首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous histological studies showed that in addition to a sinus node, an atrioventricular (AV) node, an AV bundle, left and right bundle branches, birds also possess a right AV‐Purkinje ring that is located in the atrial sheet of the right muscular AV‐valve along all its base length. The functionality of the AV‐Purkinje ring is unknown. In this work, we studied the topology of pacemaker myocytes in the atrial side of the isolated chicken spontaneously contracting right muscular AV‐valve using the method of microelectrode mapping of action potentials. We show that AV‐cells having the ability to show pacemaking reside in the right muscular AV‐valve. Pacemaker action potentials were exclusively recorded close to the base of the valve along its whole length from dorsal to the ventral attachment to the interventricular septum. These action potentials have much slower rate of depolarization, lower amplitude, and higher diastolic depolarization than action potentials of Purkinje (conducting) cells. We conclude the right AV‐valve has a ring bundle of pacemaker cells (but not Purkinje cells) in the adult chicken heart. J. Morphol. 277:363–369, 2016. © 2015 Wiley Periodicals, Inc.  相似文献   

2.
The spread of excitation in embryonic chick hearts, ranging in age from 7 to 20 days, was studied with both intracellular and extracellular electrodes. Evidence that the delay in ventricular excitation could be attributed to the cells of the entire atrioventricular (AV) ring was obtained, in part, from sagittal sections of the heart. In the intact preparation, uniform propagation occurred throughout the atrial roof at an apparent conduction velocity of 0.4 to 0.5 meter/sec. Delay of impulse propagation was localized in a very narrow band of tissue which extended across the AV ring. The apparent conduction velocity of this tissue was between 0.003 and 0.005 meter/sec. Both normal and retrograde propagation revealed the spread of conduction across the AV ring to be decremental in nature. This finding was supported by high frequency stimulation experiments which gave rise to AV block localized in the cells of the AV ring. Cardiac rhythmicity and AV transmission were responsive to acetylcholine and norepinephrine in much the same manner as in the adult mammalian heart. The present findings are in support of the hypothesis that the embryonic AV ring is the functional counterpart of the adult AV node.  相似文献   

3.
Chen F  Klitzner TS  Weiss JN 《Cell calcium》2006,39(5):375-385
In the present study, we combined optical Ca(2+) imaging with immunocytochemistry studies to characterize autonomic regulation of Ca(2+) cycling during early development in isolated embryonic mouse hearts. At embryonic days 9.5-11.5 (E9.5-E11.5), the Ca(2+) transient originated in the superior portion of the right atrium, propagated rapidly through both atria, slowly through the atrio-ventricular (AV) ring, and rapidly through both ventricles. Isoproterenol (ISO) significantly increased heart rate, increased Ca(2+) transient amplitude, rate of rise (RR) and a rate of decay, and shortened AV conduction time, indicating the presence of functional beta-adrenergic receptors. The muscarinic agonist carbachol (CCh) had no effects until 1 day later at E10.5. Both beta1-adrenergic and M2 muscarinic receptors were detected in ventricular muscle sections by immunochemistry at E10.5. Growing nerves, labeled using growth-associated protein 43 antibodies, were detected at the E14.5 stage, but not at E10.5, whereas mature sympathetic nerves, detected by tyrosine hydroxylase (TH) labeling, were not yet present at E14.5. These results demonstrate that functional regulation of Ca(2+) cycling by beta-adrenergic receptors occurs earliest in developing embryonic mouse hearts, followed a day later by muscarinic receptor responsiveness, with autonomic innervation developing later. These results define the functional and structural sequence of autonomic regulation of Ca(2+) transient in the embryonic mouse heart.  相似文献   

4.
Congenital heart block (CHB) is associated with high mortality and affects children of mothers with autoantibodies (IgG) to ribonucleoproteins SSB/La and SSA/Ro. IgG from mothers of children with CHB (positive IgG) was used to assess activation patterns in both the right atrium (RA) and right ventricle (RV) of Langendorff-perfused young rabbit hearts. Optical action potentials (AP) were obtained by using a 124-site photodiode array with 4-[-[2-(di-n-butylamino)-6-naphthyl]vinyl]pyridinium. Optical APs were recorded to simultaneously image activation patterns from the RA and RV. Perfusion of positive IgG (800--1,200 micro resulted in sinus bradycardia and varying degrees of heart block. Activation maps revealed marked conduction delay at the sinoatrial junction but only minor changes in overall atrial and ventricular activation patterns. No conduction disturbances were seen in the presence of IgG from mothers with healthy children. In conclusion, besides atrioventricular (AV) block, positive IgG induces sinus bradycardia. These results establish that the sequelae of CHB are associated with impaired intrasinus and/or sinoatrial conduction. The findings raise the possibility that sinus bradycardia in the developing heart may indicate the potential for AV conduction disturbances.  相似文献   

5.

Congenital heart defects (CHDs) are abnormalities in the heart structure present at birth. One important condition is hypoplastic left heart syndrome (HLHS) where severely underdeveloped left ventricle (LV) cannot support systemic circulation. HLHS usually initiates as localized tissue malformations with no underlying genetic cause, suggesting that disturbed hemodynamics contribute to the embryonic development of these defects. Left atrial ligation (LAL) is a surgical procedure on embryonic chick resulting in a phenotype resembling clinical HLHS. In this study, we investigated disturbed hemodynamics and deteriorated cardiac growth following LAL to investigate possible mechanobiological mechanisms for the embryonic development of HLHS. We integrated techniques such as echocardiography, micro-CT and computational fluid dynamics (CFD) for these analyses. Specifically, LAL procedure causes an immediate flow disturbance over atrioventricular (AV) cushions. At later stages after the heart septation, it causes hemodynamic disturbances in LV. As a consequence of the LAL procedure, the left-AV canal and LV volume decrease in size, and in the opposite way, the right-AV canal and right ventricle volume increase. According to our CFD analysis, LAL results in an immediate decrease in the left AV canal WSS levels for 3.5-day (HH21) pre-septated hearts. For 7-day post-septated hearts (HH30), LAL leads to further reduction in WSS levels in the left AV canal, and relatively increased WSS levels in the right AV canal. This study demonstrates the critical importance of the disturbed hemodynamics during the heart valve and ventricle development.

  相似文献   

6.
The presence of the molluscan neuropeptide FMRFamide was investigated in the heart of the sea hare, Aplysia californica. Immunohistochemical localization and high performance liquid chromatography (HPLC) coupled with radioimmunoassays of HPLC fractions were used to demonstrate the presence of FMRFamide and FLRFamide in the heart. FMRFamide-immunoreactive (FMRFamide-IR) nerve fibers, varicosities, and neuronal somata were observed in whole-mounts of the hearts. The atrium and atrioventricular (AV) valve regions contained significantly higher densities (P<0.05, ANOVA) of immunoreactive varicosities compared to the ventricle. The high density of FMRF-amide-IR varicosities in the atrium and the lack of sensitivity of this region to FMRFamide suggest that the atrium may be a neurohemal organ for the release of FMRF-amide. The presence of FMRFamide-IR somata in the Aplysia heart suggests that peripheral neurons may play a role in modifying heart activity, independent of the central nervous system.This work was supported by California State University, Fullerton intramural grants and NIH grant NS29750 to J.K.O., Departmental Associations Council student research grants to L.L.H., and NIH grant HL08371 to W.L.  相似文献   

7.
The ionic basis of electrical activity in embryonic cardiac muscle   总被引:2,自引:1,他引:1  
The intracellular sodium concentration reported for young, embryonic chick hearts is extremely high and decreases progressively throughout the embryonic period, reaching a value of 43 mM immediately before hatching. This observation suggested that the ionic basis for excitation in embryonic chick heart may differ from that responsible for electrical activity of the adult organ. This hypothesis was tested by recording transmembrane resting and action potentials on hearts isolated from 6-day and 19-day chick embryos and varying the extracellular sodium and potassium concentrations. The results show that for both young and old embryonic cardiac cells the resting potential depends primarily on the extracellular potassium concentration and the amplitude and rate of rise of the action potential depend primarily on the extracellular sodium concentration.  相似文献   

8.
The high levels of peptidylglycine alpha-amidating monooxygenase (PAM, EC 1.14.17.3) found in adult rat atrium led us to examine PAM expression in rat atrium and ventricle from embryonic day 14 through adulthood. Immunocytochemical studies using antisera to PAM identified cardiocytes as the major site of PAM expression in atrium and ventricle throughout development. Levels of PAM mRNA and PAM activity exhibited distinctly different developmental profiles in atrium and ventricle. Ventricular PAM mRNA and PAM activity were highest from embryonic days 14 through 18, declined at the time of birth, rose slightly during the first postnatal week, and declined toward adult levels. Atrial PAM mRNA and PAM activity were low at embryonic day 14, rose to a peak immediately before birth, declined at the time of birth, and then rose after birth. Levels of atrial PAM mRNA and PAM activity were not directly correlated at all developmental stages. Two major forms of PAM mRNA (4.2 +/- 0.1 and 3.8 +/- 0.1 kilobase(s] were identified in atrium and ventricle throughout development. The prevalence of the two forms varied with developmental stage, with atrium and ventricle containing similar forms at each stage. Western blots of atrial and ventricular membranes revealed the existence of a developmental stage-specific distribution of PAM protein among forms ranging in mass from 125 to 94 kDa. In both atrium and ventricle PAM activity was primarily soluble from embryonic days 14 through 16 and primarily particulate after birth. The role of PAM in the heart is not yet clear, but the presence of tissue-specific and developmentally regulated alterations in PAM mRNA, PAM protein, and PAM activity suggests that this peptide processing enzyme plays a key role in the heart.  相似文献   

9.
The electrical instability of hypertrophied and failing hearts is caused by delayed repolarisation, which is thought to be due in part to altered levels and/or patterns of expression of ion channel genes. The aim of this study was to investigate changes in the levels and pattern of cystic fibrosis transmembrane conductance regulator (cftr) mRNA expression in a combined pressure and volume overload model of heart failure in the rabbit, using in situ mRNA hybridisation. There was a decrease in cftr mRNA expression, primarily due to a decrease in epicardial expression and, hence, loss of the normal epicardial to endocardial gradient of cftr mRNA expression in the rabbit left ventricle. In contrast there was an increase in atrial natriuretic factor (anf) mRNA expression in the hypertrophied hearts with preferential reexpression in subendocardial regions. The patterns of both cftr and anf mRNA expression in the hypertrophied hearts were similar to those seen in embryonic hearts. This suggests that the reversion to an embryonic pattern of gene expression in cardiac hypertrophy applies to ion channel genes. The loss of the normal transmural gradient of repolarising ion channels is likely to contribute to instability of repolarisation in the hypertrophied heart and hence increased risk of cardiac arrhythmias in patients with heart failure.  相似文献   

10.
11.
Tissue levels of atrial natriuretic polypeptide (ANP) messenger RNA (ANPmRNA) and ANP in the human atrium and ventricle were measured simultaneously by the blot hybridization technique and the specific radioimmunoassay for ANP. Hearts were obtained from two patients without cardiac complications and from a patient with dilated cardiomyopathy (DCM) at autopsy. Total RNA extracted from ventricles contained a hybridizing RNA band of the same size as atrial ANPmRNA in both control and DCM hearts. The ANPmRNA level in the control ventricle was 0.2% of that in the atrium. The ANPmRNA level in the DCM ventricle increased to about 7% of that in the corresponding atrium and was approximately 40 times higher than that in the control ventricle, although the ANPmRNA level in the DCM atrium was comparable to that in the control atrium. The total content of ANPmRNA in the DCM ventricle reached about 30% of that in the corresponding atrium and was much the same as that in the control atrium. The ANP level in the DCM ventricle was approximately 1.0 microgram/g and much higher than that in the control ventricle (0.02 microgram/g).  相似文献   

12.

Background

Sphingosine-1-phosophate (S1P) is a biologically active sphingolipid metabolite that influences cellular events including differentiation, proliferation, and migration. S1P acts through five distinct cell surface receptors designated S1P1-5R, with S1P1R having the highest expression level in the developing heart. S1P1R is critical for vascular maturation, with its loss leading to embryonic death by E14.5; however, its function during early cardiac development is not well known. Our previous studies demonstrated that altered S1P levels adversely affects atrioventricular (AV) canal development in vitro, with reduced levels leading to cell death and elevated levels inhibiting cell migration and endothelial to mesenchymal cell transformation (EMT).

Results

We determined, by real-time PCR analysis, that S1P1R was expressed at least 10-fold higher than other S1P receptors in the developing heart. Immunohistochemical analysis revealed S1P1R protein expression in both endothelial and myocardial cells in the developing atrium and ventricle. Using AV canal cultures, we observed that treatment with either FTY720 (an S1P1,3,4,5R agonist) or KRP203 (an S1P1R-specific agonist) caused similar effects on AV canal cultures as S1P treatment, including induction of cell rounding, inhibition of cell migration, and inhibition of EMT. In vivo, morphological analysis of embryonic hearts at E10.5 revealed that S1P1R-/- hearts were malformed with reduced myocardial tissue. In addition to reduced myocardial tissue, E12.5 S1P1R-/- hearts had disrupted morphology of the heart wall and trabeculae, with thickened and disorganized outer compact layer and reduced fibronectin (FN) deposition compared to S1P1R+/+ littermates. The reduced myocardium was accompanied by a decrease in cell proliferation but not an increase in apoptosis.

Conclusions

These data indicate that S1P1R is the primary mediator of S1P action in AV canal cultures and that loss of S1P1R expression in vivo leads to malformed embryonic hearts, in part due to reduced fibronectin expression and reduced cell proliferation.  相似文献   

13.
The development of the atrioventricular node and bundle of His of embryonic chick hearts was studied by electrophysiological and morphological techniques. The dorsal wall of the AV canal and the interatrial septum were explored to determine if they contribute to the formation of the AV node and bundle of His. The resting membrane and action potentials of the interatrial septum cells were systematically analyzed and found to undergo progressive differentiation with development. The earliest identification of the AV node and upper bundle of His group of cells was achieved at 5 1/2-6 days of development by the electrical recording of their corresponding characteristic action potentials, from a circumscribed area located in the lowest and dorsal segment of the interatrial septum. The morphological and anatomical characterization of the cells was made following electrical recording and labelling with charcoal particles. The earlier AV node and bundle of His responses had similar characteristics to those of the adult heart. It is concluded that the AV node and upper bundle of His cells derive from the low interatrial septum. The possibility that AV canal cells contribute to this event was discarded. The functional relationship of the Av node and bundle of His with other cardiac tissues during the early development of the heart is discussed.  相似文献   

14.
Opiate binding in rat hearts: modulation of binding after hemorrhagic shock   总被引:7,自引:0,他引:7  
[3H] Diprenorphine was used to measure binding in sectioned rat hearts. Saturable binding for concentrations up to about 20 nM was obtained in the right atrium and ventricle. Unlabeled diprenorphine displaced bound [3H] diprenorphine most effectively in the right atrium (up to 55%), as compared to less than 27% in the right ventricle and the remaining parts of the heart. Scatchard analysis of the binding in the right atrium revealed cooperative binding. The delta agonist [D-Ala2,D-Leu3] enkephalin, the kappa agonist ethylketocyclazocine, and levorphanol, but not the mu agonist [D-ala2,MePhe4,Gly-(ol)5] enkephalin or dextrophan competed variably with [3H]diprenorphine for the binding in the right atrium and ventricle. A significant decrease in binding was observed in the right atrium (-66%) and ventricle (-45%) of hearts removed from rats 2 h after hemorrhagic shock; 24 h after shock, recovery of binding was found. This novel observation suggests that the diprenorphine binding sites in the heart may be physiologically active receptors, involved in regulation of peripheral cardiovascular processes.  相似文献   

15.
16.
Notch signaling is implicated in many developmental processes. In our current study, we have employed a transgenic strategy to investigate the role of Notch signaling during cardiac development in the mouse. Cre recombinase-mediated Notch1 (NICD1) activation in the mesodermal cell lineage leads to abnormal heart morphogenesis, which is characterized by deformities of the ventricles and atrioventricular (AV) canal. The major defects observed include impaired ventricular myocardial differentiation, the ectopic appearance of cell masses in the AV cushion, the right-shifted interventricular septum (IVS) and impaired myocardium of the AV canal. However, the fates of the endocardium and myocardium were not disrupted in NICD1-activated hearts. One of the Notch target genes, Hesr1, was found to be strongly induced in both the ventricle and the AV canal of NICD1-activated hearts. However, a knockout of the Hesr1 gene from NICD-activated hearts rescues only the abnormality of the AV myocardium. We searched for additional possible targets of NICD1 activation by GeneChip analysis and found that Wnt2, Bmp6, jagged 1 and Tnni2 are strongly upregulated in NICD1-activated hearts, and that the activation of these genes was also observed in the absence of Hesr1. Our present study thus indicates that the Notch1 signaling pathway plays a suppressive role both in AV myocardial differentiation and the maturation of the ventricular myocardium.  相似文献   

17.
Using morphological and physiological approaches we provided, for the first time, a structural and functional characterization of Carassius auratus L. heart. Besides to the classical four chambers, i.e. sinus venosus, atrium, ventricle, bulbus, we described two distinct structures corresponding to the atrio-ventricular (AV) region and the conus arteriosus. The atrium is very large and highly trabeculated; the ventricle shows an outer compacta, vascularized by coronary vessels, and an inner spongiosa; the bulbus wall is characterized by a high elastin/collagen ratio, which makes it extremely compliant. Immunolocalization revealed a strong expression of activated "eNOS-like" isoforms both at coronary endothelium and, to a lesser extent, in the myocardiocytes and the endocardial endothelium (EE). The structural design of the heart appears to comply with its mechanical function. Using an in vitro working heart preparation, cardiac performance was evaluated at different filling and afterload pressures. The hearts were very sensitive to filling pressure increases. Maximum Stroke volume (SV=1.08 ± 0.09 mL/kg body mass) was obtained with an input pressure of 0.4 kPa. The heart was not able to sustain afterload increases, values higher than 1.5 kPa impairing its performance. These morpho-functional features are consistent with a volume pump mechanical performance.  相似文献   

18.
Endothelin (ET)-1 is a potent vasoconstrictor peptide produced in the myocardium that can exert important effects on cardiac myocyte growth and phenotype; cardiac natriuretic peptides (ANP and BNP) are known to act as physiological antagonists of ET-1. In this study a comparative determination of ET-1 receptors and of the local productions of ET-1 and of ANP and BNP was made in different sites of failing and nonfailing hearts. Tissue from right and left atrium, right and left ventricle and interventricular septum from seven adult heart transplant recipients with end-stage idiopathic dilated cardiomyopathy (functional class III and IV, with ejection fraction < 35%) and from four postmortem subjects without cardiac complications was analyzed. In failing hearts we observed a tendency to increase of density of binding sites, most evident in left ventricle (62.6+/-22.6 fmol/mg protein vs. 29.0+/-3.3, mean +/- SEM, p = ns). A prevalence of ET-A subclass, observed in all samples, resulted more pronounced in failing hearts where this increase, found in all the cardiac regions, was more evident in left ventricle (p = 0.0007 vs nonfailing hearts). The local concentrations of ET-1, ANP and BNP resulted significantly increased in failing hearts with respect to controls in all sides of the heart. In failing hearts we have observed a tendency to increase in endothelin receptor density mainly due to a significant upregulation of ET-A subtype and a parallel increase of the tissue levels of ANP, BNP and ET-1 indicating an activation of these systems in heart failure.  相似文献   

19.
We examined the subcellular localization of ryanodine receptors (RyR) in the cardiac muscle of carp using biochemical, immunohistochemical, and electron microscopic methods and compared it with those of rats and guinea pigs. To achieve this goal, an anti-RyR antibody was newly raised against a synthetic peptide corresponding to an amino acid sequence that was conserved among all sequenced RyRs. Western blot analysis using this antibody detected a single RyR band following the SDS-PAGE of sarcoplasmic reticulum (SR) membranes from carp atrium and ventricle as well as from mammalian hearts and skeletal muscles. The carp heart band had slightly greater mobility than those of mammalian hearts. Although immunohistochemical staining showed evident striations corresponding to the Z lines in longitudinal sections of mammalian hearts, clusters of punctate staining, in contrast, were distributed ubiquitously throughout carp atrium and ventricle. Electron microscopic images of the carp myocardium showed that the SR was observed largely as the subsarcolemmal cisternae and the reticular SR, suggesting that the RyR is localized in the junctional and corbular SR.  相似文献   

20.
The previous observations of differences between different cardiac regions (ventricular myocardium, atrial myocardium, Purkinje fibre system) with respect to the maturation of the M-line region and the establishment of mature metabolic characteristics, have been extended. It was found that M-line maturation proceeds differently also between different regions of the conduction system. The M-line proteins, myomesin and MM-creatine kinase, were detected earlier, by means of immunohistochemistry, in the AV bundle and bundle branch cells than in the AV node cells. Also, a difference was observed in large foetuses. Striations in the AV node were less evident than in the AV bundle and the bundle branches in sections incubated with antibodies against myomesin as well as against MM-creatine kinase. Using enzyme histochemistry it was observed that the differences in metabolic properties between the AV node, the AV bundle and the bundle branches on the one hand, and the ordinary myocardium on the other, of adult hearts, are not established at the early stages. No clear difference in activity of succinate dehydrogenase was seen between the conduction tissues and the ordinary myocardium in the foetal hearts, while the conduction tissues showed a lower activity in the adult hearts. Furthermore, the pattern of activity of mitochondrial glycerol-3-phosphate dehydrogenase between the conduction tissues and the atrial and ventricular myocardium was quite different in early foetal stages compared with the adult stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号