccharide fraction obtained by mild acid treatment of the lipopolysaccharide from Pseudomonas aeruginosa IID 1009 (ATCC 27585). The O-polysaccharide was composed of L-rhamnose, N-acetyl-D-quinovosamine, and N-acetyl-L-galactosaminuronic acid in a molar ratio of 1:1:1. The results from analysis of fragments obtained by hydrogen fluoride hydrolysis of O-polysaccharide, together with data on methylation analysis and nuclear magnetic resonance spectroscopic analysis, led to the most likely structure of the repeating units of the polymer chain ----4)L-GalNAcA(alpha 1----3)D-QuiNAc(alpha 1----3)L-Rha(alpha 1----, in which about 70% of the rhamnose residues were O-acetylated at C-2. This structure coincides with that of the repeating unit of Lanyi 02 a,b polysaccharides.  相似文献   

20.
Structural studies were carried out on the O-polysaccharide fraction obtained from the lipopolysaccharide of Pseudomonas aeruginosa IID 1012, the standard strain of Homma serogroup K, by mild acid treatment. The O-polysaccharide was composed of L-rhamnose, N-acetyl-D-quinovosamine, and N-acetyl-D-galactosaminuronic acid. The results from analysis of fragments obtained by acid hydrolysis and Smith degradation of the O-polysaccharide, together with data on methylation analysis and nuclear magnetic resonance spectroscopic measurement of the polysaccharide, led to the most likely structure of the repeating units of the polymer chain, ----4)D-GalNAcA(alpha 1----3)D-QuiNAc(beta 1----2)L-Rha(alpha 1----3)L-Rha(alpha 1----, in which about 20% of the N-acetylgalactosaminuronic acid residues were in an amide form and about 75% of the same residues were O-acetylated at C-3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号